1
|
Leão LPMDO, Neto AK, de Jesus Nicácio K, Lavorato SN, Leite FB, Teixeira KC, Murgu M, de Paula ACC, Soares MG, Chagas-Paula DA, Dias DF. Novel Synthesized Benzophenone Thiazole Hybrids Exhibited Ex Vivo and In Silico Anti-Inflammatory Activity. Chem Biol Drug Des 2024; 104:e14634. [PMID: 39424371 DOI: 10.1111/cbdd.14634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/24/2024] [Accepted: 09/09/2024] [Indexed: 10/21/2024]
Abstract
Novel benzophenone-thiazole hybrids with different substituents were synthesized and evaluated for anti-inflammatory activity using an ex vivo human whole-blood assay. All hybrids (3c and 5a-h) showed significant anti-inflammatory activity via prostaglandin E2 (PGE2) release inhibition. Moreover, 5c (82.8% of PGE2 inhibition), 5e (83.1% of PGE2 inhibition), and 5h (82.1% of PGE2 inhibition) were comparable to the reference drugs. Molecular docking revealed potential preferable binding to the active sites of cyclooxygenase 2 (COX-2) and microsomal prostaglandin E synthase-1 (mPGES-1) enzymes. This study provides the first evidence that benzophenone-thiazole hybrids may also dock in mPGES-1, a new attractive anti-inflammatory drug target, besides providing promising ex vivo anti-inflammatory activity. Thus, the novel hybrids are promising anti-inflammatory lead compounds and highlight the significance of optimal substituent selection in the design of potent PGE2 inhibitors.
Collapse
Affiliation(s)
| | | | | | - Stefânia Neiva Lavorato
- Center of Biological Sciences and Health, Federal University of Western Bahia, Barreiras, Bahia, Brazil
| | - Fernanda Brito Leite
- Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | | | | | - Ana Cláudia Chagas de Paula
- Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Marisi Gomes Soares
- Institute of Chemistry, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | | | | |
Collapse
|
2
|
Santos MFC, Nicácio KDJ, Katchborian-Neto A, Ferreira MS, Miranda DDO, Andrade JV, Pereira HDA, Jesus EGD, B T, Souza S, Morais-Urano RP, Dias DF, Chagas-Paula DA, Soares MG. Ex vivo inhibition of PGE2 formation in human blood by four bicyclico [3.2.1] octane neolignans isolated from Aniba firmula bark, two with unusual structural pattern. Nat Prod Res 2024; 38:393-401. [PMID: 36106991 DOI: 10.1080/14786419.2022.2124248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/08/2022] [Indexed: 10/14/2022]
Abstract
The phytochemical investigation of the stem bark crude extract of Aniba firmula (Lauraceae) led to the isolation of undescribed bicyclic [3.2.1] octane neolignans, 1 and 2, characterized by unusual bicyclic patterns and two other known bicyclic neolignans 3 and 4. Anti-inflammatory bicyclic [3.2.1] octane neolignans metabolites were previously reported in the literature, and the A. firmula stands out in the Lauraceae family as a source of potentially bioactive compounds. Thus, herein the anti-inflammatory potential of four isolated compounds from A. firmula was accessed via an ex vivo anti-inflammatory model that included plasmatic quantification of the prostaglandin E2 (PGE2) inflammatory mediator. Compounds 2 and 3 exhibited significant anti-inflammatory activity by inhibiting the production of PGE2 in plasma samples, thus by interference with the cyclooxygenase (COX) inflammatory pathway. Therefore, these findings demonstrate that the bicyclic octane neolignan classes [3.2.1] can present anti-inflammatory potential.
Collapse
Affiliation(s)
- Mario F C Santos
- Departamento de Química e Física, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alegre, ES, Brazil
| | - Karen de J Nicácio
- Instituto de Química, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| | | | - Miller S Ferreira
- Instituto de Química, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| | | | - João V Andrade
- Departamento de Química e Física, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alegre, ES, Brazil
| | - Herinque de A Pereira
- Departamento de Química e Física, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alegre, ES, Brazil
| | - Ester Gonçalves de Jesus
- Departamento de Química e Física, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alegre, ES, Brazil
| | | | - Silva Souza
- Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Raquel P Morais-Urano
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brasil
| | | | | | - Marisi G Soares
- Instituto de Química, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| |
Collapse
|
3
|
Santos Nascimento IJD, de Aquino TM, da Silva Júnior EF. Computer-Aided Drug Design of Anti-inflammatory Agents Targeting Microsomal Prostaglandin E2 Synthase-1 (mPGES-1). Curr Med Chem 2022; 29:5397-5419. [PMID: 35301943 DOI: 10.2174/0929867329666220317122948] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 11/22/2022]
Abstract
Inflammation is a natural process in response to external stimuli associated with organism protection. However, this reaction could be exaggerated, leading to severe damages related to physiopathological processes, such as rheumatoid arthritis, cancer, diabetes, allergies, infections, among others. Inflammation is mainly characterized by pain, increased temperature, flushing, and edema, which can be controlled using anti-inflammatory drugs. In this context, prostaglandin E2 (PGE2) inhibition has been targeted for designing new compounds with anti-inflammatory properties. It is a bioactive lipid overproduced during an inflammatory process, in which its increased production is carried out mainly by COX-1, COX-2, and microsomal prostaglandin E2 synthase-1 (mPGES-1). Recently, studies have demonstrated that mPGES-1 inhibition is a safe strategy to develop anti-inflammatory agents, which could protect against pain, acute inflammation, arthritis, autoimmune diseases, and different types of cancers. To decrease production costs and increase the probability of discovering active substances, computer-aided drug design (CADD) approaches have been increasingly used for designing new inhibitors. Thus, this review will cover all aspects involving high-throughput virtual screening, molecular docking, dynamics, fragment-based drug design, quantitative structure-activity relationship in seeking new promising mPGES-1 inhibitors.
Collapse
Affiliation(s)
- Igor José Dos Santos Nascimento
- Laboratory of Synthesis and Research in Medicinal Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil.
- Department of Pharmacy, Estácio of Alagoas College, Maceió, Brazil
| | - Thiago Mendonça de Aquino
- Laboratory of Synthesis and Research in Medicinal Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil.
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil
| | - Edeildo Ferreira da Silva Júnior
- Laboratory of Synthesis and Research in Medicinal Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil.
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil
| |
Collapse
|
4
|
Mechanism of action and potential applications of selective inhibition of microsomal prostaglandin E synthase-1-mediated PGE 2 biosynthesis by sonlicromanol's metabolite KH176m. Sci Rep 2021; 11:880. [PMID: 33441600 PMCID: PMC7806836 DOI: 10.1038/s41598-020-79466-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/08/2020] [Indexed: 01/29/2023] Open
Abstract
Increased prostaglandin E2 (PGE2) levels were detected in mitochondrial disease patient cells harboring nuclear gene mutations in structural subunits of complex I, using a metabolomics screening approach. The increased levels of this principal inflammation mediator normalized following exposure of KH176m, an active redox-modulator metabolite of sonlicromanol (KH176). We next demonstrated that KH176m selectively inhibited lipopolysaccharide (LPS) or interleukin-1β (IL-1β)-induced PGE2 production in control skin fibroblasts. Comparable results were obtained in the mouse macrophage-like cell line RAW264.7. KH176m selectively inhibited mPGES-1 activity, as well as the inflammation-induced expression of mPGES-1. Finally, we showed that the effect of KH176m on mPGES-1 expression is due to the inhibition of a PGE2-driven positive feedback control-loop of mPGES-1 transcriptional regulation. Based on the results obtained we discuss potential new therapeutic applications of KH176m and its clinical stage parent drug candidate sonlicromanol in mitochondrial disease and beyond.
Collapse
|
5
|
Bjørklund G, Tinkov AA, Hosnedlová B, Kizek R, Ajsuvakova OP, Chirumbolo S, Skalnaya MG, Peana M, Dadar M, El-Ansary A, Qasem H, Adams JB, Aaseth J, Skalny AV. The role of glutathione redox imbalance in autism spectrum disorder: A review. Free Radic Biol Med 2020; 160:149-162. [PMID: 32745763 DOI: 10.1016/j.freeradbiomed.2020.07.017] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/02/2020] [Accepted: 07/13/2020] [Indexed: 12/22/2022]
Abstract
The role of glutathione in autism spectrum disorder (ASD) is emerging as a major topic, due to its role in the maintenance of the intracellular redox balance. Several studies have implicated glutathione redox imbalance as a leading factor in ASD, and both ASD and many other neurodevelopmental disorders involve low levels of reduced glutathione (GSH), high levels of oxidized glutathione (GSSG), and abnormalities in the expressions of glutathione-related enzymes in the blood or brain. Glutathione metabolism, through its impact on redox environment or redox-independent mechanisms, interferes with multiple mechanisms involved in ASD pathogenesis. Glutathione-mediated regulation of glutamate receptors [e.g., N-methyl-d-aspartate (NMDA) receptor], as well as the role of glutamate as a substrate for glutathione synthesis, may be involved in the regulation of glutamate excitotoxicity. However, the interaction between glutathione and glutamate in the pathogenesis of brain diseases may vary from synergism to antagonism. Modulation of glutathione is also associated with regulation of redox-sensitive transcription factors nuclear factor kappa B (NF-κB) and activator protein 1 (AP-1) and downstream signaling (proinflammatory cytokines and inducible enzymes), thus providing a significant impact on neuroinflammation. Mitochondrial dysfunction, as well as neuronal apoptosis, may also provide a significant link between glutathione metabolism and ASD. Furthermore, it has been recently highlighted that glutathione can affect and modulate DNA methylation and epigenetics. Review analysis including research studies meeting the required criteria for analysis showed statistically significant differences between the plasma GSH and GSSG levels as well as GSH:GSSG ratio in autistic patients compared with healthy individuals (P = 0.0145, P = 0.0150 and P = 0.0202, respectively). Therefore, the existing data provide a strong background on the role of the glutathione system in ASD pathogenesis. Future research is necessary to investigate the role of glutathione redox signaling in ASD, which could potentially also lead to promising therapeutics.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo I Rana, Norway.
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University, Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia; Federal Research Centre of Biological Systems, Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia
| | - Božena Hosnedlová
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic; CONEM Metallomics Nanomedicine Research Group (CMNRG), Brno, Czech Republic
| | - Rene Kizek
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic; CONEM Metallomics Nanomedicine Research Group (CMNRG), Brno, Czech Republic; Faculty of Pharmacy with Division of Laboratory Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Olga P Ajsuvakova
- IM Sechenov First Moscow State Medical University, Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia; Federal Research Centre of Biological Systems, Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; CONEM Scientific Secretary, Verona, Italy
| | - Margarita G Skalnaya
- IM Sechenov First Moscow State Medical University, Moscow, Russia; Federal Research Centre of Biological Systems, Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia
| | | | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Afaf El-Ansary
- Medicinal Chemistry Department, King Saud University, Riyadh, Saudi Arabia; Autism Research and Treatment Center, Riyadh, Saudi Arabia; CONEM Saudi Autism Research Group, King Saud University, Riyadh, Saudi Arabia
| | - Hanan Qasem
- Autism Research and Treatment Center, Riyadh, Saudi Arabia; CONEM Saudi Autism Research Group, King Saud University, Riyadh, Saudi Arabia
| | - James B Adams
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway
| | - Anatoly V Skalny
- IM Sechenov First Moscow State Medical University, Moscow, Russia; Federal Research Centre of Biological Systems, Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia
| |
Collapse
|
6
|
Li T, Liu B, Guan H, Mao W, Wang L, Zhang C, Hai L, Liu K, Cao J. PGE2 increases inflammatory damage in Escherichia coli-infected bovine endometrial tissue in vitro via the EP4-PKA signaling pathway. Biol Reprod 2020; 100:175-186. [PMID: 30010723 DOI: 10.1093/biolre/ioy162] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 07/13/2018] [Indexed: 11/15/2022] Open
Abstract
Endometritis is the most common bovine uterine disease following parturition. The role of prostaglandin E2 (PGE2) in the regulation of endometrial inflammation and repair is well understood. Excess PGE2 is also generated in multiple inflammatory diseases, including endometritis. However, it remains unclear whether PGE2 is associated with pathogen-induced inflammatory damage to the endometrium. To clarify the role of PGE2 in pathogen-induced inflammatory damage, this study evaluated the production of PGE2, inflammatory factors, and damage-associated molecular patterns (DAMPs) in cultured Escherichia coli-infected bovine endometrial tissue. PGE2 production was significantly higher in E. coli-infected tissue, and in E. coli-infected tissue treated with 15-prostaglandin dehydrogenase (15-PGDH) inhibitors, as compared to uninfected tissue. Phospholipase A2 (PLA2), cyclooxygenase-2 (COX-2), and microsomal prostaglandin E synthase-1 (mPGES-1) were also upregulated in E. coli-infected tissue, while concentrations of arachidonic acid (AA), leukotrienes, DAMPs, and other proinflammatory factors increased. The accumulation of PGE2 clearly damaged the cultured tissue. Treatment with the COX-2, mPGES-1, EP4, and protein kinase A (PKA) inhibitors decreased the production of PGE2, inflammatory factors, and DAMPs, simultaneously alleviating the E. coli-induced endometrial tissue damage. Therefore, the PGE2 that was generated by COX-2 and mPGES-1 accumulated, and this pathogenic PGE2 increased inflammatory damage by upregulating inflammatory factors and DAMPs in E. coli-infected bovine endometrial tissue. This upregulation of inflammatory factors and DAMPs might be regulated by the EP4-PKA signaling pathway.
Collapse
Affiliation(s)
- Tingting Li
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Bo Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Hong Guan
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Wei Mao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Lingrui Wang
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Chao Zhang
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Lili Hai
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Kun Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Jinshan Cao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| |
Collapse
|
7
|
Zhang C, Wang L, Li T, Mao W, Liu B, Cao J. EP2/4 Receptors Promote the Synthesis of PGE 2 Increasing Tissue Damage in Bovine Endometrial Explants Induced by Escherichia coli. J Pharmacol Exp Ther 2019; 372:175-184. [PMID: 31732699 DOI: 10.1124/jpet.119.262444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022] Open
Abstract
The bovine uterine is easily contaminated with bacteria during coitus or parturition. A previous study suggested that prostaglandin E2 (PGE2) promoted Escherichia coli-infected bovine endometrial tissue inflammatory damage via cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase-1 (mPGES-1). However, it remains unclear which PGE2 receptors regulate the proinflammatory effect of PGE2 In this study, we evaluated the effect of PGE2 and its mediated receptors on E. coli-infected endometrium explants isolated from the bovine uterus. The E. coli-infected bovine endometrial explants were cultured in vitro, and the study used EP2/4 receptor agonists to investigate the responses of COX-2, mPGES-1, PGE2, proinflammatory factors, and damage-associated molecular patterns (DAMPs). The expression of COX-2, mPGES-1, PGE2, proinflammatory factors, and DAMPs was significantly increased after infection with E. coli; however, the high expression levels caused by E. coli were reduced following treatment with COX-2 and mPGES-1 inhibitors. In addition, the expression levels of COX-2, mPGES-1, PGE2, proinflammatory factors, and DAMPs were higher in treatment with EP2/4 receptor agonists in E. coli-infected endometrium explants, and their promotable effects were effectively blocked by EP2/4 receptor antagonists. These findings provide evidence that PGE2 may promote the progress of inflammation in endometrial explants infected with E. coli in bovines. Furthermore, EP2/4 may be involved in a positive feedback loop for COX-2 and mPGES-1 expression, and this may be responsible for the proinflammatory reaction of PGE2 in E. coli-infected uteri of bovines. SIGNIFICANCE STATEMENT: PGE2 promoted E. coli-infected bovine endometrial tissue damage via COX-2 and mPGES-1. However, this proinflammatory effect of PGE2 depends on which receptors are affected by PGE2, and this remains unclear. In this study, it was investigated that EP2 and EP4 may be involved in a positive feedback loop for COX-2 and mPGES-1 expression, and this may be responsible for the proinflammatory reaction of PGE2 in E. coli-infected uteri of bovines.
Collapse
Affiliation(s)
- Chao Zhang
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine (C.Z., L.W., T.L., W.M., B.L., J.C.), and Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture (C.Z., L.W., T.L., W.M., B.L., J.C.), Inner Mongolia Agricultural University, Huhhot, China
| | - Lingrui Wang
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine (C.Z., L.W., T.L., W.M., B.L., J.C.), and Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture (C.Z., L.W., T.L., W.M., B.L., J.C.), Inner Mongolia Agricultural University, Huhhot, China
| | - Tingting Li
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine (C.Z., L.W., T.L., W.M., B.L., J.C.), and Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture (C.Z., L.W., T.L., W.M., B.L., J.C.), Inner Mongolia Agricultural University, Huhhot, China
| | - Wei Mao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine (C.Z., L.W., T.L., W.M., B.L., J.C.), and Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture (C.Z., L.W., T.L., W.M., B.L., J.C.), Inner Mongolia Agricultural University, Huhhot, China
| | - Bo Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine (C.Z., L.W., T.L., W.M., B.L., J.C.), and Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture (C.Z., L.W., T.L., W.M., B.L., J.C.), Inner Mongolia Agricultural University, Huhhot, China
| | - Jinshan Cao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine (C.Z., L.W., T.L., W.M., B.L., J.C.), and Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture (C.Z., L.W., T.L., W.M., B.L., J.C.), Inner Mongolia Agricultural University, Huhhot, China
| |
Collapse
|
8
|
Hassan GS, Abdel Rahman DE, Abdelmajeed EA, Refaey RH, Alaraby Salem M, Nissan YM. New pyrazole derivatives: Synthesis, anti-inflammatory activity, cycloxygenase inhibition assay and evaluation of mPGES. Eur J Med Chem 2019; 171:332-342. [PMID: 30928706 DOI: 10.1016/j.ejmech.2019.03.052] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 10/27/2022]
Abstract
New pyrazole derivatives 2-5 were synthesized and evaluated for their COX-1 and COX-2 inhibitory activity in vitro. All compounds showed good inhibitory activity at a nanomolar level and most compounds exhibited selectivity towards COX-2 inhibition. Compounds 2a, 3b, 4a, 5b and 5e exhibited IC50 towards COX-2 enzyme of 19.87, 39.43, 61.24, 38.73 and 39.14 nM, respectively. Furthermore, compounds 3b, 4a, 5b and 5e exhibited a selectivity index of 22.21, 14.35, 17.47 and 13.10, respectively. The most active compounds were further subjected to in vivo anti-inflammatory assay. The tested compounds showed better or comparable activity to celecoxib as positive control. In order to explore their binding mode and selectivity behaviour, molecular docking in the active site of COX-2 was carried out for these derivatives. Analysis of the docked poses of the compounds showed that they adopt similar conformations to the highly selective COX-2 inhibitor, SC-558. The docking pose of compound 3b was confirmed by molecular dynamics. All the tested compounds exhibited potent inhibitory effect on the production of PGE2, in addition to their inhibition of COX-2 enzyme.
Collapse
Affiliation(s)
- Ghaneya S Hassan
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr Elini St., Cairo 11562, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Doaa E Abdel Rahman
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr Elini St., Cairo 11562, Egypt
| | - Esraa A Abdelmajeed
- National Cancer Institute, Cairo University, FomElkhalig, Kasr Elaini St., Cairo 11796, Egypt
| | - Rana H Refaey
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt.
| | - M Alaraby Salem
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Yassin M Nissan
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr Elini St., Cairo 11562, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
9
|
Muthukaman N, Deshmukh S, Tambe M, Pisal D, Tondlekar S, Shaikh M, Sarode N, Kattige VG, Sawant P, Pisat M, Karande V, Honnegowda S, Kulkarni A, Behera D, Jadhav SB, Sangana RR, Gudi GS, Khairatkar-Joshi N, Gharat LA. Alleviating CYP and hERG liabilities by structure optimization of dihydrofuran-fused tricyclic benzo[d]imidazole series - Potent, selective and orally efficacious microsomal prostaglandin E synthase-1 (mPGES-1) inhibitors: Part-2. Bioorg Med Chem Lett 2018. [PMID: 29519738 DOI: 10.1016/j.bmcl.2018.02.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In an effort to identify CYP and hERG clean mPGES-1 inhibitors from the dihydrofuran-fused tricyclic benzo[d]imidazole series lead 7, an extensive structure-activity relationship (SAR) studies were performed. Optimization of A, D and E-rings in 7 afforded many potent compounds with human whole blood potency in the range of 160-950 nM. Selected inhibitors 21d, 21j, 21m, 21n, 21p and 22b provided selectivity against COX-enzymes and mPGES-1 isoforms (mPGES-2 and cPGES) along with sufficient selectivity against prostanoid synthases. Most of the tested analogs demonstrated required metabolic stability in liver microsomes, low hERG and CYP liability. Oral pharmacokinetics and bioavailability of lead compounds 21j, 21m and 21p are discussed in multiple species like rat, guinea pig, dog, and cynomolgus monkey. Besides, these compounds revealed low to moderate activity against human pregnane X receptor (hPXR). The selected lead 21j further demonstrated in vivo efficacy in acute hyperalgesia (ED50: 39.6 mg/kg) and MIA-induced osteoarthritic pain models (ED50: 106 mg/kg).
Collapse
Affiliation(s)
- Nagarajan Muthukaman
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Sanjay Deshmukh
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Macchindra Tambe
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Dnyandeo Pisal
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Shital Tondlekar
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Mahamadhanif Shaikh
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Neelam Sarode
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Vidya G Kattige
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Pooja Sawant
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Monali Pisat
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Vikas Karande
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Srinivasa Honnegowda
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Abhay Kulkarni
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Dayanidhi Behera
- Drug Metabolism and Pharmacokinetics, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Satyawan B Jadhav
- Drug Metabolism and Pharmacokinetics, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Ramchandra R Sangana
- Drug Metabolism and Pharmacokinetics, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Girish S Gudi
- Drug Metabolism and Pharmacokinetics, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Neelima Khairatkar-Joshi
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Laxmikant A Gharat
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India.
| |
Collapse
|
10
|
Bazin HG, Bess LS, Livesay MT. Synthesis and Applications of Imidazoquinolines: A Review. ORG PREP PROCED INT 2018. [DOI: 10.1080/00304948.2018.1433427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Hélène G. Bazin
- Biomedical & Pharmaceutical Science, University of Montana, 32 Campus Drive #1552, Missoula, MT 59812, USA
| | - Laura S. Bess
- Biomedical & Pharmaceutical Science, University of Montana, 32 Campus Drive #1552, Missoula, MT 59812, USA
| | - Mark T. Livesay
- Biomedical & Pharmaceutical Science, University of Montana, 32 Campus Drive #1552, Missoula, MT 59812, USA
| |
Collapse
|
11
|
Khan H, Rengasamy KRR, Pervaiz A, Nabavi SM, Atanasov AG, Kamal MA. Plant-derived mPGES-1 inhibitors or suppressors: A new emerging trend in the search for small molecules to combat inflammation. Eur J Med Chem 2017; 153:2-28. [PMID: 29329790 DOI: 10.1016/j.ejmech.2017.12.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 11/28/2017] [Accepted: 12/16/2017] [Indexed: 02/05/2023]
Abstract
Inflammation comprises the reaction of the body to injury, in which a series of changes of the terminal vascular bed, blood, and connective tissue tends to eliminate the injurious agent and to repair the damaged tissue. It is a complex process, which involves the release of diverse regulatory mediators. The current anti-inflammatory agents are challenged by multiple side effects and thus, new effective therapies are highly needed. The aim of this review is to summarize the described microsomal prostaglandin E synthase-1 (mPGES-1) inhibitors or transcriptional suppressors from medicinal plants, which could be an ideal approach in the management of inflammatory disorders, but need further clinical trials in order to be ultimately validated.
Collapse
Affiliation(s)
- Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Kannan R R Rengasamy
- REEF Environmental Consultancy, #2 Kamaraj Street, S.P. Nagar, Puducherry 605 001, India.
| | - Aini Pervaiz
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Atanas G Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria.
| | - Mohammad A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia; Novel Global Community Educational Foundation, Australia
| |
Collapse
|
12
|
Muthukaman N, Tambe M, Deshmukh S, Pisal D, Tondlekar S, Shaikh M, Sarode N, Kattige VG, Pisat M, Sawant P, Honnegowda S, Karande V, Kulkarni A, Behera D, Jadhav SB, Sangana RR, Gudi GS, Khairatkar-Joshi N, Gharat LA. Discovery of furan and dihydrofuran-fused tricyclic benzo[d]imidazole derivatives as potent and orally efficacious microsomal prostaglandin E synthase-1 (mPGES-1) inhibitors: Part-1. Bioorg Med Chem Lett 2017; 27:5131-5138. [PMID: 29100801 DOI: 10.1016/j.bmcl.2017.10.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/18/2017] [Accepted: 10/25/2017] [Indexed: 01/28/2023]
Abstract
This letter describes the synthesis and biological evaluation of furan and dihydrofuran-fused tricyclic benzo[d]imidazole derivatives as novel mPGES-1 inhibitors, capable of inhibiting an increased PGE2 production in the disease state. Structure-activity optimization afforded many potent mPGES-1 inhibitors having <50 nM potencies in the A549 cellular assay and adequate metabolic stability in liver microsomes. Lead compounds 8l and 8m demonstrated reasonable in vitro pharmacology and pharmacokinetic properties over other compounds. In particular, 8m revealed satisfactory oral pharmacokinetics and bioavailability in multiple species like rat, guinea pig, dog and cynomolgus monkey. In addition, the representative compound 8m showed in vivo efficacy by inhibiting LPS-induced thermal hyperalgesia with an ED50 of 14.3 mg/kg in guinea pig.
Collapse
Affiliation(s)
- Nagarajan Muthukaman
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Macchindra Tambe
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Sanjay Deshmukh
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Dnyandeo Pisal
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Shital Tondlekar
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Mahamadhanif Shaikh
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Neelam Sarode
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Vidya G Kattige
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Monali Pisat
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Pooja Sawant
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Srinivasa Honnegowda
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Vikas Karande
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Abhay Kulkarni
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Dayanidhi Behera
- Drug Metabolism and Pharmacokinetics, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Satyawan B Jadhav
- Drug Metabolism and Pharmacokinetics, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Ramchandra R Sangana
- Drug Metabolism and Pharmacokinetics, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Girish S Gudi
- Drug Metabolism and Pharmacokinetics, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Neelima Khairatkar-Joshi
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Laxmikant A Gharat
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India.
| |
Collapse
|
13
|
Psarra A, Nikolaou A, Kokotou MG, Limnios D, Kokotos G. Microsomal prostaglandin E2 synthase-1 inhibitors: a patent review. Expert Opin Ther Pat 2017. [DOI: 10.1080/13543776.2017.1344218] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Anastasia Psarra
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini Nikolaou
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Maroula G Kokotou
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Limnios
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - George Kokotos
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
14
|
Tricyclic 4,4-dimethyl-3,4-dihydrochromeno[3,4- d ]imidazole derivatives as microsomal prostaglandin E 2 synthase-1 (mPGES-1) inhibitors: SAR and in vivo efficacy in hyperalgesia pain model. Bioorg Med Chem Lett 2017; 27:2594-2601. [DOI: 10.1016/j.bmcl.2017.03.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/08/2017] [Accepted: 03/23/2017] [Indexed: 01/25/2023]
|
15
|
Partridge KM, Antonysamy S, Bhattachar SN, Chandrasekhar S, Fisher MJ, Fretland A, Gooding K, Harvey A, Hughes NE, Kuklish SL, Luz JG, Manninen PR, McGee JE, Mudra DR, Navarro A, Norman BH, Quimby SJ, Schiffler MA, Sloan AV, Warshawsky AM, Weller JM, York JS, Yu XP. Discovery and characterization of [(cyclopentyl)ethyl]benzoic acid inhibitors of microsomal prostaglandin E synthase-1. Bioorg Med Chem Lett 2017; 27:1478-1483. [DOI: 10.1016/j.bmcl.2016.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 11/25/2022]
|
16
|
Sander WJ, O'Neill HG, Pohl CH. Prostaglandin E 2 As a Modulator of Viral Infections. Front Physiol 2017; 8:89. [PMID: 28261111 PMCID: PMC5306375 DOI: 10.3389/fphys.2017.00089] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/01/2017] [Indexed: 02/06/2023] Open
Abstract
Viral infections are a major cause of infectious diseases worldwide. Inflammation and the immune system are the major host defenses against these viral infection. Prostaglandin E2 (PGE2), an eicosanoid generated by cyclooxygenases, has been shown to modulate inflammation and the immune system by regulating the expression/concentration of cytokines. The effect of PGE2 on viral infection and replication is cell type- and virus-family-dependent. The host immune system can be modulated by PGE2, with regards to immunosuppression, inhibition of nitrogen oxide (NO) production, inhibition of interferon (IFN) and apoptotic pathways, and inhibition of viral receptor expression. Furthermore, PGE2 can play a role in viral infection directly by increasing the production and release of virions, inhibiting viral binding and replication, and/or stimulating viral gene expression. PGE2 may also have a regulatory role in the induction of autoimmunity and in signaling via Toll-like receptors. In this review the known effects of PGE2 on the pathogenesis of various infections caused by herpes simplex virus, rotavirus, influenza A virus and human immunodeficiency virus as well the therapeutic potential of PGE2 are discussed.
Collapse
Affiliation(s)
| | | | - Carolina H. Pohl
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free StateBloemfontein, South Africa
| |
Collapse
|
17
|
Misra S, Saini M, Ojha H, Sharma D, Sharma K. Pharmacophore modelling, atom-based 3D-QSAR generation and virtual screening of molecules projected for mPGES-1 inhibitory activity. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2017; 28:17-39. [PMID: 28094550 DOI: 10.1080/1062936x.2016.1273971] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/13/2016] [Indexed: 06/06/2023]
Abstract
COX-2 inhibitors exhibit anticancer effects in various cancer models but due to the adverse side effects associated with these inhibitors, targeting molecules downstream of COX-2 (such as mPGES-1) has been suggested. Even after calls for mPGES-1 inhibitor design, to date there are only a few published inhibitors targeting the enzyme and displaying anticancer activity. In the present study, we have deployed both ligand and structure-based drug design approaches to hunt novel drug-like candidates as mPGES-1 inhibitors. Fifty-four compounds with tested mPGES-1 inhibitory value were used to develop a model with four pharmacophoric features. 3D-QSAR studies were undertaken to check the robustness of the model. Statistical parameters such as r2 = 0.9924, q2 = 0.5761 and F test = 1139.7 indicated significant predictive ability of the proposed model. Our QSAR model exhibits sites where a hydrogen bond donor, hydrophobic group and the aromatic ring can be substituted so as to enhance the efficacy of the inhibitor. Furthermore, we used our validated pharmacophore model as a three-dimensional query to screen the FDA-approved Lopac database. Finally, five compounds were selected as potent mPGES-1 inhibitors on the basis of their docking energy and pharmacokinetic properties such as ADME and Lipinski rule of five.
Collapse
Affiliation(s)
- S Misra
- a Division of Metabolic Cell Signaling Research , Institute of Nuclear Medicine and Allied Sciences , Delhi , India
| | - M Saini
- b Division of Radio Protective Drug Development Research , Institute of Nuclear Medicine and Allied Sciences , Delhi , India
| | - H Ojha
- b Division of Radio Protective Drug Development Research , Institute of Nuclear Medicine and Allied Sciences , Delhi , India
| | - D Sharma
- b Division of Radio Protective Drug Development Research , Institute of Nuclear Medicine and Allied Sciences , Delhi , India
| | - K Sharma
- a Division of Metabolic Cell Signaling Research , Institute of Nuclear Medicine and Allied Sciences , Delhi , India
| |
Collapse
|