1
|
Sahoo PR, Kumar N, Sairam K, Gulati LK, Gulati GK, Datta A, Kumar S. A tuning fork-shaped bisbenzothiazole derivative as a pH-responsive digital fluorescent probe and its ex vivo evaluation. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6722-6726. [PMID: 38050719 DOI: 10.1039/d3ay01702h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
A new highly emissive pH-responsive near-IR active digital probe was designed and synthesized. The probe is based on a bisbenzothiazole motif with a highly vulnerable hydrogen unit attached in an intramolecular fashion. The probe produced a large Stokes shift which was observed to be highly pH dependent. The optical pH dependence can be used for sensing pH over a wide range.
Collapse
Affiliation(s)
- Priya Ranjan Sahoo
- Department of Chemistry, St. Stephen's College, University Enclave, Delhi, 110007, India.
| | - Nikhil Kumar
- Institute of Nuclear Medicine and Allied Sciences, DRDO, Brig. SK Majumdar Marg, Delhi 110054, India.
| | - Keloth Sairam
- Department of Chemistry, St. Stephen's College, University Enclave, Delhi, 110007, India.
| | - L K Gulati
- Department of Chemistry, St. Stephen's College, University Enclave, Delhi, 110007, India.
| | - G K Gulati
- Department of Chemistry, St. Stephen's College, University Enclave, Delhi, 110007, India.
| | - Anupama Datta
- Institute of Nuclear Medicine and Allied Sciences, DRDO, Brig. SK Majumdar Marg, Delhi 110054, India.
| | - Satish Kumar
- Department of Chemistry, St. Stephen's College, University Enclave, Delhi, 110007, India.
| |
Collapse
|
2
|
Arya C, Chandrakanth M, Fabitha K, Thomas NM, Pramod RN, Gondru R, Banothu J. Coumarin – Benzimidazole hybrids: A review on Diverse synthetic strategies. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
3
|
Li N, Zhang J, Wang M, Wang K, Liu J, Sun H, Su X. A pH-responsive ratiometric fluorescence system based on AIZS QDs and azamonardine for urea detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121431. [PMID: 35653812 DOI: 10.1016/j.saa.2022.121431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/13/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Herein, a ratiometric fluorescent nanoprobe was strategically fabricated using pH-sensitive azamonardine (Aza) as a pH indicator and pH-insensitive AIZS QDs as a reference fluorescence signal for urea activity determination and pH sensing. As the pH changed from 9.7 to 11.7, the resorcinol could react with dopamine to form the cyclization product (Aza), producing a fluorescence signal at 455 nm. Meanwhile, the fluorescence intensity of AIZS QDs at 566 nm remained unchanged. Thus, the ratio of the fluorescence intensity (F455/F566) was able to quantify pH value. Our designed pH-sensing platform showed a linear respond to pH values in the range of 9.7 to 11.7 at intervals of 0.2. In addition, the hydrolysis of urea by urease caused an increase of the system pH value, which can be used to measure the concentration of urea. The developed method for urea determination exhibited a good linear relationship from 0.02 to 20 mM and the limit of detection was 0.0103 mM. Moreover, the practical application was confirmed by urea analysis in real water sample with high feasibility and accuracy, indicating the great application prospects of this sensing platform for urea activity analysis.
Collapse
Affiliation(s)
- Ning Li
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China; Department of Respiratory Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiabao Zhang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Mengjun Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Kaishuo Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Jinying Liu
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Huilin Sun
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
4
|
Controlling the photoswitching of 2-(4′-diethylamino-2′-hydroxyphenyl)-1H-imidazo-[4,5-b]pyridine by pH. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Kim H, Sarkar S, Nandy M, Ahn KH. Imidazolyl-benzocoumarins as ratiometric fluorescence probes for biologically extreme acidity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119088. [PMID: 33187882 DOI: 10.1016/j.saa.2020.119088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
A rational approach to develop a fluorescent probe for sensing biologically "extreme" acidity (pH <3) is disclosed. The probe, a push-full type 3-(imidazolyl)benzocoumarin dye, has the lowest pKa = 1.3 among ratiometric probes known so far, which is ascribed due to a unique sensing mechanism. The probe has high quantum yields, high chemical stability and good aqueous solubility. The probe was successfully applied to ratiometric fluorescence imaging of intrabacterial acidity from pH 4.0-1.0, offering a practical means for studying biological systems under the extreme pH conditions.
Collapse
Affiliation(s)
- Hyerim Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 37673, Republic of Korea
| | - Sourav Sarkar
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 37673, Republic of Korea
| | - Madhurima Nandy
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 37673, Republic of Korea
| | - Kyo Han Ahn
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 37673, Republic of Korea.
| |
Collapse
|
6
|
Lyu Z, Zhao Y, Buuh ZY, Gorman N, Goldman AR, Islam MS, Tang HY, Wang RE. Steric-Free Bioorthogonal Labeling of Acetylation Substrates Based on a Fluorine-Thiol Displacement Reaction. J Am Chem Soc 2021; 143:1341-1347. [PMID: 33433199 PMCID: PMC8300487 DOI: 10.1021/jacs.0c05605] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have developed a novel bioorthogonal reaction that can selectively displace fluorine substitutions alpha to amide bonds. This fluorine-thiol displacement reaction (FTDR) allows for fluorinated cofactors or precursors to be utilized as chemical reporters, hijacking acetyltransferase-mediated acetylation both in vitro and in live cells, which cannot be achieved with azide- or alkyne-based chemical reporters. The fluoroacetamide labels can be further converted to biotin or fluorophore tags using FTDR, enabling the general detection and imaging of acetyl substrates. This strategy may lead to a steric-free labeling platform for substrate proteins, expanding our chemical toolbox for functional annotation of post-translational modifications in a systematic manner.
Collapse
Affiliation(s)
- Zhigang Lyu
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Yue Zhao
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Zakey Yusuf Buuh
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Nicole Gorman
- Proteomics and Metabolomics Facility, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Aaron R Goldman
- Proteomics and Metabolomics Facility, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Md Shafiqul Islam
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Hsin-Yao Tang
- Proteomics and Metabolomics Facility, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Rongsheng E Wang
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
7
|
Wang L, Wang L, Su C, Wen C, Gong Y, You Y, Zhao J, Han Y, Song S, Xiao H. Characterization and digestion features of a novel polysaccharide-Fe(III) complex as an iron supplement. Carbohydr Polym 2020; 249:116812. [DOI: 10.1016/j.carbpol.2020.116812] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/03/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022]
|
8
|
Jones AL, Schanze KS. Fluorescent Charge-Transfer Excited States in Acceptor Derivatized Thiophene Oligomers. J Phys Chem A 2020; 124:7001-7013. [DOI: 10.1021/acs.jpca.0c05561] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Austin L. Jones
- Department of Chemistry and Center for Macromolecular Science and Engineering, University of Florida, Florida P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - Kirk S. Schanze
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| |
Collapse
|
9
|
Dhawa T, Hazra A, Barma A, Pal K, Karmakar P, Roy P. 4-Methyl-2,6-diformylphenol based biocompatible chemosensors for pH: discrimination between normal cells and cancer cells. RSC Adv 2020; 10:15501-15513. [PMID: 35495429 PMCID: PMC9052396 DOI: 10.1039/d0ra00754d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/13/2020] [Indexed: 01/16/2023] Open
Abstract
Two compounds, namely, 2-hydroxy-5-methyl-3-((pyridin-2-ylimino)methyl)benzaldehyde (HM-2py-B) and 2-hydroxy-5-methyl-3-((pyridin-3-ylimino)methyl)benzaldehyde (HM-3py-B), have been explored as fluorescent chemosensors for pH. HM-2py-B and HM-3py-B were synthesized by single step condensation reaction between 4-methyl-2,6-diformylphenol and the appropriate aminopyridine. These compounds have been characterized by elemental analysis, FT-IR, 1H NMR, 13C NMR, ESI mass spectrometry, and absorption and fluorescence spectroscopy. Their structures have been confirmed by single crystal X-ray diffraction analysis. Both of the compounds show low emission at 530 nm at low pH. Fluorescence intensity increases with the increase in pH. With the alteration in pH of the medium from 4.0 to 10.0, the fluorescence intensity at 530 nm enhances by 66 and 195 fold for HM-2py-B and HM-3py-B, respectively. pKa values of HM-2py-B and HM-3py-B have been determined to be 7.15 and 6.57, respectively. Fluorescence increase occurs mainly due to deprotonation of the phenolic OH group. Several cations and anions could not induce significant change in fluorescence behavior for both of the probes. The quantum yield and life-time enhance significantly when the pH of the medium is changed from 5.0 to 9.0. Naked eye identification of different pH environments is possible by using these compounds. Some theoretical calculations have been carried out to support experimentally obtained spectral transitions. As cancer cell has a pH in the range of 5.5–7.0 in comparison to normal cell pH of 7.4, these probes have been used effectively to discriminate between normal cells and cancer cells. Two 4-methyl-2,6-diformylphenol based compounds with pyridylamine have been established as chemosensors for pH. The probes are able to differentiate between normal cells and cancer cells.![]()
Collapse
Affiliation(s)
- Tanumoy Dhawa
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| | - Ananta Hazra
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| | - Arpita Barma
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| | - Kunal Pal
- Department of Life Science and Biotechnology
- Jadavpur University
- Kolkata 700032
- India
| | - Parimal Karmakar
- Department of Life Science and Biotechnology
- Jadavpur University
- Kolkata 700032
- India
| | - Partha Roy
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| |
Collapse
|
10
|
Wang Y, Zeng L, Zhou J, Jiang B, Zhao L, Wang C, Xu B. A dansyl fluorescent pH probe with wide responsive range in aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 223:117348. [PMID: 31306960 DOI: 10.1016/j.saa.2019.117348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/01/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
A fluorescent pH probe based on diphenylalanine-modified dansyl (FF-Dns) was designed and synthesized. The probe showed sensitive fluorescence emission to pH change over a wide range of 1-13 in aqueous solution. At pH 4-10, FF-Dns displayed the characteristic fluorescent emission of dansyl group (yellow); while protonation of the dimethylamino group caused a very weak fluorescence emission at pH 1-4, and deprotonation of the sulfonamide group caused an emission blue-shift to the green region at pH 11-13. These properties endow FF-Dns with the potential to detect pH variation in physiological environments.
Collapse
Affiliation(s)
- Yan Wang
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Lihan Zeng
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Juntan Zhou
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Bing Jiang
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Li Zhao
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Ce Wang
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Baocai Xu
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, PR China.
| |
Collapse
|
11
|
Cao D, Liu Z, Verwilst P, Koo S, Jangjili P, Kim JS, Lin W. Coumarin-Based Small-Molecule Fluorescent Chemosensors. Chem Rev 2019; 119:10403-10519. [PMID: 31314507 DOI: 10.1021/acs.chemrev.9b00145] [Citation(s) in RCA: 679] [Impact Index Per Article: 113.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Coumarins are a very large family of compounds containing the unique 2H-chromen-2-one motif, as it is known according to IUPAC nomenclature. Coumarin derivatives are widely found in nature, especially in plants and are constituents of several essential oils. Up to now, thousands of coumarin derivatives have been isolated from nature or produced by chemists. More recently, the coumarin platform has been widely adopted in the design of small-molecule fluorescent chemosensors because of its excellent biocompatibility, strong and stable fluorescence emission, and good structural flexibility. This scaffold has found wide applications in the development of fluorescent chemosensors in the fields of molecular recognition, molecular imaging, bioorganic chemistry, analytical chemistry, materials chemistry, as well as in the biology and medical science communities. This review focuses on the important progress of coumarin-based small-molecule fluorescent chemosensors during the period of 2012-2018. This comprehensive and critical review may facilitate the development of more powerful fluorescent chemosensors for broad and exciting applications in the future.
Collapse
Affiliation(s)
- Duxia Cao
- Institute of Fluorescent Probes for Biological Imaging, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , China
| | - Zhiqiang Liu
- State Key Laboratory of Crystal Materials , Shandong University , Jinan 250100 , China
| | - Peter Verwilst
- Department of Chemistry , Korea University , Seoul 02841 , Korea
| | - Seyoung Koo
- Department of Chemistry , Korea University , Seoul 02841 , Korea
| | | | - Jong Seung Kim
- Department of Chemistry , Korea University , Seoul 02841 , Korea
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , China.,School of Chemistry and Chemical Engineering , Guangxi University , Nanning , Guangxi 530004 , P. R. China
| |
Collapse
|
12
|
He H, An F, Teng H, Huang Q, Song H. Preparation and characterisation of a novel agar oligosaccharide-iron (III) complex. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13921] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Hong He
- College of Food Science; Fujian Agriculture and Forestry University; Fuzhou 350002 China
| | - Fengping An
- College of Food Science; Fujian Agriculture and Forestry University; Fuzhou 350002 China
| | - Hui Teng
- College of Food Science; Fujian Agriculture and Forestry University; Fuzhou 350002 China
| | - Qun Huang
- College of Food Science; Fujian Agriculture and Forestry University; Fuzhou 350002 China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch; Fuzhou 350002 China
| | - Hongbo Song
- College of Food Science; Fujian Agriculture and Forestry University; Fuzhou 350002 China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch; Fuzhou 350002 China
| |
Collapse
|
13
|
Tseng TW, Mendiratta S, Luo TT, Chen TW, Lee YP. A new route to constructing rhenium(I)-based 8-hydroxyquinolate complexes: Synthesis, structures and luminescent properties. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.02.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Horak E, Kassal P, Murković Steinberg I. Benzimidazole as a structural unit in fluorescent chemical sensors: the hidden properties of a multifunctional heterocyclic scaffold. Supramol Chem 2017. [DOI: 10.1080/10610278.2017.1403607] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ema Horak
- Faculty of Chemical Engineering and Technology (FCET), Department of General and Inorganic Chemistry, University of Zagreb, Zagreb, Croatia
| | - Petar Kassal
- Faculty of Chemical Engineering and Technology (FCET), Department of General and Inorganic Chemistry, University of Zagreb, Zagreb, Croatia
| | - Ivana Murković Steinberg
- Faculty of Chemical Engineering and Technology (FCET), Department of General and Inorganic Chemistry, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
15
|
An easily Prepared Fluorescent pH Probe Based on Dansyl. J Fluoresc 2016; 26:1709-14. [DOI: 10.1007/s10895-016-1861-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 06/14/2016] [Indexed: 11/25/2022]
|