1
|
Amunugama S, Asempa E, Jakubikova E, Verani CN. Probing the effect of nitro-substituents in the modulation of LUMO energies for directional electron transport through 4d 6 ruthenium(II)-based metallosurfactants. Dalton Trans 2023; 52:12423-12435. [PMID: 37594397 DOI: 10.1039/d3dt01797d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Electron-withdrawing nitro-substituents were installed onto terpyridine- and phenanthroline-based metallosurfactants with 4d6 ruthenium(II), which were deposited as Langmuir-Blodgett monolayers aiming to study the feasibility of charge transport in Au|LB|Au junctions. The nitro groups are intended to modulate the energy of the frontier molecular orbitals to near to, or match that of Fermi levels in the gold electrodes. A series of heteroleptic metallosurfactants [RuII(C18OPh-terpy)(X-terpy)](PF6)2 and [RuII(C18OPh-terpy)(X-phen)Cl]PF6 were synthesized, where C18OPh-terpy is the 4'-[4-(octadecyloxy)phenyl]-2,2':6',2''-terpyridine amphiphile common to all species, X-terpy is a terpyridine with-H (1) or-phenyl-NO2 (2) and X-phen is a phenanthroline with-H (3) or-NO2 (4) groups. These metallosurfactants were characterized by experimental and computational methods, and the presence of nitro groups affect more affordable reductions at less negative potentials, as well as slightly more positive oxidations, these changes are less pronounced in species 2 than in 4. Species 1 and 2 showed limited Pockels-Langmuir and Langmuir-Blodgett film formation with lower collapse pressure of 27 mN m-1. In contrast, metallosurfactants 3 and 4 showed enhanced hydrophilicity indicated by higher collapse pressures of ca. 36 mN m-1. The LB monolayers of 3 and 4 were deposited on gold electrodes to form Au|LB|Au junctions and electron transport was measured as I/V curves. The NO2-bearing species 4 showed asymmetric curves associated with directional electron transport with amplitudes up to -2.0 nA and rectification ratios from 5 to 26 between -1 to +1 V and from 3 to 14 between -3 to +3 V.
Collapse
Affiliation(s)
- Samudra Amunugama
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| | - Eyram Asempa
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA.
| | - Elena Jakubikova
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA.
| | - Cláudio N Verani
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
2
|
Liu JH, Tu T, Shen YL, Tu B, Qian DJ. Interfacial Self-Assembly of Organized Ultrathin Films of Tripodal Metal-Terpyridyl Coordination Polymers as Luminophores and Heterogeneous Catalysts for Photocatalytic CO 2 Reduction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4777-4788. [PMID: 36947690 DOI: 10.1021/acs.langmuir.3c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Metal-directed interfacial self-assembly of well-defined coordination polymer (CP) ultrathin films can control the metal complex arrangement and distribution at the molecular level, providing a convenient route for the design and fabrication of novel opto-electrical devices and heterogeneous catalysts. Here, we report the assembly of two series of CP multilayers with the transition-metal ions of Fe2+, Co2+, Zn2+ and Tb3+ as connectors and tripodal terpyridyl ligands of 4,4',4″-(1,3,5-triazine-2,4,6-triyl)tris(1-(4-([2,2':6',2″-terpyridin]-4'-yl)benzyl)pyridin-1-ium) (TerPyTa) and 4,4',4″-(benzene-1,3,5-triyl)tris(1-(4-([2,2':6',2″-terpyridin]-4'-yl)benzyl)pyridin-1-ium) (TerPyBen) as linkers at the air-water interface. The as-prepared Langmuir-Blodgett (LB) films display strong luminescence, with the emission wavelength and relative intensity dependent on both the metal ions and linkers; among them, the Zn-TerPyTa and Zn-TerPyBen CPs give off the strongest luminescent emission centered at about 370 nm with an emission lifetime of approximately 0.2-0.3 ns. The Tb-TerPyTa CPs can give off emission at approximately 490, 546, 586, and 622 nm, attributed to the 5D4 to 7F3-6 electron transitions of typical Tb3+ ions. Finally, these CP LB films can act as efficient heterogeneous photocatalysts for the CO2 reduction to selectively produce CO. The catalytic efficiency can be optimized by adjusting the experimental conditions (light sensitizer, electron donor, and water content) and CP composition (metal ion and ligand) with an excellent yield of up to 248.1 mmol g-1. In particular, it is revealed that, under the same conditions, the catalytic efficiency of the Fe-TerPyTa CP LB film is nearly 2 to 3 orders of magnitude higher than that of the other metalated complexes investigated in the homogeneous system. UV-vis spectroscopy and cyclic voltammetry studies demonstrated that the dual active sites of Fe-terpyridine and TerPyTa units contribute to the enhanced catalytic activity. This work provides an effective method to introduce the earth-abundant metal complexes into CP films to construct efficient noble-metal-free photocatalysts for the CO2 reduction.
Collapse
Affiliation(s)
- Jian-Hong Liu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Tao Tu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Yu-Luo Shen
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Bo Tu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Dong-Jin Qian
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| |
Collapse
|
3
|
Karimi F, Yarie M, Zolfigol MA. A convenient method for synthesis of terpyridines via a cooperative vinylogous anomeric based oxidation. RSC Adv 2020; 10:25828-25835. [PMID: 35518593 PMCID: PMC9055316 DOI: 10.1039/d0ra04461j] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022] Open
Abstract
The presented study is the first report of the synthesis of terpyridines in the presence of a nanomagnetic catalyst instead of harmful reagents. Herein, Fe3O4@O2PO2(CH2)2NH3 +CF3CO2 - as a retrievable nanocatalyst with magnetic properties was applied for the multi-component reaction between acetylpyridine derivatives (2 or 3 or 4-isomer), aryl aldehydes and ammonium acetate under conventional heating conditions in the absence of any solvent. The derived terpyridines were obtained with acceptable yields and brief reaction times via a cooperative vinylogous anomeric based oxidation route. Fe3O4@O2PO2(CH2)2NH3 +CF3CO2 - showed a high capability for recovery and reuse in the mentioned reaction.
Collapse
Affiliation(s)
- Fatemeh Karimi
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran
| | - Meysam Yarie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran
| |
Collapse
|
4
|
Ramesh G, P. RK, Pillegowda M, Periyasamy G, Suchetan PA, Butcher RJ, Foro S, Nagaraju G. Synthesis, crystal structures, photophysical, electrochemical studies, DFT and TD-DFT calculations and Hirshfeld analysis of new 2,2′:6′,2′′-terpyridine ligands with pendant 4′-(trimethoxyphenyl) groups and their homoleptic ruthenium complexes. NEW J CHEM 2020. [DOI: 10.1039/d0nj00046a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
[Ru(L1)2](PF6)2 (1) and [Ru(L2)2](PF6)2 (2): X-ray structures, CH⋯F/O, OH⋯F/N, CH⋯O/π, π⋯π interactions, absorption and emission spectra, DFT/TD-DFT, Hirshfeld analysis.
Collapse
Affiliation(s)
- Golla Ramesh
- Department of Studies and Research in Chemistry
- UCS
- Tumkur University
- Tumakuru
- India
| | - Raghavendra Kumar P.
- Department of Studies and Research in Chemistry
- UCS
- Tumkur University
- Tumakuru
- India
| | - Manohar Pillegowda
- Department of Chemistry
- Jnana Bharathi Campus
- Bangalore University
- Bangalore 560 056
- India
| | - Ganga Periyasamy
- Department of Chemistry
- Jnana Bharathi Campus
- Bangalore University
- Bangalore 560 056
- India
| | - P. A. Suchetan
- Department of Studies and Research in Chemistry
- UCS
- Tumkur University
- Tumakuru
- India
| | - R. J. Butcher
- Department of Chemistry
- Howard University
- Washington DC
- USA
| | - Sabine Foro
- Institute of Materials Science
- Darmstadt University of Technology
- Darmstadt
- Germany
| | - G. Nagaraju
- Department of Chemistry
- Siddaganga Institute of Technology
- Tumakuru
- India
| |
Collapse
|
5
|
Pizarro San Francisco SG, Astudillo Julio PA, Delgadillo Acevedo A. Adsorción de un complejo de hierro sobre nanocristales de dióxido de titanio utilizando un residuo piridina. REVISTA COLOMBIANA DE QUÍMICA 2019. [DOI: 10.15446/rev.colomb.quim.v48n1.73295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
En este trabajo se presenta el comportamiento espectroscópico y electroquímico del complejo [Fe(pytpy2)](PF6)2 (donde pytpy es 4'-(piridin-4-il)-2,2':6', 2''-terpiridina) en solución fluida y anclado sobre una película delgada de nanocristales de dióxido de titanio. La constante de formación del aducto se estimó utilizando el modelo isotérmico de Langmuir encontrándose un valor de 1,03x105 M-1 para dicho complejo. El anclaje del complejo sobre la superficie del óxido metálico semiconductor se debe a la interacción del residuo de piridina con los sitios ácidos de Lewis presentes en la superficie del TiO2, observándose que las propiedades espectroscópicas y electroquímicas del complejo no se ven modificadas por la adsorción.
Collapse
|
6
|
White FD, Gaiser AN, Warzecha EJ, Sperling JM, Celis-Barros C, Salpage SR, Zhou Y, Dilbeck T, Bretton AJ, Meeker DS, Hanson KG, Albrecht-Schmitt TE. Examination of Structure and Bonding in 10-Coordinate Europium and Americium Terpyridyl Complexes. Inorg Chem 2018; 57:12969-12975. [DOI: 10.1021/acs.inorgchem.8b02085] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Frankie D. White
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Alyssa N. Gaiser
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Evan J. Warzecha
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Joseph M. Sperling
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Cristian Celis-Barros
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Sahan R. Salpage
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Yan Zhou
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Tristan Dilbeck
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Andrew J. Bretton
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - David S. Meeker
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Kenneth G. Hanson
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Thomas E. Albrecht-Schmitt
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
7
|
Mondal PC, Singh V, Manna AK, Zharnikov M. Covalently Assembled Monolayers of Homo- and Heteroleptic Fe II -Terpyridyl Complexes on SiO x and ITO-Coated Glass Substrates: An Experimental and Theoretical Study. Chemphyschem 2017; 18:3407-3415. [PMID: 28905521 DOI: 10.1002/cphc.201700918] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/09/2017] [Indexed: 11/07/2022]
Abstract
Well-defined FeII -terpyridyl monolayers were fabricated on SiOx and conductive ITO-coated glass substrates through covalent-bond formation between the metallo-organic complexes and a preassembled coupling layer. Three different homo- and heteroleptic complexes with terminal pyridyl, amine, and phenyl groups were tested. All the films were found to be densely packed and homogeneous, and consist of molecules standing upright. They exhibited high thermal (up to ≈220 °C) and temporal (up to 5 h at 100 °C) stability. The UV/Vis spectra of the monolayers showed pronounced metal-to-ligand charge-transfer bands with a significant redshift compared with the solution spectra of the metallo-ligands with a pendant pyridyl group quaternized with the coupling layer, whereas the shift was significantly smaller when the coupling layer was bonded to the primary amine (-NH2 ) group of the complex. Cyclic voltammograms of the monolayers showed reversible, one-electron redox behavior and suggested strong electronic coupling between the confined molecules and the underlying substrate. Analysis of the electrochemistry data allowed us to estimate the charge-transfer rate constant between the metal center and the substrate. Additionally, detailed quantum-chemical calculations were performed to support and rationalize the experimentally observed photophysical properties of the FeII -terpyridyl complexes both in the solution state and when bound to a SiOx -based substrate.
Collapse
Affiliation(s)
- Prakash Chandra Mondal
- Department of Chemistry, University of Delhi, Delhi-, 110007, India.,Present address: National Institute of Nanotechnology, University of Alberta, Edmonton-, T6G 2M9, AB, Canada
| | - Vikram Singh
- Centre for Nanoscience and Nanotechnology, Panjab University, Chandigarh-, 160015, India
| | - Arun K Manna
- Department of Chemistry, Indian Institute of Technology, Tirupati, Tirupati-, 517506, AP, India
| | - Michael Zharnikov
- Applied Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| |
Collapse
|
8
|
Gera B, Manna AK, Chandra Mondal P. Metal-ions linked surface-confined molecular dyads of Zn-porphyrin–metallo-terpyridine: an experimental and theoretical study. RSC Adv 2017. [DOI: 10.1039/c6ra25090d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Solid state molecular engineering is performed on SiOx-substrates by combining transition metal ions and metallo-porphyrins and terpyridyl complexes.
Collapse
Affiliation(s)
- Bhawna Gera
- Department of Chemistry
- University of Delhi
- New Delhi-110007
- India
| | - Arun Kumar Manna
- Department of Materials and Interfaces
- Weizmann Institute of Science
- Rehovot
- Israel
| | | |
Collapse
|