1
|
Mizuta S, Yamaguchi T, Iwasaki M, Ishikawa T. A facile access to aliphatic trifluoromethyl ketones via photocatalyzed cross-coupling of bromotrifluoroacetone and alkenes. Org Biomol Chem 2024. [PMID: 39258408 DOI: 10.1039/d4ob01247j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Biological molecules incorporating trifluoromethyl ketones (TFMKs) have emerged as reversible covalent inhibitors, aiding in the management and treatment of inflammatory diseases, cancer, and respiratory conditions. TFMKs, renowned for their versatile binding properties and adaptability, are pivotal in the rational design of novel drugs for diverse diseases. The photocatalytic insertion of alkenes, abundant feedstocks, into the α-carbon of trifluoromethylacetone represents a highly effective and atom-economical method for synthesizing valuable TFMKs. However, these processes typically necessitate high-energy photoirradiation (λ > 300 nm, Hg lamp) and stoichiometric oxidants to generate the acetonyl radical from acetone. In our study, we demonstrate the visible-light photocatalytic radical addition into olefins using bromotrifluoroacetone as the trifluoroacetonyl radical precursor under mild conditions. Aliphatic trifluoromethyl ketones or the corresponding bromo-substituted products can be obtained by selecting an appropriate photocatalyst and solvent. Comprehensive experimental investigations, including cyclic voltammetry, Stern-Volmer quenching studies, and kinetic isotope effects, corroborate the synthesis of trifluoroacetonyl radical species from bromotrifluoroacetone under photoredox conditions. Further, we demonstrate the efficient synthesis of an oseltamivir derivative bearing a trifluoromethylketone moiety, which shows promising biological activity. Hence, this methodology will streamline the direct introduction of trifluoromethyl ketone into biological target molecules during drug discovery.
Collapse
Affiliation(s)
- Satoshi Mizuta
- Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki, 852-8521, Japan.
| | - Tomoko Yamaguchi
- Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki, 852-8521, Japan.
| | - Masaharu Iwasaki
- Laboratory of Emerging Viral Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center for Advanced Modalities and Drug Delivery System, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871, Japan
- RNA Frontier Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
| | - Takeshi Ishikawa
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan.
| |
Collapse
|
2
|
Ripa L, Sandmark J, Hughes G, Shamovsky I, Gunnarsson A, Johansson J, Llinas A, Collins M, Jung B, Novén A, Pemberton N, Mogemark M, Xiong Y, Li Q, Tångefjord S, Ek M, Åstrand A. Selective and Bioavailable HDAC6 2-(Difluoromethyl)-1,3,4-oxadiazole Substrate Inhibitors and Modeling of Their Bioactivation Mechanism. J Med Chem 2023; 66:14188-14207. [PMID: 37797307 DOI: 10.1021/acs.jmedchem.3c01269] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Histone deacetylase 6 (HDAC6) is a unique member of the HDAC family mainly targeting cytosolic nonhistone substrates, such as α-tubulin, cortactin, and heat shock protein 90 to regulate cell proliferation, metastasis, invasion, and mitosis in tumors. We describe the identification and characterization of a series of 2-(difluoromethyl)-1,3,4-oxadiazoles (DFMOs) as selective nonhydroxamic acid HDAC6 inhibitors. By comparing structure-activity relationships and performing quantum mechanical calculations of the HDAC6 catalytic mechanism, we show that potent oxadiazoles are electrophilic substrates of HDAC6 and propose a mechanism for the bioactivation. We also observe that the inherent electrophilicity of the oxadiazoles makes them prone to degradation in water solution and the generation of potentially toxic products cannot be ruled out, limiting the developability for chronic diseases. However, the oxadiazoles demonstrate high oral bioavailability and low in vivo clearance and are excellent tools for studying the role of HDAC6 in vitro and in vivo in rats and mice.
Collapse
Affiliation(s)
- Lena Ripa
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Jenny Sandmark
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Glyn Hughes
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Igor Shamovsky
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Anders Gunnarsson
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Julia Johansson
- Clinical Pharmacology and Safety Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Antonio Llinas
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Mia Collins
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Bomi Jung
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Anna Novén
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Nils Pemberton
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Mickael Mogemark
- Clinical Pharmacology and Safety Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Yao Xiong
- Pharmaron Beijing, Co. Ltd., No. 6, Taihe Road, BDA, Beijing 100176, China
| | - Qing Li
- Pharmaron Beijing, Co. Ltd., No. 6, Taihe Road, BDA, Beijing 100176, China
| | - Stefan Tångefjord
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Margareta Ek
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Annika Åstrand
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| |
Collapse
|
3
|
Du HW, Du YD, Zeng XW, Shu W. Access to Trifluoromethylketones from Alkyl Bromides and Trifluoroacetic Anhydride by Photocatalysis. Angew Chem Int Ed Engl 2023; 62:e202308732. [PMID: 37534823 DOI: 10.1002/anie.202308732] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/04/2023]
Abstract
Aliphatic trifluoromethyl ketones are a type of unique fluorine-containing subunit which play a significant role in altering the physical and biological properties of molecules. Catalytic methods to provide direct access to aliphatic trifluoromethyl ketones are highly desirable yet remain underdeveloped, partially owing to the high reactivity and instability of trifluoroacetyl radical. Herein, we report a photocatalytic synthesis of trifluoromethyl ketones from alkyl bromides with trifluoroacetic anhydride. The reaction features dual visible-light and halogen-atom-transfer catalysis, followed by an enabling radical-radical cross-coupling of an alkyl radical with a stabilized trifluoromethyl radical. The reaction provides straightforward access to aliphatic trifluoromethyl ketones from readily available and cost-effective alkyl halides and trifluoroacetic anhydride (TFAA).
Collapse
Affiliation(s)
- Hai-Wu Du
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Yi-Dan Du
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Xian-Wang Zeng
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Wei Shu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, P. R. China
| |
Collapse
|
4
|
Mukherjee A, Zamani F, Suzuki T. Evolution of Slow-Binding Inhibitors Targeting Histone Deacetylase Isoforms. J Med Chem 2023; 66:11672-11700. [PMID: 37651268 DOI: 10.1021/acs.jmedchem.3c01160] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Because the overexpression of histone deacetylase enzymes (HDACs) has been linked to numerous diseases, including various cancers and neurodegenerative disorders, HDAC inhibitors have emerged as promising therapeutic agents. However, most HDAC inhibitors lack both subclass and isoform selectivity, which leads to potential toxicity. Unlike classical hydroxamate HDAC inhibitors, slow-binding HDAC inhibitors form tight and prolonged bonds with HDAC enzymes. This distinct mechanism of action improves both selectivity and toxicity profiles, which makes slow-binding HDAC inhibitors a promising class of therapeutic agents for various diseases. Therefore, the development of slow-binding HDAC inhibitors that can effectively target a wide range of HDAC isoforms is crucial. This Perspective provides valuable insights into the potential and progress of slow-binding HDAC inhibitors as promising drug candidates for the treatment of various diseases.
Collapse
Affiliation(s)
| | - Farzad Zamani
- SANKEN, Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Takayoshi Suzuki
- SANKEN, Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
5
|
Tinkov OV, Grigorev VY, Grigoreva LD, Osipov VN, Kolotaev AV, Khachatryan DS. HDAC6 detector: online application for evaluating compounds as potential histone deacetylase 6 inhibitors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:619-637. [PMID: 37565331 DOI: 10.1080/1062936x.2023.2244419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
The HDAC6 (histone deacetylase 6) enzyme plays a key role in many biological processes, including cell division, apoptosis, and immune response. To date, HDAC6 inhibitors are being developed as effective drugs for the treatment of various diseases. In this work, adequate QSAR models of HDAC6 inhibitors are proposed. They are integrated into the developed application HDAC6 Detector, which is freely available at https://ovttiras-hdac6-detector-hdac6-detector-app-yzh8y5.streamlit.app/. The web application HDAC6 Detector can be used to perform virtual screening of HDAC6 inhibitors by dividing the compounds into active and inactive ones relative to the reference vorinostat compound (IC50 = 10.4 nM). The web application implements a structural interpretation of the developed QSAR models. In addition, the application can evaluate the compliance of a compound with Lipinski's rule. The developed models are used for virtual screening of a series of 12 new hydroxamic acids, namely, the derivatives of 3-hydroxyquinazoline-4(3H)-ones and 2-aryl-2,3-dihydroquinazoline-4(1H)-ones. In vitro evaluation of the inhibitory activity of this series of compounds against HDAC6 allowed us to confirm the results of virtual screening and to select promising compounds V-6 and V-11, the IC50 of which is 0.99 and 0.81 nM, respectively.
Collapse
Affiliation(s)
- O V Tinkov
- Department of Pharmacology and Pharmaceutical Chemistry, Medical Faculty, Shevchenko Transnistria State University, Tiraspol, Moldova
| | - V Y Grigorev
- Institute of Physiologically Active Compounds, Federal Research Center for Problems of Chemical Physics and Medical Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - L D Grigoreva
- Department of Fundamental Physicochemical Engineering, Moscow State University, Moscow, Russia
| | - V N Osipov
- Department of Chemical Synthesis, Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A V Kolotaev
- National Research Centre, Kurchatov Institute, Moscow, Russia
| | - D S Khachatryan
- National Research Centre, Kurchatov Institute, Moscow, Russia
| |
Collapse
|
6
|
Tinkov OV, Grigorev VY, Grigoreva LD, Osipov VN. HDAC1 PREDICTOR: a simple and transparent application for virtual screening of histone deacetylase 1 inhibitors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:915-931. [PMID: 36548122 DOI: 10.1080/1062936x.2022.2147996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Histone deacetylases play an important role in regulating gene expression by modifying histones and changing chromatin conformation. HDAC dysregulation is involved in many diseases, such as cancer, autoimmune and neurodegenerative diseases. Histone deacetylase 1 (HDAC1) inhibitors represent an important class of drugs. Quantitative Structure-Activity Relationship (QSAR) classification models were developed using 2D RDKit molecular descriptors; ECPF4 (Extended Connectivity Fingerprint) circular fingerprints; and the Random Forest, Gradient Boosting, and Support Vector Machine methods. The developed models were integrated into the HDAC1 PREDICTOR application, which is freely available at the link https://ovttiras-hdac1-inhibitors-hdac1-predictor-app-z3mrbr.streamlitapp.com. The HDAC1 PREDICTOR web application allows one to reveal the compounds for which the predicted activity to inhibit HDAC1 is higher than that of the reference Vorinostat compound (IC50 = 11.08 nM). The algorithm implemented in HDAC1 PREDICTOR for determining the contributions of molecular fragments to the inhibitory activity can be used to find the molecule segments that increase or decrease the activity, enabling the researcher to conduct a rational molecular design of new highly active HDAC1 inhibitors. The developed QSAR models and the code for their construction in the Python programming language are freely available on the GitHub platform at https://github.com/ovttiras/HDAC1-inhibitors.
Collapse
Affiliation(s)
- O V Tinkov
- Department of Pharmacology and Pharmaceutical Chemistry, Medical Faculty, Shevchenko Transnistria State University, Tiraspol, Moldova
| | - V Y Grigorev
- Department of Computer-aided Molecular Design, Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences (IPAC RAS), Chernogolovka, Russia
| | - L D Grigoreva
- Department of Fundamental Physicochemical Engineering, Moscow State University, Moscow, Russia
| | - V N Osipov
- Department of Chemical Synthesis, Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
7
|
Moreno-Yruela C, Olsen CA. Determination of Slow-Binding HDAC Inhibitor Potency and Subclass Selectivity. ACS Med Chem Lett 2022; 13:779-785. [PMID: 35586419 PMCID: PMC9109163 DOI: 10.1021/acsmedchemlett.1c00702] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/10/2022] [Indexed: 12/27/2022] Open
Abstract
Histone deacetylases (HDACs) 1-3 regulate chromatin structure and gene expression. These three enzymes are targets for cancer chemotherapy and have been studied for the treatment of immune disorders and neurodegeneration, but there is a lack of selective pharmacological tool compounds to unravel their individual roles. Potent inhibitors of HDACs 1-3 often display slow-binding kinetics, which causes a delay in inhibitor-enzyme equilibration and may affect assay readout. Here we compare the potencies and selectivities of slow-binding inhibitors measured by discontinuous and continuous assays. We find that entinostat, a clinical candidate, inhibits HDACs 1-3 by a two-step slow-binding mechanism with lower potencies than previously reported. In addition, we show that RGFP966, commercialized as an HDAC3-selective probe, is a slow-binding inhibitor with inhibitor constants of 57, 31, and 13 nM against HDACs 1-3, respectively. These data highlight the need for thorough kinetic investigation in the development of selective HDAC probes.
Collapse
Affiliation(s)
- Carlos Moreno-Yruela
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Christian A. Olsen
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
8
|
Kaboudin B, Ghashghaee M, Bigdeli A, Farkhondeh A, Eskandari M, Esfandiari H. Recent Advances on the Application of Langlois’ Reagent in Organic Transformations. ChemistrySelect 2021. [DOI: 10.1002/slct.202103867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Babak Kaboudin
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Gava Zang Zanjan 45137-66731 Iran
| | - Mojtaba Ghashghaee
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Gava Zang Zanjan 45137-66731 Iran
| | - Akram Bigdeli
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Gava Zang Zanjan 45137-66731 Iran
| | - Amir Farkhondeh
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Gava Zang Zanjan 45137-66731 Iran
| | - Mahboobe Eskandari
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Gava Zang Zanjan 45137-66731 Iran
| | - Hesam Esfandiari
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Gava Zang Zanjan 45137-66731 Iran
| |
Collapse
|
9
|
Moreno-Yruela C, Fass DM, Cheng C, Herz J, Olsen CA, Haggarty SJ. Kinetic Tuning of HDAC Inhibitors Affords Potent Inducers of Progranulin Expression. ACS Chem Neurosci 2019; 10:3769-3777. [PMID: 31330099 DOI: 10.1021/acschemneuro.9b00281] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Histone deacetylases (HDACs) are enzymes involved in the epigenetic control of gene expression. A handful of HDAC inhibitors have been approved for the treatment of cancer, and HDAC inhibition has also been proposed as a novel therapeutic strategy for neurodegenerative disorders. These disorders include progranulin (PGRN)-deficient forms of frontotemporal dementia caused by mutations in the GRN gene that lead to haploinsufficiency. Hydroxamic-acid-based inhibitors of HDACs 1-3, reported to have fast-on/fast-off binding kinetics, induce increased expression of PGRN in human neuronal models, while the benzamide class of slow-binding HDAC inhibitors does not produce this effect. These observations indicate that the kinetics of HDAC inhibitor binding can be tuned for optimal induction of human PGRN expression in neurons. Here, we further expand on these findings using human cortical-like, glutamatergic neurons. We provide evidence that two prototypical, potent hydroxamic acid HDAC inhibitors that induce PGRN (panobinostat and trichostatin A) exhibit an initial fast-binding step followed by a second, slower step, referred to as mechanism B of slow binding, rather than simpler fast-on/fast-off binding kinetics. In addition, we show that trapoxin A, a macrocyclic, epoxyketone-containing class I HDAC inhibitor, exhibits slow binding with high, picomolar potency and also induces PGRN expression in human neurons. Finally, we demonstrate induction of PGRN expression by fast-on/fast-off, highly potent, macrocyclic HDAC inhibitors with ethyl ketone or ethyl ester Zn2+ binding groups. Taken together, these data expand our understanding of HDAC1-3 inhibitor binding kinetics, and further delineate the specific combinations of structural and kinetic features of HDAC inhibitors that are optimal for upregulating PGRN expression in human neurons and thus may have translational relevance in neurodegenerative disease.
Collapse
Affiliation(s)
- Carlos Moreno-Yruela
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Departments of Neurology & Psychiatry, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| | - Daniel M. Fass
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Departments of Neurology & Psychiatry, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| | - Chialin Cheng
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Departments of Neurology & Psychiatry, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| | - Joachim Herz
- Departments of Molecular Genetics, Neuroscience, Neurology and Neurotherapeutics, Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9046, United States
| | - Christian A. Olsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Stephen J. Haggarty
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Departments of Neurology & Psychiatry, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| |
Collapse
|
10
|
Yuan Y, Hu Z, Bao M, Sun R, Long X, Long L, Li J, Wu C, Bao J. Screening of novel histone deacetylase 7 inhibitors through molecular docking followed by a combination of molecular dynamics simulations and ligand-based approach. J Biomol Struct Dyn 2018; 37:4092-4103. [PMID: 30417746 DOI: 10.1080/07391102.2018.1541141] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Histone acetylation/deacetylation is a key mechanism for transcription regulation which plays an important role in control of gene expression, tissue growth, and development. In particular, histone deacetylase 7 (HDAC7), a member of class IIa HDACs, is crucial to maintain cell homeostasis, and HDAC7 has emerged as a new target for cancer therapy. In this study, molecular docking was applied to screen candidate inhibitors and 21 compounds were found. Following the 50 ns molecular dynamics simulations and binding free energy calculation, ZINC00156160, ZINC01703144, ZINC04293665, and ZINC13900201 were identified as potential HDAC7 inhibitors, which would provide a sound starting point for further studies involving molecular modeling coupled with biochemical experiments. Meanwhile, similarity computation and substructure search were combined, and then we found that compounds sharing common backbone "CC(=O)N[C@@H](CSc1ccccc1)C(=O)O" could be efficient to inhibit the bioactivity of HDAC7. Then comparative molecular similarity indices analysis (CoMSIA) techniques were implemented to investigate the relationship between properties of the substituent group and bioactivities of small molecules. The CoMSIA model exhibited powerful predictivity, with satisfactory statistical parameters such as q2 of 0.659, R2 of 0.952, and F of 268.448. Contour maps of the CoMSIA model gave insight into the feature requirements of the common backbone for the HDAC7 inhibitory activity. Finally, details of designing novel HDAC7 inhibitors were confirmed by a combination of receptor-based docking and ligand-based structure-activity relationship. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yuan Yuan
- a Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University , Chengdu , Sichuan , P.R. China
| | - Zongyue Hu
- a Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University , Chengdu , Sichuan , P.R. China
| | - Minyue Bao
- b State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu , Sichuan , China
| | - Rong Sun
- a Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University , Chengdu , Sichuan , P.R. China
| | - Xin Long
- a Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University , Chengdu , Sichuan , P.R. China
| | - Li Long
- a Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University , Chengdu , Sichuan , P.R. China
| | - Jianzong Li
- a Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University , Chengdu , Sichuan , P.R. China
| | - Chuanfang Wu
- a Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University , Chengdu , Sichuan , P.R. China
| | - Jinku Bao
- a Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University , Chengdu , Sichuan , P.R. China.,b State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu , Sichuan , China
| |
Collapse
|
11
|
Miller SA, van Beek B, Hamlin TA, Bickelhaupt FM, Leadbeater NE. A methodology for the photocatalyzed radical trifluoromethylation of indoles: A combined experimental and computational study. J Fluor Chem 2018. [DOI: 10.1016/j.jfluchem.2018.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Wang M, Pu X, Zhao Y, Wang P, Li Z, Zhu C, Shi Z. Enantioselective Copper-Catalyzed Defluoroalkylation Using Arylboronate-Activated Alkyl Grignard Reagents. J Am Chem Soc 2018; 140:9061-9065. [DOI: 10.1021/jacs.8b04902] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Minyan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Xinghui Pu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yunfei Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Panpan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Zexian Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Chendan Zhu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
13
|
Histone Deacetylase 11 Is an ε-N-Myristoyllysine Hydrolase. Cell Chem Biol 2018; 25:849-856.e8. [PMID: 29731425 DOI: 10.1016/j.chembiol.2018.04.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/26/2018] [Accepted: 04/06/2018] [Indexed: 10/17/2022]
Abstract
Histone deacetylase (HDAC) enzymes regulate diverse biological function, including gene expression, rendering them potential targets for intervention in a number of diseases, with a handful of compounds approved for treatment of certain hematologic cancers. Among the human zinc-dependent HDACs, the most recently discovered member, HDAC11, is the only member assigned to subclass IV. It is the smallest protein and has the least well understood biological function. Here, we show that HDAC11 cleaves long-chain acyl modifications on lysine side chains with remarkable efficiency. We further show that several common types of HDAC inhibitors, including the approved drugs romidepsin and vorinostat, do not inhibit this enzymatic activity. Macrocyclic hydroxamic acid-containing peptides, on the other hand, potently inhibit HDAC11 demyristoylation activity. These findings should be taken carefully into consideration in future investigations of the biological function of HDAC11 and will serve as a foundation for the development of selective chemical probes targeting HDAC11.
Collapse
|
14
|
Funabiki K, Hayakawa A, Inuzuka T. Convenient, functional group-tolerant, transition metal-free synthesis of aryl and heteroaryl trifluoromethyl ketones with the use of methyl trifluoroacetate. Org Biomol Chem 2018; 16:913-918. [DOI: 10.1039/c7ob02862h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new convenient, functional group-tolerant, transition metal-free route to aryl trifluoromethyl ketones under mild conditions is described.
Collapse
Affiliation(s)
- Kazumasa Funabiki
- Department of Chemistry and Biomolecular Science
- Gifu University
- Gifu 501-1193
- Japan
| | - Ayaka Hayakawa
- Department of Chemistry and Biomolecular Science
- Gifu University
- Gifu 501-1193
- Japan
| | - Toshiyasu Inuzuka
- Division of Instrumental Analysis
- Life Science Research Center
- Gifu University
- Gifu 501-1193
- Japan
| |
Collapse
|
15
|
Pistritto VA, Paolillo JM, Bisset KA, Leadbeater NE. Oxidation of α-trifluoromethyl and non-fluorinated alcoholsviathe merger of oxoammonium cations and photoredox catalysis. Org Biomol Chem 2018; 16:4715-4719. [DOI: 10.1039/c8ob01063c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The merger of oxoammonium cation mediated oxidation with visible-light photoredox catalysis is demonstrated in the oxidation of α-trifluoromethyl and non-fluorinated alcohols.
Collapse
|
16
|
Lang SB, Wiles RJ, Kelly CB, Molander GA. Photoredox Generation of Carbon-Centered Radicals Enables the Construction of 1,1-Difluoroalkene Carbonyl Mimics. Angew Chem Int Ed Engl 2017; 56:15073-15077. [PMID: 28960656 PMCID: PMC5688010 DOI: 10.1002/anie.201709487] [Citation(s) in RCA: 242] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Indexed: 11/08/2022]
Abstract
Described is a facile, scalable route to access functional-group-rich gem-difluoroalkenes. Using visible-light-activated catalysts in conjunction with an arsenal of carbon-radical precursors, an array of trifluoromethyl-substituted alkenes undergoes radical defluorinative alkylation. Nonstabilized primary, secondary, and tertiary radicals can be used to install functional groups in a convergent manner, which would otherwise be challenging by two-electron pathways. The process readily extends to other perfluoroalkyl-substituted alkenes. In addition, we report the development of an organotrifluoroborate reagent to expedite the synthesis of the requisite trifluoromethyl-substituted alkene starting materials.
Collapse
Affiliation(s)
- Simon B Lang
- Department of Chemistry, University of Pennsylvania, Roy and Diana Vagelos Laboratories, 231 S. 34th Street, Philadelphia, PA, 19104-6323, USA
| | - Rebecca J Wiles
- Department of Chemistry, University of Pennsylvania, Roy and Diana Vagelos Laboratories, 231 S. 34th Street, Philadelphia, PA, 19104-6323, USA
| | - Christopher B Kelly
- Department of Chemistry, University of Pennsylvania, Roy and Diana Vagelos Laboratories, 231 S. 34th Street, Philadelphia, PA, 19104-6323, USA
| | - Gary A Molander
- Department of Chemistry, University of Pennsylvania, Roy and Diana Vagelos Laboratories, 231 S. 34th Street, Philadelphia, PA, 19104-6323, USA
| |
Collapse
|
17
|
Lang SB, Wiles RJ, Kelly CB, Molander GA. Photoredox Generation of Carbon-Centered Radicals Enables the Construction of 1,1-Difluoroalkene Carbonyl Mimics. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709487] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Simon B. Lang
- Department of Chemistry; University of Pennsylvania; Roy and Diana Vagelos Laboratories; 231 S. 34th Street Philadelphia PA 19104-6323 USA
| | - Rebecca J. Wiles
- Department of Chemistry; University of Pennsylvania; Roy and Diana Vagelos Laboratories; 231 S. 34th Street Philadelphia PA 19104-6323 USA
| | - Christopher B. Kelly
- Department of Chemistry; University of Pennsylvania; Roy and Diana Vagelos Laboratories; 231 S. 34th Street Philadelphia PA 19104-6323 USA
| | - Gary A. Molander
- Department of Chemistry; University of Pennsylvania; Roy and Diana Vagelos Laboratories; 231 S. 34th Street Philadelphia PA 19104-6323 USA
| |
Collapse
|