1
|
Maity S, Kolay S, Chakraborty S, Devi A, Rashi, Patra A. A comprehensive review of atomically precise metal nanoclusters with emergent photophysical properties towards diverse applications. Chem Soc Rev 2025; 54:1785-1844. [PMID: 39670813 DOI: 10.1039/d4cs00962b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Atomically precise metal nanoclusters (MNCs) composed of a few to hundreds of metal atoms represent an emerging class of nanomaterials with a precise composition. With the size approaching the Fermi wavelength of electrons, their energy levels are well-separated, leading to molecule-like properties, like discrete single electronic transitions, tunable photoluminescence (PL), inherent structural anisotropy, and distinct redox behavior. Extensive synthetic efforts and electronic structure revelation have expanded applicability of MNCs in catalysis, optoelectronics, and biology. This review highlights the intriguing photophysical and electrochemical behaviors of MNCs and their regulatory parameters and applications. Initially, we present a brief discussion on the evolution of MNCs from gas-phase naked metal clusters to monolayer ligand-protected MNCs along with representative studies on their electronic structure. Due to their quantized molecular orbitals, they often exhibit PL, which can be regulated based on their capping ligands, number of atoms, crystal packing, presence of heterometal, and surrounding environment. Apart from PL, the relaxation pathways of MNCs on an ultrafast time scale have been extensively studied, which significantly differ from that of plasmonic metal nanoparticles. Moreover, their interaction with high-intensity light results in unique non-linear optical properties. The synergy between MNCs in a hierarchical self-assembled structure has been exploited to enhance their PL by precisely tuning their non-covalent interactions. Moreover, several NC-based hybrids have been designed to exhibit efficient electron or energy transfer in the photoexcited state. In the next section, we briefly focus on the redox behavior of NCs and facile electron transfer to suitable substrates, which result in enzyme-like catalytic activity. Utilizing these photophysical and electrochemical behaviors, NCs are widely employed in catalysis, optical sensing, and light-harvesting applications, which are also discussed in this review. In the final section, conclusions and open questions for the NC research community are included. This review will provide a comprehensive view of the emerging physicochemical properties of MNCs, thereby enabling an understanding for their precise modulation in future.
Collapse
Affiliation(s)
- Subarna Maity
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sarita Kolay
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Sikta Chakraborty
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Aarti Devi
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Rashi
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Amitava Patra
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| |
Collapse
|
2
|
Qin Z, Wang L, Chen L, Li Y, Shen K. Differential Activation of Alkynes between Capped and Naked Ag Nanoclusters Anchored by Highly-Open Mesoporous CeO 2 for Two Coupling Reactions with CO 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403517. [PMID: 39045902 DOI: 10.1002/smll.202403517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/12/2024] [Indexed: 07/25/2024]
Abstract
The cyclization of 3-hydroxy alkynes and the carboxylation of terminal alkynes both with CO2 are two attractive strategies to simultaneously reduce CO2 emission and produce value-added chemicals. Herein, the differential activation of alkynes over atomically precise Ag nanoclusters (NCs) supported on Metal-organic framework-derived highly-open mesoporous CeO2 (HM-CeO2) by reserving or removing their surface captopril ligands is reported. The ligand-capped Ag NCs possess electron-rich Ag atoms as efficient π-activation catalytic sites in cyclization reactions, while the naked Ag NCs possess partial positive-charged Ag atoms as perfect σ-activation catalytic sites in carboxylation reactions. Impressively, via coupling with HM-CeO2 featuring abundant basic sites and quick mass transfer, the ligand-capped Ag NCs afford 97.9% yield of 4,4-dimethyl-5-methylidene-1,3-dioxolan-2-one for the cyclization of 2-methyl-3-butyn-2-ol with CO2, which is 4.5 times that of the naked Ag NCs (21.7%), while the naked Ag NCs achieve 98.5% yield of n-butyl 2-alkynoate for the carboxylation of phenylacetylene with CO2, which is 15.6 times that of ligand-capped Ag NCs (6.3%). Density functional theory calculations reveal the ligand-capped Ag NCs can effectively activate alkynyl carbonate ions for the intramolecular ring closing in cyclization reaction, while the naked Ag NCs are highly affiliative in stabilizing terminal alkynyl anions for the insertion of CO2 in carboxylation reaction.
Collapse
Affiliation(s)
- Ze Qin
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Li Wang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Liyu Chen
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yingwei Li
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Kui Shen
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
3
|
Liu X, Ki T, Deng G, Yoo S, Lee K, Lee BH, Hyeon T, Bootharaju MS. Recent advances in synthesis and properties of silver nanoclusters. NANOSCALE 2024; 16:12329-12344. [PMID: 38860477 DOI: 10.1039/d4nr01788a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Achieving atomic precision in nanostructured materials is essential for comprehending formation mechanisms and elucidating structure-property relationships. Within the realm of nanoscience and technology, atomically precise ligand-protected noble metal nanoclusters (NCs) have emerged as a rapidly expanding area of interest. These clusters manifest quantum confinement-induced optoelectronic, photophysical, and chemical properties, along with remarkable catalytic capabilities. Among coinage metals, silver distinguishes itself for the fabrication of stable nanoclusters, primarily due to its cost-effectiveness compared to gold. This minireview provides an overview of recent advancements since 2020 in synthetic methodologies and ligand selections toward attaining NCs boasting a minimum of two free valence electrons. Additionally, it explores strategies for fine-tuning optical properties. The discussion extends to surface reactivity, elucidating how exposure to ligands, heat, and light induces transformations in size and structure. Of paramount significance are the applications of silver NCs in catalytic reactions for energy and chemical conversion, supplemented by in-depth mechanistic insights. Furthermore, the review delineates challenges and outlines future directions in the NC field, with an eye toward the design of new functional materials and prospective applications in diverse technologies, including optoelectronics, energy conversion, and fine chemical synthesis.
Collapse
Affiliation(s)
- Xiaolin Liu
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeyoung Ki
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungwoo Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Kangjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Byoung-Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
4
|
Yoo S, Yoo S, Deng G, Sun F, Lee K, Jang H, Lee CW, Liu X, Jang J, Tang Q, Hwang YJ, Hyeon T, Bootharaju MS. Nanocluster Surface Microenvironment Modulates Electrocatalytic CO 2 Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2313032. [PMID: 38113897 DOI: 10.1002/adma.202313032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Indexed: 12/21/2023]
Abstract
The catalytic activity and product selectivity of the electrochemical CO2 reduction reaction (eCO2 RR) depend strongly on the local microenvironment of mass diffusion at the nanostructured catalyst and electrolyte interface. Achieving a molecular-level understanding of the electrocatalytic reaction requires the development of tunable metal-ligand interfacial structures with atomic precision, which is highly challenging. Here, the synthesis and molecular structure of a 25-atom silver nanocluster interfaced with an organic shell comprising 18 thiolate ligands are presented. The locally induced hydrophobicity by bulky alkyl functionality near the surface of the Ag25 cluster dramatically enhances the eCO2 RR activity (CO Faradaic efficiency, FECO : 90.3%) with higher CO partial current density (jCO ) in an H-cell compared to Ag25 cluster (FECO : 66.6%) with confined hydrophilicity, which modulates surface interactions with water and CO2 . Remarkably, the hydrophobic Ag25 cluster exhibits jCO as high as -240 mA cm-2 with FECO >90% at -3.4 V cell potential in a gas-fed membrane electrode assembly device. Furthermore, this cluster demonstrates stable eCO2 RR over 120 h. Operando surface-enhanced infrared absorption spectroscopy and theoretical simulations reveal how the ligands alter the neighboring water structure and *CO intermediates, impacting the intrinsic eCO2 RR activity, which provides atomistic mechanistic insights into the crucial role of confined hydrophobicity.
Collapse
Affiliation(s)
- Seungwoo Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Suhwan Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Chemistry College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Fang Sun
- School of Chemistry and Chemical Engineering Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, China
| | - Kangjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyunsung Jang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Chemistry College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chan Woo Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Xiaolin Liu
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Junghwan Jang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Qing Tang
- School of Chemistry and Chemical Engineering Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, China
| | - Yun Jeong Hwang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Chemistry College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Megalamane Siddaramappa Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
5
|
Li Y, Luo XM, Luo P, Zang QX, Wang ZY, Zang SQ. Cocrystallization of Two Negatively Charged Dimercaptomaleonitrile-Stabilized Silver Nanoclusters. ACS NANO 2023; 17:5834-5841. [PMID: 36912873 DOI: 10.1021/acsnano.2c12473] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Studies on the assembly of atomically precise metal nanoclusters (NCs) are of great significance in the nanomaterial field, which has attracted increasing interest in the last few decades. Herein, we report the cocrystallization of two negatively charged atom-precise silver nanoclusters, the octahedral [Ag62(MNT)24(TPP)6]8- (Ag62) and the truncated-tetrahedral [Ag22(MNT)12(TPP)4]4- (Ag22) in a 1:2 ratio (MNT2- = dimercaptomaleonitrile, TPP = triphenylphosphine). As far as we know, a cocrystal containing two negatively charged NCs has seldom been reported. Single-crystal structure determinations reveal that the component Ag22 and Ag62 NCs both adopt core-shell structures. In addition, the component NCs were separately obtained by adjusting the synthetic conditions. This work enriches the structural diversity of silver NCs and extends the family of cluster-based cocrystals.
Collapse
Affiliation(s)
- Yao Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Xi-Ming Luo
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Peng Luo
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, People's Republic of China
| | - Qiu-Xu Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Zhao-Yang Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
6
|
Chang H, Bootharaju MS, Lee S, Kim JH, Kim BH, Hyeon T. To inorganic nanoparticles via nanoclusters: Nonclassical nucleation and growth pathway. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hogeun Chang
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes Seoul National University Seoul Republic of Korea
| | - Megalamane S. Bootharaju
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes Seoul National University Seoul Republic of Korea
| | - Sanghwa Lee
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes Seoul National University Seoul Republic of Korea
| | - Jeong Hyun Kim
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes Seoul National University Seoul Republic of Korea
| | - Byung Hyo Kim
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul Republic of Korea
- Department of Organic Materials and Fiber Engineering Soongsil University Seoul Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes Seoul National University Seoul Republic of Korea
| |
Collapse
|
7
|
Shen J, Bi Y, Zhang H, Xu L, Feng J, Qi W. A sensitive chemosensor for nitro-containing compounds based on Au nanoclusters/Ba2+ co-assembly system: The crucial role of ligands to metal charge transfer. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Algar WR, Massey M, Rees K, Higgins R, Krause KD, Darwish GH, Peveler WJ, Xiao Z, Tsai HY, Gupta R, Lix K, Tran MV, Kim H. Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chem Rev 2021; 121:9243-9358. [PMID: 34282906 DOI: 10.1021/acs.chemrev.0c01176] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Research related to the development and application of luminescent nanoparticles (LNPs) for chemical and biological analysis and imaging is flourishing. Novel materials and new applications continue to be reported after two decades of research. This review provides a comprehensive and heuristic overview of this field. It is targeted to both newcomers and experts who are interested in a critical assessment of LNP materials, their properties, strengths and weaknesses, and prospective applications. Numerous LNP materials are cataloged by fundamental descriptions of their chemical identities and physical morphology, quantitative photoluminescence (PL) properties, PL mechanisms, and surface chemistry. These materials include various semiconductor quantum dots, carbon nanotubes, graphene derivatives, carbon dots, nanodiamonds, luminescent metal nanoclusters, lanthanide-doped upconversion nanoparticles and downshifting nanoparticles, triplet-triplet annihilation nanoparticles, persistent-luminescence nanoparticles, conjugated polymer nanoparticles and semiconducting polymer dots, multi-nanoparticle assemblies, and doped and labeled nanoparticles, including but not limited to those based on polymers and silica. As an exercise in the critical assessment of LNP properties, these materials are ranked by several application-related functional criteria. Additional sections highlight recent examples of advances in chemical and biological analysis, point-of-care diagnostics, and cellular, tissue, and in vivo imaging and theranostics. These examples are drawn from the recent literature and organized by both LNP material and the particular properties that are leveraged to an advantage. Finally, a perspective on what comes next for the field is offered.
Collapse
Affiliation(s)
- W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Melissa Massey
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelly Rees
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rehan Higgins
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Katherine D Krause
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Ghinwa H Darwish
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - William J Peveler
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Zhujun Xiao
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hsin-Yun Tsai
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rupsa Gupta
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelsi Lix
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Michael V Tran
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hyungki Kim
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
9
|
He L, He X, Wang J, Fu C, Liang J. Ag 23Au 2 and Ag 22Au 3: A Model of Cocrystallization in Bimetal Nanoclusters. Inorg Chem 2021; 60:8404-8408. [PMID: 34078071 DOI: 10.1021/acs.inorgchem.1c00303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The field of cocrystalline nanoclusters stabilized by thiolates is in a period of rapid development. However, the types of cocrystallization have been limited to a few reported until now, so it is of great importance to investigate and understand the novel cocrystallographic structures. Herein, we design and synthesize a new type of cocrystallization, [Ag23Au2(2-EBT)18Ag22Au3(2-EBT)18]2-[2(PPh4)]2+, characterized by thermogravimetric analysis, X-ray photoelectron spectroscopy, and single-crystal X-ray crystallography. Interestingly, both of the cocrystallized nanoclusters show the same outer-shell geometric structure but diffenent cores (Ag11Au2 vs Ag10Au3). The cocrystal lattice exhibits a multilayer structure in which both of the cocrystallized nanoclusters and the counterion assemble in a layer-by-layer model. Meanwhile, the counterion is found to be critical for formation and stabilization of the target cocrystal. In addition, the target cocrystal shows high thermal stability, and this result possibly originates from the electrostatic and weak interactions in the cocrystals.
Collapse
Affiliation(s)
- Lizhong He
- School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Xinhai He
- School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Junbo Wang
- School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Chong Fu
- School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Junhao Liang
- School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| |
Collapse
|
10
|
Gan Z, Xia N, Yan N, Zhuang S, Dong J, Zhao Y, Jiang S, Tao Q, Wu Z. Compression‐Driven Internanocluster Reaction for Synthesis of Unconventional Gold Nanoclusters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zibao Gan
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics Chinese Academy of Sciences Hefei 230031 China
- Institute of Physical Science and Information Technology Anhui University Hefei 230601 China
| | - Nan Xia
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics Chinese Academy of Sciences Hefei 230031 China
- Institute of Physical Science and Information Technology Anhui University Hefei 230601 China
| | - Nan Yan
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics Chinese Academy of Sciences Hefei 230031 China
- Institute of Physical Science and Information Technology Anhui University Hefei 230601 China
| | - Shengli Zhuang
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics Chinese Academy of Sciences Hefei 230031 China
- Institute of Physical Science and Information Technology Anhui University Hefei 230601 China
| | - Jingwu Dong
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics Chinese Academy of Sciences Hefei 230031 China
- Institute of Physical Science and Information Technology Anhui University Hefei 230601 China
| | - Yan Zhao
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics Chinese Academy of Sciences Hefei 230031 China
- Institute of Physical Science and Information Technology Anhui University Hefei 230601 China
| | - Shuqing Jiang
- Synergetic Extreme Condition User Facility State Key Laboratory of Superhard Materials College of Physics Jilin University Changchun 130012 China
| | - Qiang Tao
- State Key Laboratory of Superhard Materials College of Physics Jilin University Changchun 130012 China
| | - Zhikun Wu
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics Chinese Academy of Sciences Hefei 230031 China
- Institute of Physical Science and Information Technology Anhui University Hefei 230601 China
| |
Collapse
|
11
|
Gan Z, Xia N, Yan N, Zhuang S, Dong J, Zhao Y, Jiang S, Tao Q, Wu Z. Compression-Driven Internanocluster Reaction for Synthesis of Unconventional Gold Nanoclusters. Angew Chem Int Ed Engl 2021; 60:12253-12257. [PMID: 33710719 DOI: 10.1002/anie.202014828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/12/2021] [Indexed: 01/02/2023]
Abstract
Can the active kernels in ultrasmall metal nanoparticles (nanoclusters, NCs) react with one another, or can the internanocluster reaction occur when they are in close enough proximity? To resolve this fundamental issue, we investigated the solid-state internanocluster reaction of the most studied gold NC Au25 (SR)18 (SR: thiolate). A novel NC was produced by increasing the pressure to 5 GPa, whose composition was determined to be Au32 (SC2 H4 Ph)24 by mass spectrometry and thermogravimetric analysis. As revealed by single-crystal X-ray crystallography, the structure, a bicuboid Au14 kernel and three pairs of interlocked trimetric staples, has not been reported and endows the NC with obvious photoluminescence. DFT calculations indicate that the staples contribute substantially to the absorption properties. Further experiments reveal the pressure (internanocluster distance) can tune the internanocluster reaction, and the resulting product is not necessarily the thermodynamic product.
Collapse
Affiliation(s)
- Zibao Gan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Nan Xia
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Nan Yan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Shengli Zhuang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Jingwu Dong
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Yan Zhao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Shuqing Jiang
- Synergetic Extreme Condition User Facility, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Qiang Tao
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| |
Collapse
|
12
|
|
13
|
He L, Dong T. Progress in controlling the synthesis of atomically precise silver nanoclusters. CrystEngComm 2021. [DOI: 10.1039/d1ce01217g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This short review was designed to summarize the advances in synthesis methods of silver nanoclusters.
Collapse
Affiliation(s)
- Lizhong He
- School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an, 710048, PR China
| | - Tingting Dong
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, Shaanxi, PR China
| |
Collapse
|
14
|
Kunwar P, Soman P. Direct Laser Writing of Fluorescent Silver Nanoclusters: A Review of Methods and Applications. ACS APPLIED NANO MATERIALS 2020; 3:7325-7342. [PMID: 33134885 PMCID: PMC7595336 DOI: 10.1021/acsanm.0c01339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Metal nanoclusters (NCs) are nanomaterials of size of less than 2 nm that exhibit a set of unique physical, chemical, optical, and electronic properties. Because of recent interest in NCs, a great deal of effort is being made to develop synthetic routes that allow control over the NC size, shape, geometry, and properties. Direct laser writing is one of the few synthesis methods that allow the generation of photostable NCs with high quantum yield in a highly controlled fashion. A key advantage of laser-written NCs is the ability to create easy-to-use solid-state devices for a range of applications. This review will present necessary background and recent advances in laser writing of silver NCs and their applications in different solid-state matrixes such as glass, zeolites, and polymer substrate. This topic will be of interest to researchers in the fields of materials science, optics and photonics, chemistry, and biomedical sciences.
Collapse
Affiliation(s)
- Puskal Kunwar
- Department of Chemical and Bioengineering, Syracuse University, Syracuse, New York 13244, United States
| | - Pranav Soman
- Department of Chemical and Bioengineering, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
15
|
Zou X, Jin S, Wei X, Li X, Zhou M, Wang S, Zhu M. Overall Structures of Two Metal Nanoclusters: Chloride as a Bridge Fills the Space between the Metal Core and the Metal Shell. Inorg Chem 2020; 59:11905-11909. [DOI: 10.1021/acs.inorgchem.0c01638] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xuejuan Zou
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China
| | - Shan Jin
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China
| | - Xiao Wei
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China
| | - Xiaowu Li
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China
| | - Manman Zhou
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China
| | - Shuxin Wang
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui 230601, P. R. China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China
| |
Collapse
|
16
|
Zhang X, Wang Z, Qian S, Liu N, Sui L, Yuan X. Effect of subtle changes of isomeric ligands on the synthesis of atomically precise water-soluble gold nanoclusters. NANOSCALE 2020; 12:6449-6455. [PMID: 32149321 DOI: 10.1039/d0nr00379d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The subtle structural change of hydrophilic ligands on the size control of metal nanoclusters (NCs) is unclear but critically important for fundamental understanding. Herein, we report our findings that subtle changes of isomeric ligands lead to a dramatic difference in the size of water-soluble Au NCs. By using isomeric para-mercaptobenzoic acid (p-MBA), m-MBA, and o-MBA as model ligands, it was found that both the steric hindrance and the electronic effect of isomeric ligands significantly influences the size of Au NCs, resulting in the formation of different sized Au44(p-MBA)26 NCs, Au25(m-MBA)18 NCs, and Au37/43(o-MBA)22/26 NCs. Besides this, by collocating any two of the isomeric MBAs as ligand pairs to compare their protecting capability for Au NCs, the protecting abilities of such ligands were found to follow the trend: m-MBA > o-MBA > p-MBA. In addition, the growth process of Au44(p-/o-MBA)26 NCs from Au(i)-MBA complexes in the NaBH4 reduction system was also monitored by real-time UV-vis absorption spectroscopy and ESI mass spectrometry, which complies with the 2e- hopping growth principle, indicating the universal applicability of this principle in the synthesis of thiolated metal NCs. This study provides a fundamental understanding of the effect of ligands' steric hindrance and electronic factors on the size control of water-soluble metal NCs and sheds light on the formation of metal NCs in the NaBH4 reduction system.
Collapse
Affiliation(s)
- Xinlei Zhang
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Ziping Wang
- Weifang University of Science and Technology, Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang 262700, P. R. China
| | - Shuyu Qian
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Naiwei Liu
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Lina Sui
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Xun Yuan
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| |
Collapse
|
17
|
Maity S, Bain D, Patra A. An overview on the current understanding of the photophysical properties of metal nanoclusters and their potential applications. NANOSCALE 2019; 11:22685-22723. [PMID: 31774095 DOI: 10.1039/c9nr07963g] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Photophysics of atomically precise metal nanoclusters (MNCs) is an emerging area of research due to their potential applications in optoelectronics, photovoltaics, sensing, bio-imaging and catalysis. An overview of the recent advances in the photophysical properties of MNCs is presented in this review. To begin with, we illustrate general synthesis methodologies of MNCs using direct reduction, chemical etching, ligand exchange, metal exchange and intercluster reaction. Due to strong quantum confinement, the NCs possess unique electronic properties such as discrete optical absorption, intense photoluminescence (PL), molecular-like electron dynamics and non-linear optical behavior. Discussions have also been carried out to unveil the influence of the core size, nature of ligands, heteroatom doping, and surrounding environments on the optical absorption and photophysical properties of metal clusters. Recent findings reveal that the excited-state dynamics, nonlinear optical properties and aggregation induced emission of metal clusters offer exciting opportunities for potential applications. We discuss briefly about their versatile applications in optoelectronics, sensing, catalysis and bio-imaging. Finally, the future perspective of this research field is given.
Collapse
Affiliation(s)
- Subarna Maity
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700 032, India.
| | - Dipankar Bain
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700 032, India.
| | - Amitava Patra
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700 032, India.
| |
Collapse
|
18
|
Hsu CC, Chao YY, Wang SW, Chen YL. Polyethylenimine-capped silver nanoclusters as fluorescent sensors for the rapid detection of ellagic acid in cosmetics. Talanta 2019; 204:484-490. [DOI: 10.1016/j.talanta.2019.06.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 12/23/2022]
|
19
|
He L, Gan Z, Xia N, Liao L, Wu Z. Alternating Array Stacking of Ag 26 Au and Ag 24 Au Nanoclusters. Angew Chem Int Ed Engl 2019; 58:9897-9901. [PMID: 31070836 DOI: 10.1002/anie.201900831] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/23/2019] [Indexed: 01/06/2023]
Abstract
An assembly strategy for metal nanoclusters using electrostatic interactions with weak interactions, such as C-H⋅⋅⋅π and π⋅⋅⋅π interactions in which cationic [Ag26 Au(2-EBT)18 (PPh3 )6 ]+ and anionic [Ag24 Au(2-EBT)18 ]- nanoclusters gather and assemble in an unusual alternating array stacking structure is presented. [Ag26 Au(2-EBT)18 (PPh3 )6 ]+ [Ag24 Au(2-EBT)18 ]- is a new compound type, a double nanocluster ion compound (DNIC). A single nanocluster ion compound (SNIC) [PPh4 ]+ [Ag24 Au(2-EBT)18 ]- was also synthesized, having a k-vector-differential crystallographic arrangement. [PPh4 ]+ [Ag24 Au(2,4-DMBT)18 ]- adopts a different assembly mode from both [Ag26 Au(2-EBT)18 (PPh3 )6 ]+ [Ag24 Au(2-EBT)18 ]- and [PPh4 ]+ [Ag24 Au(2-EBT)18 ]- . Thus, the striking packing differences of [Ag26 Au(2-EBT)18 (PPh3 )6 ]+ [Ag24 Au(2-EBT)18 ]- , [PPh4 ]+ [Ag24 Au(2-EBT)18 ]- and the existing [PPh4 ]+ [Ag24 Au(2,4-DMBT)18 ]- from each other indicate the notable influence of ligands and counterions on the self-assembly of nanoclusters.
Collapse
Affiliation(s)
- Lizhong He
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, 230031, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Zibao Gan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, 230031, P. R. China
| | - Nan Xia
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, 230031, P. R. China
| | - Lingwen Liao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, 230031, P. R. China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, 230031, P. R. China
| |
Collapse
|
20
|
He L, Gan Z, Xia N, Liao L, Wu Z. Alternating Array Stacking of Ag26Au and Ag24Au Nanoclusters. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Lizhong He
- Key Laboratory of Materials PhysicsAnhui Key Laboratory of Nanomaterials and NanotechnologyCAS Center for Excellence in NanoscienceInstitute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information TechnologyAnhui University Hefei 230031 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Zibao Gan
- Key Laboratory of Materials PhysicsAnhui Key Laboratory of Nanomaterials and NanotechnologyCAS Center for Excellence in NanoscienceInstitute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information TechnologyAnhui University Hefei 230031 P. R. China
| | - Nan Xia
- Key Laboratory of Materials PhysicsAnhui Key Laboratory of Nanomaterials and NanotechnologyCAS Center for Excellence in NanoscienceInstitute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information TechnologyAnhui University Hefei 230031 P. R. China
| | - Lingwen Liao
- Key Laboratory of Materials PhysicsAnhui Key Laboratory of Nanomaterials and NanotechnologyCAS Center for Excellence in NanoscienceInstitute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information TechnologyAnhui University Hefei 230031 P. R. China
| | - Zhikun Wu
- Key Laboratory of Materials PhysicsAnhui Key Laboratory of Nanomaterials and NanotechnologyCAS Center for Excellence in NanoscienceInstitute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information TechnologyAnhui University Hefei 230031 P. R. China
| |
Collapse
|
21
|
Ghosh S, Bhamore JR, Malek NI, Murthy ZVP, Kailasa SK. Trypsin mediated one-pot reaction for the synthesis of red fluorescent gold nanoclusters: Sensing of multiple analytes (carbidopa, dopamine, Cu 2+, Co 2+ and Hg 2+ ions). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 215:209-217. [PMID: 30840923 DOI: 10.1016/j.saa.2019.02.078] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/08/2018] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
Herein, we fabricated fluorescent gold nanoclusters (Au NCs) by using trypsin as a ligand. The fabricated trypsin-Au NCs emit bright red color fluorescence upon the exposure of 365 nm UV light. The trypsin-Au NCs are stable and well dispersed in water, which exhibited strong red emission peak at 665 nm upon excitation wavelength of 520 nm. The red fluorescence of trypsin-Au NCs was greatly quenched by the addition of multiple analytes such as drugs (carbidopa and dopamine) and three divalent metal ions (Cu2+, Co2+ and Hg2+ ion). As a result, a novel fluorescence "turn-off" probe was developed for the detection of the above analytes with good selectivity and sensitivity. This method exhibits the detection limits for carbidopa, dopamine, Cu2+, Co2+ and Hg2+ ions are 6.5, 0.14, 5.2, 0.0078, and 0.005 nM, respectively. The trypsin-Au NCs were successfully applied to detect drugs (carbidopa, and dopamine) in pharmaceutical samples and metal ions (Cu2+, Co2+ and Hg2+ ion) in biofluids and water samples, exhibiting good precision and accuracy, which offers a facile analytical strategy for assaying of the above analytes in pharmaceutical and biological samples.
Collapse
Affiliation(s)
- Subhadeep Ghosh
- Department of Applied Chemistry, S. V. National Institute of Technology, Surat 395 007, India
| | - Jigna R Bhamore
- Department of Applied Chemistry, S. V. National Institute of Technology, Surat 395 007, India
| | - Naved I Malek
- Department of Applied Chemistry, S. V. National Institute of Technology, Surat 395 007, India
| | - Z V P Murthy
- Chemical Engineering Department, S. V. National Institute of Technology, Surat 395 007, India
| | - Suresh Kumar Kailasa
- Department of Applied Chemistry, S. V. National Institute of Technology, Surat 395 007, India.
| |
Collapse
|
22
|
Niihori Y, Yoshida K, Hossain S, Kurashige W, Negishi Y. Deepening the Understanding of Thiolate-Protected Metal Clusters Using High-Performance Liquid Chromatography. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180357] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yoshiki Niihori
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kana Yoshida
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Sakiat Hossain
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Wataru Kurashige
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
23
|
Zhang SY, Kochovski Z, Lee HC, Lu Y, Zhang H, Zhang J, Sun JK, Yuan J. Ionic organic cage-encapsulating phase-transferable metal clusters. Chem Sci 2019; 10:1450-1456. [PMID: 30809362 PMCID: PMC6354838 DOI: 10.1039/c8sc04375b] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/17/2018] [Indexed: 01/11/2023] Open
Abstract
Exploration of metal clusters (MCs) adaptive to both aqueous and oil phases without disturbing their size is promising for a broad scope of applications. The state-of-the-art approach via ligand-binding may perturb MCs' size due to varied metal-ligand binding strength when shuttling between solvents of different polarity. Herein, we applied physical confinement of a series of small noble MCs (<1 nm) inside ionic organic cages (I-Cages), which by means of anion exchange enables reversible transfer of MCs between aqueous and hydrophobic solutions without varying their ultrasmall size. Moreover, the MCs@I-Cage hybrid serves as a recyclable, reaction-switchable catalyst featuring high activity in liquid-phase NH3BH3 (AB) hydrolysis reaction with a turnover frequency (TOF) of 115 min-1.
Collapse
Affiliation(s)
- Su-Yun Zhang
- MOE Key Laboratory of Cluster Science , Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials , School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing , P. R. China .
| | - Zdravko Kochovski
- Soft Matter and Functional Materials , Helmholtz-Zentrum Berlin für Materialien und Energie , 14109 Berlin , Germany
| | - Hui-Chun Lee
- MOE Key Laboratory of Cluster Science , Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials , School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing , P. R. China .
| | - Yan Lu
- Soft Matter and Functional Materials , Helmholtz-Zentrum Berlin für Materialien und Energie , 14109 Berlin , Germany
- Institute of Chemistry , University of Potsdam , 14467 Potsdam , Germany
| | - Hemin Zhang
- School of Energy and Chemical Engineering , Ulsan National Institute of Science & Technology (UNIST) , Ulsan 689-798 , Republic of Korea
| | - Jie Zhang
- MOE Key Laboratory of Cluster Science , Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials , School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing , P. R. China .
| | - Jian-Ke Sun
- MOE Key Laboratory of Cluster Science , Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials , School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing , P. R. China .
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry , Stockholm University , 10691 Stockholm , Sweden .
| |
Collapse
|
24
|
Zhang Y, Guo X, Li G, Zhang G. Photoluminescent Ag nanoclusters for reversible temperature and pH nanosenors in aqueous solution. Anal Bioanal Chem 2019; 411:1117-1125. [PMID: 30643932 DOI: 10.1007/s00216-018-1541-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/30/2018] [Accepted: 12/06/2018] [Indexed: 10/27/2022]
Abstract
A facile, straightforward, and green method was reported for the preparation of water-soluble and highly luminescent silver nanoclusters (AgNCs) using captopril (Capt) as a stabilizing agent. The as-prepared Capt@AgNCs exhibited bright red emission with a strong peak centered at 637 nm and showed low toxicity and good stability. Interestingly, the AgNCs displayed temperature sensitivity based on obvious temperature dependence of the fluorescence emission intensity. Furthermore, the AgNCs showed a good reversible and linear response to the environment temperature over the range from 10 °C to 45 °C with a high resolution and activation energy, which allowed its potential application as a fluorescent nanothermometer. In addition, the AgNCs were prepared to monitor pH via the fluorescence intensity of AgNCs responding sensitively to pH fluctuating within a wide range from 2.08 to 6.06. The study provides promising applications as a convenient and eco-friendly fluorescent temperature and pH nanosenser in environmental and biological fields. Graphical abstract Novel silver nanocluster-based fluorescent nanosensors have been successfully constructed for temperature detection. The nanosensors showed a good reversible and linear response to the environment temperature over the range from 10 °C to 45 °C. In addition, the AgNCs described here are employed as pH sensors by virtue of the fluorescence intensity of their sensitive response to fluctuating pH in a linear range of 2.08-6.06.
Collapse
Affiliation(s)
- Yanyan Zhang
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Xiaohong Guo
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Gao Li
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, Shanxi, China.,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China
| | - Guomei Zhang
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, Shanxi, China.
| |
Collapse
|
25
|
Bain D, Maity S, Patra A. Opportunities and challenges in energy and electron transfer of nanocluster based hybrid materials and their sensing applications. Phys Chem Chem Phys 2019; 21:5863-5881. [DOI: 10.1039/c8cp06188b] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This feature article highlights the recent advances of luminescent metal nanoclusters (MNCs) for their potential applications in healthcare and energy-related materials because of their high photosensitivity, thermal stability, low toxicity, and biocompatibility.
Collapse
Affiliation(s)
- Dipankar Bain
- School of Materials Sciences, Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - Subarna Maity
- School of Materials Sciences, Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - Amitava Patra
- School of Materials Sciences, Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| |
Collapse
|
26
|
Kang X, Zhu M. Tailoring the photoluminescence of atomically precise nanoclusters. Chem Soc Rev 2019; 48:2422-2457. [PMID: 30838373 DOI: 10.1039/c8cs00800k] [Citation(s) in RCA: 559] [Impact Index Per Article: 93.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Due to their atomically precise structures and intriguing chemical/physical properties, metal nanoclusters are an emerging class of modular nanomaterials. Photo-luminescence (PL) is one of their most fascinating properties, due to the plethora of promising PL-based applications, such as chemical sensing, bio-imaging, cell labeling, phototherapy, drug delivery, and so on. However, the PL of most current nanoclusters is still unsatisfactory-the PL quantum yield (QY) is relatively low (generally lower than 20%), the emission lifetimes are generally in the nanosecond range, and the emitted color is always red (emission wavelengths of above 630 nm). To address these shortcomings, several strategies have been adopted, and are reviewed herein: capped-ligand engineering, metallic kernel alloying, aggregation-induced emission, self-assembly of nanocluster building blocks into cluster-based networks, and adjustments on external environment factors. We further review promising applications of these fluorescent nanoclusters, with particular focus on their potential to impact the fields of chemical sensing, bio-imaging, and bio-labeling. Finally, scope for improvements and future perspectives of these novel nanomaterials are highlighted as well. Our intended audience is the broader scientific community interested in the fluorescence of metal nanoclusters, and our review hopefully opens up new horizons for these scientists to manipulate PL properties of nanoclusters. This review is based on publications available up to December 2018.
Collapse
Affiliation(s)
- Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui 230601, China.
| | | |
Collapse
|
27
|
van der Linden M, van Bunningen AJ, Delgado-Jaime MU, Detlefs B, Glatzel P, Longo A, de Groot FMF. Insights into the Synthesis Mechanism of Ag 29 Nanoclusters. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2018; 122:28351-28361. [PMID: 30774744 PMCID: PMC6369667 DOI: 10.1021/acs.jpcc.8b09360] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/02/2018] [Indexed: 06/09/2023]
Abstract
The current understanding of the synthesis mechanisms of noble metal clusters is limited, in particular for Ag clusters. Here, we present a detailed investigation into the synthesis process of atomically monodisperse Ag29 clusters, prepared via reduction of AgNO3 in the presence of dithiolate ligands. Using optical spectroscopy, mass spectrometry, and X-ray spectroscopy, it was determined that the synthesis involves a rapid nucleation and growth to species with up to a few hundred Ag atoms. From these larger species, Ag29 clusters are formed and their concentration increases steadily over time. Oxygen plays an important role in the etching of large particles to Ag29. No other stable Ag cluster species are observed at any point during the synthesis.
Collapse
Affiliation(s)
- Marte van der Linden
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitslaan 99, 3584 CG Utrecht, The Netherlands
- European
Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Arnoldus J. van Bunningen
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Mario U. Delgado-Jaime
- Department
of Chemistry, University of Guadalajara, Blvd. Marcelino Garcia Barragán
1421, 44430 Guadalajara, Mexico
| | - Blanka Detlefs
- European
Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Pieter Glatzel
- European
Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Alessandro Longo
- Netherlands
Organization for Scientific Research at ESRF, BP 220, 38043 Grenoble Cedex 9, France
- Istituto
per lo Studio dei Materiali Nanostrutturati (ISMN)-CNR, UOS Palermo, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Frank M. F. de Groot
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitslaan 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
28
|
Abstract
Among many outstanding findings associated with the quantum size effect, one of the most exciting is the discovery of the antigalvanic reaction (AGR), which is the opposite of the classic galvanic reaction (GR) that has a history of nearly 240 years. The GR, named after Italian scientist Luigi Galvani, involves the spontaneous reduction of a noble-metal cation by a less noble metal in solution driven by the difference in electrochemical potentials. Classic galvanic reduction has been widely applied and has recently received particular interest in nanoscience and nanotechnology. However, the opposite of GR, that is, reduction of metal ions by less reactive (or more noble) metals, has long been regarded as a virtual impossibility until the recent surprising findings regarding atomically precise ultrasmall metal nanoparticles (nanoclusters), which bridge the gap between metal atoms (complexes) and metal nanocrystals and provide opportunities for novel scientific findings due to their well-defined compositions and structures. The AGR is significant not only because it is the opposite of the classic galvanic theory but also because it opens extensive applications in a large range of fields, such as sensing and tuning the compositions, structures, and properties of nanostructures that are otherwise difficult to obtain. Starting with the proposal of the general AGR concept in 2012 by Wu, a new era began, in which AGR received widespread attention and was extensively studied. After years of effort, great advances have been achieved in the research on AGR, which will be reviewed below. In this Account, we first provide a short introduction to the AGR concept and then discuss the driving force of the AGR together with the effecting factors, including the ligand, particle size, solvent, metal ion precursor, and ion dose. Subsequently, the application of the AGR in engineering atomically precise alloy (bimetallic and trimetallic) and monometallic nanoclusters is described, and tuning the properties of the parent nanoclusters is also included. In particular, four alloying modes (namely, (i) addition, (ii) replacement, (iii) replacement and structural transformation, and (iv) nonreplacement and structural transformation) associated with the AGR are discussed. After that, the applications of the AGR in metal ion sensing and antioxidation are reviewed. Finally, future prospects are discussed, and some challenging issues are presented at the end of this Account. It is expected that this Account will stimulate more scientific and technological interests in the AGR, and exciting progress in the understanding and application of the AGR will be made in the coming years.
Collapse
Affiliation(s)
- Zibao Gan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Nan Xia
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| |
Collapse
|
29
|
He L, Yuan J, Xia N, Liao L, Liu X, Gan Z, Wang C, Yang J, Wu Z. Kernel Tuning and Nonuniform Influence on Optical and Electrochemical Gaps of Bimetal Nanoclusters. J Am Chem Soc 2018; 140:3487-3490. [PMID: 29470909 DOI: 10.1021/jacs.7b12083] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Fine tuning nanoparticles with atomic precision is exciting and challenging and is critical for tuning the properties, understanding the structure-property correlation and determining the practical applications of nanoparticles. Some ultrasmall thiolated metal nanoparticles (metal nanoclusters) have been shown to be precisely doped, and even the protecting staple metal atom could be precisely reduced. However, the precise addition or reduction of the kernel atom while the other metal atoms in the nanocluster remain the same has not been successful until now, to the best of our knowledge. Here, by carefully selecting the protecting ligand with adequate steric hindrance, we synthesized a novel nanocluster in which the kernel can be regarded as that formed by the addition of two silver atoms to both ends of the Pt@Ag12 icosohedral kernel of the Ag24Pt(SR)18 (SR: thiolate) nanocluster, as revealed by single crystal X-ray crystallography. Interestingly, compared with the previously reported Ag24Pt(SR)18 nanocluster, the as-obtained novel bimetal nanocluster exhibits a similar absorption but a different electrochemical gap. One possible explanation for this result is that the kernel tuning does not essentially change the electronic structure, but obviously influences the charge on the Pt@Ag12 kernel, as demonstrated by natural population analysis, thus possibly resulting in the large electrochemical gap difference between the two nanoclusters. This work not only provides a novel strategy to tune metal nanoclusters but also reveals that the kernel change does not necessarily alter the optical and electrochemical gaps in a uniform manner, which has important implications for the structure-property correlation of nanoparticles.
Collapse
Affiliation(s)
- Lizhong He
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics , Chinese Academy of Sciences , Hefei 230031 , P. R. China.,University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Jinyun Yuan
- Hefei National Laboratory for Physical Sciences at the Microscale , University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Nan Xia
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics , Chinese Academy of Sciences , Hefei 230031 , P. R. China
| | - Lingwen Liao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics , Chinese Academy of Sciences , Hefei 230031 , P. R. China
| | - Xu Liu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics , Chinese Academy of Sciences , Hefei 230031 , P. R. China.,University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Zibao Gan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics , Chinese Academy of Sciences , Hefei 230031 , P. R. China
| | - Chengming Wang
- Hefei National Laboratory for Physical Sciences at the Microscale , University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Jinlong Yang
- Hefei National Laboratory for Physical Sciences at the Microscale , University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics , Chinese Academy of Sciences , Hefei 230031 , P. R. China
| |
Collapse
|
30
|
Zhuang S, Liao L, Zhao Y, Yuan J, Yao C, Liu X, Li J, Deng H, Yang J, Wu Z. Is the kernel-staples match a key-lock match? Chem Sci 2018; 9:2437-2442. [PMID: 29732119 PMCID: PMC5914134 DOI: 10.1039/c7sc05019d] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/28/2018] [Indexed: 12/20/2022] Open
Abstract
Metal nanoclusters provide excellent references for understanding metal nanoparticle surfaces, which remain mysterious due to the difficulty of atomically precise characterization. Although some remarkable advances have been achieved for understanding the structure of metal nanoclusters, it is still unknown if the inner kernel-outer staples match is a key-lock match and how the surface staples influence some of the properties of metal nanoclusters. Herein, we have developed an acid-induction method for synthesizing a novel gold nanocluster whose composition is determined to be Au42(TBBT)26 (TBBT: 4-tert-butylbenzenelthiolate) by ESI-MS and single-crystal X-ray crystallography (SCXC). SCXC also reveals that Au42(TBBT)26 has an identical kernel but different staples with an existing gold nanocluster Au44(TBBT)28, indicating that the kernel-staples match is not a key-lock match and the existence of homo-ligand-homo-kernel-hetero-staples phenomenon in metal nanoclusters provides some reference for understanding the growth or transformation of metal nanoclusters. Further experiments reveal that the staples greatly contribute to the stability of gold nanoclusters and influence their photoluminescence intensity and that minute differences in the interfacial structure can lead to enhanced stability and photoluminescence.
Collapse
Affiliation(s)
- Shengli Zhuang
- Key Laboratory of Materials Physics , Anhui Key Laboratory of Nanomaterials and Nanotechnology , CAS Center for Excellence in Nanoscience , Institute of Solid State Physics , Chinese Academy of Sciences , Hefei , Anhui 230031 , P. R. China . .,Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China.,Institute of Physical Science and Information Technology , Anhui University , Hefei , Anhui 230601 , P. R. China
| | - Lingwen Liao
- Key Laboratory of Materials Physics , Anhui Key Laboratory of Nanomaterials and Nanotechnology , CAS Center for Excellence in Nanoscience , Institute of Solid State Physics , Chinese Academy of Sciences , Hefei , Anhui 230031 , P. R. China . .,Institute of Physical Science and Information Technology , Anhui University , Hefei , Anhui 230601 , P. R. China
| | - Yan Zhao
- Key Laboratory of Materials Physics , Anhui Key Laboratory of Nanomaterials and Nanotechnology , CAS Center for Excellence in Nanoscience , Institute of Solid State Physics , Chinese Academy of Sciences , Hefei , Anhui 230031 , P. R. China . .,Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China.,Institute of Physical Science and Information Technology , Anhui University , Hefei , Anhui 230601 , P. R. China
| | - Jinyun Yuan
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China.,Hefei National Laboratory for Physics Sciences at the Microscale , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Chuanhao Yao
- Key Laboratory of Materials Physics , Anhui Key Laboratory of Nanomaterials and Nanotechnology , CAS Center for Excellence in Nanoscience , Institute of Solid State Physics , Chinese Academy of Sciences , Hefei , Anhui 230031 , P. R. China . .,Institute of Physical Science and Information Technology , Anhui University , Hefei , Anhui 230601 , P. R. China
| | - Xu Liu
- Key Laboratory of Materials Physics , Anhui Key Laboratory of Nanomaterials and Nanotechnology , CAS Center for Excellence in Nanoscience , Institute of Solid State Physics , Chinese Academy of Sciences , Hefei , Anhui 230031 , P. R. China . .,Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China.,Institute of Physical Science and Information Technology , Anhui University , Hefei , Anhui 230601 , P. R. China
| | - Jin Li
- Tsinghua University-Peking University Joint Center for Life Sciences , School of Life Sciences , Tsinghua University , Beijing 100084 , P. R. China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics , School of Life Sciences , Tsinghua University , Beijing 100084 , P. R. China
| | - Jinlong Yang
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China.,Hefei National Laboratory for Physics Sciences at the Microscale , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Zhikun Wu
- Key Laboratory of Materials Physics , Anhui Key Laboratory of Nanomaterials and Nanotechnology , CAS Center for Excellence in Nanoscience , Institute of Solid State Physics , Chinese Academy of Sciences , Hefei , Anhui 230031 , P. R. China . .,Institute of Physical Science and Information Technology , Anhui University , Hefei , Anhui 230601 , P. R. China
| |
Collapse
|
31
|
Chromogenic Detection of Fe2+ Using Schiff base–naphthalene-2-ol-modified Silver Nanoparticles. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE 2017. [DOI: 10.1007/s40995-017-0425-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Dong H, Liao L, Wu Z. Two-Way Transformation between fcc- and Nonfcc-Structured Gold Nanoclusters. J Phys Chem Lett 2017; 8:5338-5343. [PMID: 29039677 DOI: 10.1021/acs.jpclett.7b02459] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Precisely tuning the structure of nanomaterials, especially in a two-way style, is challenging but of great importance for regulating properties and for practical applications. The structural transformation from nonfcc to fcc (face center cubic) in gold nanoclusters has been recently reported; however, the reverse process, that is, the structural transformation from fcc to nonfcc, not to mention the two-way structural transformation between fcc and nonfcc, remains unknown. We developed a novel synthesis method, successfully fulfilled the two-way structure transformation, and studied the stability of gold nanoclusters with different structures. Additionally, a novel gold nanocluster was synthesized and structurally resolved by single-crystal X-ray crystallography. This work has important implications for structure and property tuning of gold nanoclusters and might open up some new potential applications for gold nanoclusters.
Collapse
Affiliation(s)
- Hongwei Dong
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences , Hefei, Anhui 230031, China
- University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Lingwen Liao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences , Hefei, Anhui 230031, China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences , Hefei, Anhui 230031, China
| |
Collapse
|
33
|
Zhuang S, Liao L, Li MB, Yao C, Zhao Y, Dong H, Li J, Deng H, Li L, Wu Z. The fcc structure isomerization in gold nanoclusters. NANOSCALE 2017; 9:14809-14813. [PMID: 28956580 DOI: 10.1039/c7nr05239a] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Structural isomerization is an important concept in organic chemistry and it is recently found to be applicable to thiolated gold nanoparticles. However, to the best of our knowledge, the isomerization with the kernel structure of the cluster changed while maintaining fcc packing was not previously found. Here, we report such a structural isomerization by synthesizing a novel gold nanocluster and solving its atomic structure. The as-obtained novel gold nanocluster Au52(PET)32 (PET = phenylethanethiolate) has completely the same Au/S molar ratio as a well-known gold nanocluster Au52(TBBT)32 (TBBT = 4-tert-butyl-benzenethiolate) but an essentially different fcc structure. As a result of fcc structure isomerization, Au52(PET)32 has remarkably different UV/vis/NIR absorption from Au52(TBBT)32. Another interesting finding in this work is that the kernel of Au52(PET)32 has high-indexed (311)-like facets, which is not previously reported in the structures of gold nanoclusters to the best of our knowledge.
Collapse
Affiliation(s)
- Shengli Zhuang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hu Y, Xie D, Wu Y, Lin N, Song A, Hao J. Hydrogels Based on Ag + -Modulated Assembly of 5'-Adenosine Monophosphate for Enriching Biomolecules. Chemistry 2017; 23:15721-15728. [PMID: 28833801 DOI: 10.1002/chem.201703180] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Indexed: 12/18/2022]
Abstract
Supramolecular hydrogels obtained by combining 5'-adenosine monophosphate (AMP) with Ag+ were fabricated in this work. Their gelation capability was enhanced by increasing the concentration of Ag+ or decreasing the pH. The gels are very sensitive to light, which endows them with potential applications as visible-light photosensitive materials. Coordination between the nucleobase of AMP and Ag+ , as well as π-π stacking of nucleobases, are considered to be the main driving forces for self-assembly. The hydrogels successfully achieved the encapsulation and enrichment of biomolecules. Hydrogen bonding between the amino group of guest molecules and silver nanoparticles along the nanofibers drives the enrichment and is considered to be a crucial interaction.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Key Laboratory of Colloid and Interface Chemistry, & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education, Jinan, 250100, P.R. China
| | - Dong Xie
- Key Laboratory of Colloid and Interface Chemistry, & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education, Jinan, 250100, P.R. China
| | - Yang Wu
- Key Laboratory of Colloid and Interface Chemistry, & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education, Jinan, 250100, P.R. China
| | - Nangui Lin
- Key Laboratory of Colloid and Interface Chemistry, & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education, Jinan, 250100, P.R. China
| | - Aixin Song
- Key Laboratory of Colloid and Interface Chemistry, & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education, Jinan, 250100, P.R. China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry, & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education, Jinan, 250100, P.R. China
| |
Collapse
|
35
|
Liu X, Astruc D. From Galvanic to Anti-Galvanic Synthesis of Bimetallic Nanoparticles and Applications in Catalysis, Sensing, and Materials Science. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605305. [PMID: 28128862 DOI: 10.1002/adma.201605305] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/01/2016] [Indexed: 05/28/2023]
Abstract
The properties of two alloyed metals have been known since the Bronze Age to outperform those of a single metal. How alloying and mixing metals applies to the nanoworld is now attracting considerable attention. The galvanic process, which is more than two centuries old and involves the reduction of a noble-metal cation by a less noble metal, has not only been used in technological processes, but also in the design of nanomaterials for the synthesis of bimetallic transition-metal nanoparticles. The background and nanoscience applications of the galvanic reactions (GRs) are reviewed here, in particular with emphasis on recent progress in bimetallic catalysis. Very recently, new reactions have been discovered with nanomaterials that contradict the galvanic principle, and these reactions, called anti-galvanic reactions (AGRs), are now attracting much interest for their mechanistic, synthetic, catalytic, and sensor aspects. The second part of the review deals with these AGRs and compares GRs and AGRs, including the intriguing AGRs mechanism and the first applications.
Collapse
Affiliation(s)
- Xiang Liu
- ISM, UMR CNRS 5255, Université de Bordeaux, 351 Cours de la Liberation, 33405, Talence Cedex, France
- UMR 6226, Institut des Sciences Chimiques de Rennes, CNRS-Université de Rennes 1, Campus de Beaulieu, 35042, Rennes Cedex, France
| | - Didier Astruc
- ISM, UMR CNRS 5255, Université de Bordeaux, 351 Cours de la Liberation, 33405, Talence Cedex, France
| |
Collapse
|
36
|
Dong H, Liao L, Zhuang S, Yao C, Chen J, Tian S, Zhu M, Liu X, Li L, Wu Z. A novel double-helical-kernel evolution pattern of gold nanoclusters: alternate single-stranded growth at both ends. NANOSCALE 2017; 9:3742-3746. [PMID: 28134388 DOI: 10.1039/c6nr09724c] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Studying the kernel evolution pattern of gold nanoclusters is intriguing but challenging due to the difficulty of precise size control and structure resolution. Herein, we successfully synthesized two novel gold nanoclusters, Au34(S-c-C6H11)22 and Au42(S-c-C6H11)26 (S-c-C6H11: cyclohexanethiolate), and resolved their structures. Interestingly, it was found that the kernel evolves from Au28(S-c-C6H11)20 to Au34(S-c-C6H11)22 and Au42(S-c-C6H11)26 in a novel fashion: alternate single-stranded evolution at both ends, which is remarkably different from the reported double-stranded growth at the bottom for the 4-tert-butylbenzenethiolate (TBBT)-protected nanocluster series. This work illustrates the variety of kernel evolution patterns and the directionality of the ligands with respect to the evolution of the kernel. In addition, differential pulse voltammetry (DPV) revealed that the electrochemical gap between the first oxidation and the first reduction potential decreases as the size increases from Au28(S-c-C6H11)20 to Au34(S-c-C6H11)22 and Au42(S-c-C6H11)26.
Collapse
Affiliation(s)
- Hongwei Dong
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China. and University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lingwen Liao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| | - Shengli Zhuang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China. and University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chuanhao Yao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| | - Jishi Chen
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| | - Shubo Tian
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| | - Min Zhu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| | - Xu Liu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China. and University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lingling Li
- Instrumental Analysis Center, Shanghai Jiaotong University, Shanghai 200240, China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| |
Collapse
|
37
|
Liu X, Ding W, Wu Y, Zeng C, Luo Z, Fu H. Penicillamine-protected Ag 20 nanoclusters and fluorescence chemosensing for trace detection of copper ions. NANOSCALE 2017; 9:3986-3994. [PMID: 28267164 DOI: 10.1039/c6nr09818e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report the synthesis of penicillamine-protected Ag20 nanoclusters (NCs), with properties of high monodispersity, red fluorescence and water solubility. Full characterization of the Ag20 NCs is addressed, along with first-principles optimization calculations, revealing the chemical composition and structure of the as-prepared Ag NCs within a molecular formula [Ag20(DPA)18-H]-. Moreover, natural bond orbital (NBO) analysis demonstrates the charge-transfer interactions between the ligand and Ag atoms, and helps in understanding the origins of fluorescence of Ag20 NCs related to the ligand-to-metal charge transfer (LMCT) mechanism. Further, fluorescence chemosensing of the Ag20 NCs is demonstrated for tracing copper ions with high sensitivity and selectivity in aqueous solution.
Collapse
Affiliation(s)
- Xianhu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China. and Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Weihua Ding
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Yishi Wu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Chenghui Zeng
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Zhixun Luo
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Hongbing Fu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| |
Collapse
|
38
|
Khandelwal P, Poddar P. Fluorescent metal quantum clusters: an updated overview of the synthesis, properties, and biological applications. J Mater Chem B 2017; 5:9055-9084. [DOI: 10.1039/c7tb02320k] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A brief history of metal quantum clusters, their synthesis methods, physical properties, and an updated overview of their applications is provided.
Collapse
Affiliation(s)
- Puneet Khandelwal
- Physical & Materials Chemistry Division
- CSIR-National Chemical Laboratory
- Pune – 411008
- India
| | - Pankaj Poddar
- Physical & Materials Chemistry Division
- CSIR-National Chemical Laboratory
- Pune – 411008
- India
| |
Collapse
|
39
|
Bootharaju MS, Sinatra L, Bakr OM. Distinct metal-exchange pathways of doped Ag25 nanoclusters. NANOSCALE 2016; 8:17333-17339. [PMID: 27714124 DOI: 10.1039/c6nr06353e] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Atomically precise metal nanoclusters (NCs) containing more than one type of metal atom (i.e., doped or alloyed), due to synergistic effects, open new avenues for engineering the catalytic and optical properties of NCs in a manner that homometal NCs cannot. Unfortunately, it is still a major challenge to controllably introduce multimetallic dopants in NCs, understanding the dopants' positions, mechanism, and synergistic effects. To overcome these challenges, we designed a metal-exchange approach involving NCs as molecular templates and metal ions as the source of the incoming dopant. In particular, two structurally similar monodoped silver-rich NCs, [MAg24(SR)18]2- (M = Pd/Pt and SR: thiolate), were synthesized as templates to study their mechanistic transformation in response to the introduction of gold atoms. The controllable incorporation of Au atoms into the MAg24 framework facilitated the elucidation of distinct doping pathways through high-resolution mass spectrometry, optical spectroscopy and elemental analysis. Interestingly, gold replaced the central Pd atom of [PdAg24(SR)18]2- clusters to produce predominantly bimetallic [AuAg24(SR)18]- clusters along with a minor product of an [Au2Ag23(SR)18]- cluster. In contrast, the central Pt atom remained intact in [PtAg24(SR)18]2- clusters, and gold replaced the non-central Ag atoms to form trimetallic [AuxPtAg24-x(SR)18]2- NCs, where x = 1-2, with a portion of the starting [PtAg24(SR)18]2- NCs remaining. This study reveals some of the unusual metal-exchange pathways of doped NCs and the important role played by the initial metal dopant in directing the position of a second dopant in the final product.
Collapse
Affiliation(s)
- Megalamane S Bootharaju
- Division of Physical Sciences and Engineering, Solar and Photovoltaics Engineering Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Lutfan Sinatra
- Division of Physical Sciences and Engineering, Solar and Photovoltaics Engineering Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Osman M Bakr
- Division of Physical Sciences and Engineering, Solar and Photovoltaics Engineering Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
40
|
Jin R, Zeng C, Zhou M, Chen Y. Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities. Chem Rev 2016; 116:10346-413. [DOI: 10.1021/acs.chemrev.5b00703] [Citation(s) in RCA: 1953] [Impact Index Per Article: 217.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Chenjie Zeng
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Meng Zhou
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yuxiang Chen
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
41
|
Prajapati R, Chatterjee S, Kannaujiya KK, Mukherjee TK. Effect of compartmentalization of donor and acceptor on the ultrafast resonance energy transfer from DAPI to silver nanoclusters. NANOSCALE 2016; 8:13006-13016. [PMID: 27304093 DOI: 10.1039/c6nr01792d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The mechanism and dynamics of excitation energy transfer (EET) from photo-excited 4',6-diamidino-2-phenylindole (DAPI) to silver nanoclusters (Ag NCs) and its subsequent modulation in the presence of cationic polymer poly(diallyldimethylammonium chloride) (PDADMAC) and Calf Thymus DNA (CT-DNA) have been demonstrated using steady-state fluorescence and femtosecond fluorescence upconversion techniques. The synthesized Ag NCs were characterized using FTIR, mass spectrometry, XPS, HRTEM, DLS, UV-Vis and PL spectroscopy. Mass spectrometric analysis reveals the formation of ultrasmall Ag4 NCs with a small amount of Ag5 NCs. UV-Vis and PL spectra reveal distinct molecular-like optoelectronic behaviour of these ultrasmall Ag NCs. The dihydrolipoic acid-capped Ag NCs strongly quench the fluorescence of DAPI with concomitant increase in its photoluminescence (PL) intensity at 675 nm. This steady-state fluorescence quenching proceeds with a significant shortening of the fluorescence lifetime of DAPI in the presence of Ag NCs, signifying the nonradiative Förster resonance energy transfer (FRET) from DAPI to Ag NCs. Various energy transfer parameters have been estimated from FRET theory. The present FRET pair shows a characteristic Förster distance of 2.45 nm and can be utilized as a reporter of short-range distances in various FRET based applications. Moreover, this nonradiative FRET is completely suppressed in the presence of both 0.2 wt% PDADMAC and CT-DNA. Our results reveal selective compartmentalization of Ag NCs and DAPI in the presence of 0.2 wt% PDADMAC and CT-DNA, respectively. This selective compartmentalization of donor and acceptor and the subsequent modification of the FRET process may find application in various sensing, photovoltaic, and light harvesting applications.
Collapse
Affiliation(s)
- Roopali Prajapati
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol Campus, Khandwa Road, Indore-453552, M.P., India.
| | | | | | | |
Collapse
|
42
|
Yang J, Liao L, Wang J, Zhu X, Xu A, Wu Z. Size-Dependent Cytotoxicity of Thiolated Silver Nanoparticles Rapidly Probed by using Differential Pulse Voltammetry. ChemElectroChem 2016. [DOI: 10.1002/celc.201600211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jie Yang
- Key Laboratory of Materials Physics; Anhui Key Laboratory of Nanomaterials and Nanotechnology; Institute of Solid State Physics; Chinese Academy of Sciences (CAS); Hefei 230031 P. R. China
- School of Materials Science and Engineering; Jiangsu University of Science and Technology; Zhenjiang 212003 P. R. China
| | - Lingwen Liao
- Key Laboratory of Materials Physics; Anhui Key Laboratory of Nanomaterials and Nanotechnology; Institute of Solid State Physics; Chinese Academy of Sciences (CAS); Hefei 230031 P. R. China
| | - Juan Wang
- Key Laboratory of Ion Beam Bioengineering; Institute of Technical Biology and Agriculture Engineering; Chinese Academy of Sciences (CAS); Hefei 230031 P. R. China
| | - Xiaoguang Zhu
- Key Laboratory of Materials Physics; Anhui Key Laboratory of Nanomaterials and Nanotechnology; Institute of Solid State Physics; Chinese Academy of Sciences (CAS); Hefei 230031 P. R. China
| | - An Xu
- Key Laboratory of Ion Beam Bioengineering; Institute of Technical Biology and Agriculture Engineering; Chinese Academy of Sciences (CAS); Hefei 230031 P. R. China
| | - Zhikun Wu
- Key Laboratory of Materials Physics; Anhui Key Laboratory of Nanomaterials and Nanotechnology; Institute of Solid State Physics; Chinese Academy of Sciences (CAS); Hefei 230031 P. R. China
| |
Collapse
|
43
|
Hu X, Wang W, Huang Y. Copper nanocluster-based fluorescent probe for sensitive and selective detection of Hg(2+) in water and food stuff. Talanta 2016; 154:409-15. [PMID: 27154693 DOI: 10.1016/j.talanta.2016.03.095] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/21/2016] [Accepted: 03/28/2016] [Indexed: 11/29/2022]
Abstract
In this study, Hg(2+) ions were found to quench the fluorescence of glutathione (GSH)-capped copper clusters (Cu NCs). The Cu NCs were prepared by a simple reduction of CuSO4 in the presence of GSH serving both as a reducing and protecting agents, and characterized by ultraviolet-visible absorption spectroscopy (UV-vis), high resolution scanning electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectrometer (XPS). The GSH-Cu NCs displayed a small size, excellent water-dispersibility, good storage stability, good photostability and were stable in the presence of high concentrations of salt. The GSH-Cu NCs possessed strong blue fluorescence with a quantum yield of 10.6% and exhibited an excitation-independent fluorescence behavior. The zeta potential, TEM, resonance light scattering and dynamic light scattering measurements demonstrated that the Hg(2+) ion-induced aggregation of the Cu NCs contributed to the fluorescence quenching of the dispersed Cu NCs. On these findings, a sensitive and selective fluorescent probe was developed for detecting Hg(2+) in the linear range from 10nM to 10μM with a detection limit of 3.3nM (S/N=3). The proposed method has been successfully applied to determine Hg(2+) content in water sample and food stuff. The results of the proposed method were in good agreement with those obtained by a hydride generation atomic fluorescence spectrometry (HG-AFS).
Collapse
Affiliation(s)
- Xue Hu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Wei Wang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yuming Huang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
44
|
García-Bosch N, Liras M, Quijada-Garrido I, García O. Multiamino polymeric capping of fluorescent silver nanodots as an effective protective, amphiphilic and pH/thermo-responsive coating. RSC Adv 2016. [DOI: 10.1039/c6ra12024e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
New multiamino thermosensitive polymers based on MEO2MA have been described and used to the in situ synthesis of polymeric capped silver nanodots. The new highly luminescent hybrids show amphiphilic and pH/thermo-responsiveness.
Collapse
Affiliation(s)
- N. García-Bosch
- Instituto de Ciencia y Tecnología de Polímeros (ICTP–CSIC)
- E-28006-Madrid
- Spain
| | - M. Liras
- Instituto de Ciencia y Tecnología de Polímeros (ICTP–CSIC)
- E-28006-Madrid
- Spain
| | - I. Quijada-Garrido
- Instituto de Ciencia y Tecnología de Polímeros (ICTP–CSIC)
- E-28006-Madrid
- Spain
| | - O. García
- Instituto de Ciencia y Tecnología de Polímeros (ICTP–CSIC)
- E-28006-Madrid
- Spain
| |
Collapse
|
45
|
Zhang T, Xu H, Xu S, Dong B, Wu Z, Zhang X, Zhang L, Song H. DNA stabilized Ag–Au alloy nanoclusters and their application as sensing probes for mercury ions. RSC Adv 2016. [DOI: 10.1039/c6ra07563k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Metal nanoclusters (NCs) have attracted plenty of attention because of their unique properties and great application potentials.
Collapse
Affiliation(s)
- Tianxiang Zhang
- State Key Laboratory on Integrated Optoelectronics
- College of Electronic Science and Engineering
- Jilin University
- Changchun
- China
| | - Hongwei Xu
- State Key Laboratory on Integrated Optoelectronics
- College of Electronic Science and Engineering
- Jilin University
- Changchun
- China
| | - Shihan Xu
- State Key Laboratory on Integrated Optoelectronics
- College of Electronic Science and Engineering
- Jilin University
- Changchun
- China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics
- College of Electronic Science and Engineering
- Jilin University
- Changchun
- China
| | - Zhongyang Wu
- State Key Laboratory on Integrated Optoelectronics
- College of Electronic Science and Engineering
- Jilin University
- Changchun
- China
| | - Xinran Zhang
- State Key Laboratory on Integrated Optoelectronics
- College of Electronic Science and Engineering
- Jilin University
- Changchun
- China
| | - Lihang Zhang
- State Key Laboratory on Integrated Optoelectronics
- College of Electronic Science and Engineering
- Jilin University
- Changchun
- China
| | - Hongwei Song
- State Key Laboratory on Integrated Optoelectronics
- College of Electronic Science and Engineering
- Jilin University
- Changchun
- China
| |
Collapse
|