1
|
Chen S, Fan F, Zhang Y, Zeng J, Li Y, Xu N, Zhang Y, Meng XL, Lin JM. Metabolites from scutellarin alleviating deferoxamine-induced hypoxia injury in BV2 cells cultured on microfluidic chip combined with a mass spectrometer. Talanta 2023; 259:124478. [PMID: 36989966 DOI: 10.1016/j.talanta.2023.124478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/11/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
The changes of metabolites of tricarboxylic acid (TCA) cycle in cells under hypoxia play a key role in drug screening. In order to dynamically monitor the drug metabolism changes of Scutellarin in the hypoxia environment induced by deferoxamine (DFO), a microfluidic-chip mass spectrometry method was used to study the real-time monitoring of drug metabolism changes under hypoxia conditions. This system has six drug-loading units, cell culture chamber, metabolite collection, filtration, HPLC separation and mass spectrometer. The cells in each microchannel were incubated with continuous flow of culture medium, metabolites will be collected by the fixed card slot, automatic sampling needle will be precise positioned and sampled. Through this new system combined with molecular biological methods, the changes of metabolites in TCA cycle of BV2 cells and drug metabolism of Scutellarin can be determined in real-time. In general, we illustrated a new mechanism of Scutellarin for reducing BV2 cell hypoxia injury and presented a novel analysis strategy that opened a way for real-time online monitoring of the energy metabolic mechanism of the effect of drugs on cells and further provided a superior strategy to screen natural drug candidates for hypoxia-related brain disease treatment.
Collapse
|
2
|
Phytochemical Constituents, Folk Medicinal Uses, and Biological Activities of Genus Angelica: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010267. [PMID: 36615460 PMCID: PMC9822461 DOI: 10.3390/molecules28010267] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/17/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
Genus Angelica is one of the widely distributed and well-known genera of family Umbelliferae. It is utilized mainly by Chinese and Korean populations especially in their folk medicine. Angelica comprises a lot of medicinally important phytoconstituents such as coumarins, furanocoumarins, flavonoids, essential oils, verbascosides, polysaccharides, etc. Members of this genus play important roles, namely antioxidant, anti-inflammatory, anti-microbial, anti-diabetic, skin-whitening, cytotoxic, hepatoprotective, and many others. This review draws attention to many species of genus Angelica with much focus on A. dahurica being one of the highly medicinally used species within this genus.
Collapse
|
3
|
Fan F, Xu N, Sun Y, Li X, Gao X, Yi X, Zhang Y, Meng X, Lin JM. Uncovering the Metabolic Mechanism of Salidroside Alleviating Microglial Hypoxia Inflammation Based on Microfluidic Chip-Mass Spectrometry. J Proteome Res 2021; 21:921-929. [PMID: 34851127 DOI: 10.1021/acs.jproteome.1c00647] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Microglia are the main immune cells in the brain playing a critical role in neuroinflammation, and numerous pieces of evidence have proved that energy metabolism is closely associated with inflammation in activated microglia. Salidroside (Sal) isolated from Tibetan medicine Rhodiola crenulate can inhibit microglial hypoxia inflammation (HI). However, whether the inhibition is due to the intervening energy metabolic process in microglia is not clear. In this work, the hypoxic microenvironment of BV2 microglial cells was simulated using deferoxamine (DFO) in vitro and the change of cell metabolites (lactate, succinate, malate, and fumarate) was real-time online investigated based on a cell microfluidic chip-mass spectrometry (CM-MS) system. Meanwhile, for confirming the metabolic mechanism of BV2 cells under hypoxia, the level of HI-related factors (LDH, ROS, HIF-1α, NF-κB p65, TNF-α, IL-1β, and IL-6) was detected by molecular biotechnology. Integration of the detected results revealed that DFO-induced BV2 cell HI was associated with the process of energy metabolism, in which cell energy metabolism changed from oxidative phosphorylation to glycolysis. Furthermore, administration of Sal treatment could effectively invert this change, and two metabolites of Sal were identified: tyrosol and 4-hydroxyphenylacetic acid. In general, we illustrated a new mechanism of Sal for reducing BV2 cell HI injury and presented a novel analysis strategy that opened a way for real-time online monitoring of the energy metabolic mechanism of the effect of drugs on cells and further provided a superior strategy to screen natural drug candidates for HI-related brain disease treatment.
Collapse
Affiliation(s)
- Fangfang Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Ning Xu
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.,Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yucheng Sun
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Xuanhao Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xinchang Gao
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Xizhen Yi
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Xu R, Zheng R, Wang Y, Ma R, Tong G, Wei X, Feng D, Hu K. Transcriptome analysis to elucidate the toxicity mechanisms of fenvalerate, sulfide gatifloxacin, and ridomil on the hepatopancreas of Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2021; 116:140-149. [PMID: 34256134 DOI: 10.1016/j.fsi.2021.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/15/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Most antibiotics, insecticides, and other chemicals used in agricultural and fishery production tend to persist in the environment. Fenvalerate, sulfide gatifloxacin, and ridomil are widely used in aquaculture as antibacterial, antifungal, and antiparasitic drugs; however, their toxicity mechanism remains unclear. Thus, we herein analyzed the effects of these three drugs on the hepatopancreas of Procambarus clarkii at the transcriptome level. Twelve normalized cDNA libraries were constructed using RNA extracted from P. clarkii after treatment with fenvalerate, sulfide gatifloxacin, or ridomil and from an untreated control group, followed by Kyoto Encyclopedia of Genes and Genomes pathway analysis. In the control vs fenvalerate and control vs sulfide gatifloxacin groups, 14 and seven pathways were significantly enriched, respectively. Further, the effects of fenvalerate and sulfide gatifloxacin were similar on the hepatopancreas of P. clarkii. We also found that the expression level of genes encoding senescence marker protein-30 and arylsulfatase A was downregulated in the sulfide gatifloxacin group, indicating that sulfide gatifloxacin accelerated the apoptosis of hepatopancreatocytes. The expression level of major facilitator superfamily domain containing 10 was downregulated, implying that it interferes with the ability of the hepatopancreas to metabolize drugs. Interestingly, we found that Niemann pick type C1 and glucosylceramidase-β potentially interact with each other, consequently decreasing the antioxidant capacity of P. clarkii hepatopancreas. In the fenvalerate group, the downregulation of the expression level of xanthine dehydrogenase indicated that fenvalerate affected the immune system of P. clarkii; moreover, the upregulation of the expression level of pancreatitis-associated protein-2 and cathepsin C indicated that fenvalerate caused possible inflammatory pathological injury to P. clarkii hepatopancreas. In the ridomil group, no pathway was significantly enriched. In total, 21 genes showed significant differences in all three groups. To conclude, although there appears to be some overlap in the toxicity mechanisms of fenvalerate, sulfide gatifloxacin, and ridomil, further studies are warranted.
Collapse
Affiliation(s)
- Ruze Xu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Engineering Research Center of Aquaculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, PR China; National Fisheries Technical Extension Center, Beijing, 100125, PR China; Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, PR China.
| | - Ruizhou Zheng
- National Pathogen Collection Center for Aquatic Animals, Shanghai Engineering Research Center of Aquaculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, PR China; National Fisheries Technical Extension Center, Beijing, 100125, PR China; Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, PR China
| | - Yali Wang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Engineering Research Center of Aquaculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, PR China; National Fisheries Technical Extension Center, Beijing, 100125, PR China; Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, PR China
| | - Rongrong Ma
- National Pathogen Collection Center for Aquatic Animals, Shanghai Engineering Research Center of Aquaculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Guixiang Tong
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, PR China
| | - Xinxian Wei
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, PR China
| | - Dongyue Feng
- National Fisheries Technical Extension Center, Beijing, 100125, PR China.
| | - Kun Hu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Engineering Research Center of Aquaculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, PR China; National Fisheries Technical Extension Center, Beijing, 100125, PR China; Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, PR China.
| |
Collapse
|
5
|
Shi W, Jiang Y, Zhao DS, Jiang LL, Liu FJ, Wu ZT, Li ZQ, Wang LL, Zhou J, Li P, Li HJ. Metabolomic-transcriptomic landscape of 8-epidiosbulbin E acetate -a major diterpenoid lactone from Dioscorea bulbifera tuber induces hepatotoxicity. Food Chem Toxicol 2019; 135:110887. [PMID: 31626840 DOI: 10.1016/j.fct.2019.110887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/08/2019] [Accepted: 10/12/2019] [Indexed: 11/26/2022]
Abstract
Studies have shown that 8-epidiosbulbin E acetate (EEA), a major diterpenoid lactone in the tuber of Dioscorea bulbifera, can induce hepatotoxicity in vivo. However, the underlying mechanisms remain unknown. Using the integrated transcriptomic and metabolomics method, in this study we investigated the global effect of EEA exposure on the transcriptomic and metabolomic profiles in mice. The abundance of 7131 genes and 42 metabolites in the liver, as well as 43 metabolites in the serum were altered. It should be noted that EEA mainly damaged hepatic cells through the aberrant regulation of multiple systems primarily including bile acid metabolism, and taurine and hypotaurine metabolism. In addition, an imbalance of bile acid metabolism was found to play a key pat in response to EEA-triggered hepatotoxicity. In summary, these findings contributed to understanding the underlying mechanisms of EEA hepatotoxicity.
Collapse
Affiliation(s)
- Wei Shi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yan Jiang
- Nanjing Forestry University, Nanjing, 210037, China.
| | - Dong-Sheng Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Li-Long Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Feng-Jie Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Zi-Tian Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhuo-Qing Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Ling-Li Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Jing Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
6
|
Hua YL, Ma Q, Yuan ZW, Zhang XS, Yao WL, Ji P, Hu JJ, Wei YM. A novel approach based on metabolomics coupled with network pharmacology to explain the effect mechanisms of Danggui Buxue Tang in anaemia. Chin J Nat Med 2019; 17:275-290. [PMID: 31076131 DOI: 10.1016/s1875-5364(19)30031-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Indexed: 12/15/2022]
Abstract
Danggui Buxue Tang (DBT) is a famous Chinese medicinal decoction. Mechanism of DBT action is wide ranging and unclear. Exploring new ways of treatment with DBT is useful. Sprague-Dawley(SD) rats were randomly divided into 3 groups including control (NC, Saline), the DBT (at a dose of 8.10 g-1), and blood deficiency(BD) (Cyclophosphamide (APH)-andCyclophosphamide(CTX)-induced anaemia). A metabolomics approach using Liquid Chromatography-Quadrupole-Time-of-Flight/Mass Spectrometry (LC/Q-TOFMS) was developed to perform the plasma metabolic profiling analysis and differential metaboliteswerescreened according to the multivariate statistical analysiscomparing the NC and BD groups, andthe hub metabolites were outliers with high scores of the centrality indices. Anaemia disease-related protein target and compound of DBT databases were constructed. The TCMSP, ChemMapper and STITCH databases were used to predict the protein targets of DBT. Using the Cytoscape 3.2.1 to establish a phytochemical component-target protein interaction network and establish a component, protein and hub metabolite protein-protein interaction (PPI) network and merging the three PPI networks basing on BisoGenet. The gene enrichment analysis was used to analyse the relationship between proteins based on the relevant genetic similarity by ClueGO. The results shown DBT effectively treated anaemia in vivo. 11 metabolic pathways are involved in the therapeutic effect of DBT in vivo; S-adenosyl-l-methionine, glycine, l-cysteine, arachidonic acid (AA) and phosphatidylcholine(PC) were screened as hub metabolites in APH-and CTX-induced anaemia. A total of 288 targets were identified as major candidates for anaemia progression. The gene-set enrichment analysis revealed that the targets are involved in iron ion binding, haemopoiesis, reactive oxygen species production, inflammation and apoptosis. The results also showed that these targets were associated with iron ion binding, haemopoiesis, ROS production, apoptosis, inflammation and related signalling pathways. DBT can promote iron ion binding and haemopoiesis activities, restrain inflammation, production of reactive oxygen, block apoptosis, and contribute significantly to the DBT treat anaemia.
Collapse
Affiliation(s)
- Yong-Li Hua
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070,China.
| | - Qi Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070,China
| | - Zi-Wen Yuan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070,China
| | - Xiao-Song Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070,China
| | - Wan-Ling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070,China
| | - Peng Ji
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070,China
| | - Jun-Jie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070,China
| | - Yan-Ming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070,China
| |
Collapse
|
7
|
Hua YL, Ma Q, Zhang XS, Yao WL, Ji P, Hu JJ, Wei YM. Urinary metabolomics analysis reveals the effect of volatile oil from Angelica sinensis on LPS-induced inflammation rats. Biomed Chromatogr 2018; 33:e4402. [PMID: 30255631 DOI: 10.1002/bmc.4402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 09/11/2018] [Accepted: 09/20/2018] [Indexed: 12/12/2022]
Abstract
Lipopolysaccharide (LPS)-induced inflammation occurs commonly and volatile oil from Angelica sinensis (VOAS) can be used as an anti-inflammatory agent. The molecular mechanisms that allow the anti-inflammatory factors to be expressed are still unknown. In this paper, we applied gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography-time-of-flight mass spectrometry (LC-Q/TOF-MS) based on a metabolomics platform coupled with a network approach to analyze urine samples in three groups of rats: one with LPS-induced inflammation (MI); one with intervention with VOAS; and normal controls (NC). Our study found definite metabolic footprints of inflammation and showed that all three groups of rats, MI, intervention with VOAS and NC have distinct metabolic profiles in urine. The concentrations of 48 metabolites differed significantly among the three groups. The metabolites in urine were screened by the GC-MS and LC-Q/TOF-MS methods. The significantly changed metabolites (p < 0.05, variable importance in projection > 1.5) between MI, NC and VOAS were included in the metabolic networks. Finally, hub metabolites were screened, including glycine, arachidonic acid, l-glutamate, pyruvate and succinate, which have high values of degree (k). the Results suggest that disorders of glycine, arachidonic acid, l-glutamate, pyruvate and succinate metabolism might play an important part in the predisposition and development of LPS-induced inflammation. By applying metabolomics with network methods, the mechanisms of diseases are clearly elucidated.
Collapse
Affiliation(s)
- Yong-Li Hua
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, China
| | - Qi Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, China
| | - Xiao-Song Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, China
| | - Wan-Ling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, China
| | - Peng Ji
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, China
| | - Jun-Jie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, China
| | - Yan-Ming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, China
| |
Collapse
|
8
|
Ma Q, Li PL, Hua YL, Ji P, Yao WL, Zhang XS, Zhong LJ, Wei YM. Effects of Tao-Hong-Si-Wu decoction on acute blood stasis in rats based on a LC-Q/TOF-MS metabolomics and network approach. Biomed Chromatogr 2017; 32. [PMID: 29149492 DOI: 10.1002/bmc.4144] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 10/27/2017] [Accepted: 11/03/2017] [Indexed: 12/15/2022]
Abstract
A novel approach using metabolomics coupled with a metabolic network was used to investigate the effects of Tao-Hong-Si-Wu decoction (THSWD) on the rat model of acute blood stasis syndrome. Acute blood stasis syndrome was induced by placing the rats in ice-cold water following two injections with epinephrine. The hemorheological indicators [whole blood viscosity (WBV) and plasma viscosity (PV)] and the blood coagulation indicators [thrombin time (TT), prothrombin time (PT), activated partial thromboplastin time (APTT) and fibrinogen (FIB)] were detected. The nonparametric univariate method and multivariate statistical analysis were performed for determining the potential biomarkers. A correlation map was structured between biochemical indicators and hub metabolites to explain the effects mechanism of THSWD. After the administration of THSWD, the levels of WBV, PV, TT, APTT and FIB returned to levels observed in the control group. According to metabolomics coupled with metabolic network analysis, the intervention of THSWD in rats with acute blood stasis syndrome induced substantial and characteristic changes in their metabolic profiles. Fifteen metabolites were screened, which mainly involved 10 pathways and five hub metabolites, namely, l-glutamate, l-phenylalanine, N-acylsphingosine, arachidonic acid and phosphatidate. The biochemical indicators and hub metabolites could be adjusted to close to normal levels by THSWD. Therefore, combining metabolomics and metabolic network helped to evaluate the effects of THSWD on acute blood stasis.
Collapse
Affiliation(s)
- Qi Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Peng-Ling Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Yong-Li Hua
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Peng Ji
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Wan-Ling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Xiao-Song Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Li-Jia Zhong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Yan-Ming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, China
| |
Collapse
|
9
|
Zhao DS, Jiang LL, Fan YX, Wang LL, Li ZQ, Shi W, Li P, Li HJ. Investigation of Dioscorea bulbifera Rhizome-Induced Hepatotoxicity in Rats by a Multisample Integrated Metabolomics Approach. Chem Res Toxicol 2017; 30:1865-1873. [PMID: 28899093 DOI: 10.1021/acs.chemrestox.7b00176] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The use of herbal medicines continues to expand globally, meanwhile, herb-associated hepatotoxicity is becoming a safety issue. As a conventional Chinese medicinal herb, Dioscorea bulbifera rhizome (DBR) has been documented to cause hepatic toxicity. However, the exact underlying mechanism remains largely unexplored. In the present study, we aimed to profile entire endogenous metabolites in a biological system using a multisample integrated metabolomics strategy. Our findings offered additional insights into the molecular mechanism of the DBR-induced hepatotoxicity. We identified different metabolites from rat plasma, urine, and feces by employing gas chromatography-mass spectrometry in combination with multivariate analysis. In total, 55 metabolites distributed in 33 metabolic pathways were identified as being significantly altered in DBR-treated rats. Correlation network analysis revealed that the hub metabolites of hepatotoxicity were mainly associated with amino acid, bile acid, purine, pyrimidine, lipid, and energy metabolism. As such, DBR affected the physiological and biological functions of liver via the regulation of multiple metabolic pathways to an abnormal state. Notably, our findings also demonstrated that the multisample integrated metabolomics strategy has a great potential to identify more biomarkers and pathways in order to elucidate the mechanistic complexity of toxicity of traditional Chinese medicine.
Collapse
Affiliation(s)
- Dong-Sheng Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University , No. 24 Tongjia Lane, Nanjing 210009, China
| | - Li-Long Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University , No. 24 Tongjia Lane, Nanjing 210009, China
| | - Ya-Xi Fan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University , No. 24 Tongjia Lane, Nanjing 210009, China
| | - Ling-Li Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University , No. 24 Tongjia Lane, Nanjing 210009, China
| | - Zhuo-Qing Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University , No. 24 Tongjia Lane, Nanjing 210009, China
| | - Wei Shi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University , No. 24 Tongjia Lane, Nanjing 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University , No. 24 Tongjia Lane, Nanjing 210009, China
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University , No. 24 Tongjia Lane, Nanjing 210009, China
| |
Collapse
|
10
|
A Review of the Composition of the Essential Oils and Biological Activities of Angelica Species. Sci Pharm 2017; 85:scipharm85030033. [PMID: 28930168 PMCID: PMC5620520 DOI: 10.3390/scipharm85030033] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 01/04/2023] Open
Abstract
A number of Angelica species have been used in traditional systems of medicine to treat many ailments. Especially, essential oils (EOs) from the Angelica species have been used for the treatment of various health problems, including malaria, gynecological diseases, fever, anemia, and arthritis. EOs are complex mixtures of low molecular weight compounds, especially terpenoids and their oxygenated compounds. These components deliver specific fragrance and biological properties to essential oils. In this review, we summarized the chemical composition and biological activities of EOs from different species of Angelica. For this purpose, a literature search was carried out to obtain information about the EOs of Angelica species and their bioactivities from electronic databases such as PubMed, Science Direct, Wiley, Springer, ACS, Google, and other journal publications. There has been a lot of variation in the EO composition among different Angelica species. EOs from Angelica species were reported for different kinds of biological activities, such as antioxidant, anti-inflammatory, antimicrobial, immunotoxic, and insecticidal activities. The present review is an attempt to consolidate the available data for different Angelica species on the basis of major constituents in the EOs and their biological activities.
Collapse
|
11
|
Comparison of Chemical Profiles, Anti-Inflammatory Activity, and UPLC-Q-TOF/MS-Based Metabolomics in Endotoxic Fever Rats between Synthetic Borneol and Natural Borneol. Molecules 2017; 22:molecules22091446. [PMID: 28858264 PMCID: PMC6151575 DOI: 10.3390/molecules22091446] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 12/12/2022] Open
Abstract
Natural borneol (NB, called “Bingpian”) is an important traditional Chinese medicine to restore consciousness, remove heat and relieve pain, all of which are inflammation-related diseases. Recently, due to the limited source of NB, synthetic borneol (SB) is widely used as a substitute for NB in clinics. However, little is known about the effects of SB instead of NB. Herein, the aim of the present study was to compare NB and SB on chemical profiles by gas chromatography-mass spectrometer (GC-MS) analysis, anti-inflammatory activity in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages, and ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) metabolomic approaches in endotoxic fever induced in rats. Results showed that, in total, 13 volatile components could be identified in NB and SB by GC-MS analysis, in which a significant difference between them still existed. The main constituents in SB were iso-borneol and borneol, while borneol contributes to 98.96% of the amount in NB. Additionally, both NB and SB exhibited remarkable anti-inflammatory effects to reduce the level of inflammatory factors including NO, TNF-α and IL-6 in LPS-induced RAW 264.7 macrophages, and lower the high body temperature in rats with endotoxic fever induced by LPS. Moreover, it seems that NB exhibited higher efficacy than SB. The unequal bioactive efficiency between NB and SB was also indicated by means of non-targeting metabolomics. Based on UPLC-Q-TOF/MS technology, 12 biomarkers in the serum of fever rats were identified. Pathway analysis revealed that the anti-fever effect of NB and SB was related to regulating the abnormal glycerophospholipid, linoleic acid and alpha-linoleic acid metabolism pathways in the fever model. Results indicated that there was still a great difference between NB and SB involving chemical constituents, anti-inflammation activity and the ability to regulate the abnormal metabolism pathways of the fever model. Certainly, further studies are warranted to better understand the replacement rationale in medicinal application.
Collapse
|
12
|
Zhong LJ, Hua YL, Ji P, Yao WL, Zhang WQ, Li J, Wei YM. Evaluation of the anti-inflammatory effects of volatile oils from processed products of Angelica sinensis radix by GC-MS-based metabolomics. JOURNAL OF ETHNOPHARMACOLOGY 2016; 191:195-205. [PMID: 27292195 DOI: 10.1016/j.jep.2016.06.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 06/04/2016] [Accepted: 06/08/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Roots of Angelica sinensis (Oliv.) Diels (AS) a commonly used herbal, always act as an anti-inflammatory drug in Chinese traditional therapy. In clinical use, AS is always processed before being used for the reason that processing can increase its therapeutic effect. Recent studies have shown that volatile oil of AS (VOAS), an important component in AS, has evident anti-inflammatory activities. AIM OF THE STUDY In this study, our aim is to evaluate the anti-inflammatory effects of volatile oils from processed products of AS. MATERIALS AND METHODS In this paper, volatile oils from stir-fried AS (C-VOAS), parched AS with alcohol (J-VOAS), parched AS with soil (T-VOAS), and parched AS with sesame oil (Y-VOAS) were applied to intervene the carrageenan-induced acute inflammation model rats. GC-MS based metabolomics was utilized to determine different metabolites in the inflammatory exudate and plasma samples. RESULTS The results showed that VOASs could significantly inhibit the release of PGE2, HIS, 5-HT and TNF-α, among which C-VOAS and J-VOAS expressed better effect. Otherwise, 14 potential biomarkers were identified respectively in inflammatory exudate and plasma, which changed highly significantly (P<0.01) in C-VOAS and J-VOAS groups. CONCLUSIONS We inferred that the anti-inflammatory effect of C-VOAS and J-VOAS were superior to other VOASs.
Collapse
Affiliation(s)
- Li-Jia Zhong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, People's Republic of China
| | - Yong-Li Hua
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, People's Republic of China
| | - Peng Ji
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, People's Republic of China
| | - Wan-Ling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, People's Republic of China
| | - Wen-Quan Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, People's Republic of China
| | - Jian Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, People's Republic of China
| | - Yan-Ming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, People's Republic of China.
| |
Collapse
|