1
|
Li Y, Zhai T, Chen J, Shi J, Wang L, Shen J, Liu X. Water-Dispersible Gold Nanoclusters: Synthesis Strategies, Optical Properties, and Biological Applications. Chemistry 2021; 28:e202103736. [PMID: 34854510 DOI: 10.1002/chem.202103736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Indexed: 12/14/2022]
Abstract
Atomically precise gold nanoclusters (AuNCs) are an emerging class of quantum-sized nanomaterials. Intrinsic discrete electronic energy levels have endowed them with fascinating electronic and optical properties. They have been widely applied in the fields of optoelectronics, photovoltaics, catalysis, biochemical sensing, bio-imaging, and therapeutics. Nevertheless, most AuNCs are synthesized in organic solvents and do not disperse in aqueous solutions; this restricts their biological applications. In this review, we focus on the recent progress in the preparation of water-dispersible AuNCs and their biological applications. We first review different methods of synthesis, including direct synthesis from hydrophilic templates and indirect phase transfer of hydrophobic AuNCs. We then discuss their photophysical properties, such as emission enhancement and fluorescence lifetimes. Next, we summarize their latest applications in the fields of biosensing, biolabeling, and bioimaging. Finally, we outline the challenges and potential for the future development of these AuNCs.
Collapse
Affiliation(s)
- Yu Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tingting Zhai
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jing Chen
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China.,Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Jiye Shi
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China
| | - Lihua Wang
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China.,Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200127, P. R. China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
2
|
Shao L, Wan K, Wang H, Cui Y, Zhao C, Lu J, Li X, Chen L, Cui X, Wang X, Deng X, Shi X, Wu Y. A non-conjugated polyethylenimine copolymer-based unorthodox nanoprobe for bioimaging and related mechanism exploration. Biomater Sci 2019; 7:3016-3024. [DOI: 10.1039/c9bm00516a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A non-conjugated polyethylenimine copolymer-based nanoprobe for lysosome-specific staining and tumor-targeted bioimaging and related mechanism exploration.
Collapse
|
3
|
Guha S, Shaw GK, Mitcham TM, Bouchard RR, Smith BD. Croconaine rotaxane for acid activated photothermal heating and ratiometric photoacoustic imaging of acidic pH. Chem Commun (Camb) 2016; 52:120-3. [PMID: 26502996 DOI: 10.1039/c5cc08317f] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Absorption of 808 nm laser light by liposomes containing a pH sensitive, near-infrared croconaine rotaxane dye increases dramatically in weak acid. A stealth liposome composition permits acid activated, photothermal heating and also acts as an effective nanoparticle probe for ratiometric photoacoustic imaging of acidic pH in deep sample locations, including a living mouse.
Collapse
Affiliation(s)
- Samit Guha
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, IN 46556, USA.
| | - Gillian Karen Shaw
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, IN 46556, USA.
| | - Trevor M Mitcham
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Richard R Bouchard
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, IN 46556, USA.
| |
Collapse
|
4
|
Knapper KA, Heylman KD, Horak EH, Goldsmith RH. Chip-Scale Fabrication of High-Q All-Glass Toroidal Microresonators for Single-Particle Label-Free Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:2945-50. [PMID: 26853536 DOI: 10.1002/adma.201504976] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/12/2015] [Indexed: 05/23/2023]
Abstract
Whispering-gallery-mode microresonators enable materials for single-molecule label-free detection and imaging because of their high sensitivity to their micro-environment. However, fabrication and materials challenges prevent scalability and limit functionality. All-glass on-chip microresonators significantly reduce these difficulties. Construction of all-glass toroidal microresonators with high quality factor and low mode volume is reported and these are used as platforms for label-free single-particle imaging.
Collapse
Affiliation(s)
- Kassandra A Knapper
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI, 53706, USA
| | - Kevin D Heylman
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI, 53706, USA
| | - Erik H Horak
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI, 53706, USA
| | - Randall H Goldsmith
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI, 53706, USA
| |
Collapse
|
5
|
Liu W, Peck EM, Smith BD. High Affinity Macrocycle Threading by a Near-Infrared Croconaine Dye with Flanking Polymer Chains. J Phys Chem B 2016; 120:995-1001. [PMID: 26807599 DOI: 10.1021/acs.jpcb.5b11961] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Croconaine dyes have narrow and intense absorption bands at ∼800 nm, very weak fluorescence, and high photostabilities, which combine to make them very attractive chromophores for absorption-based imaging or laser heating technologies. The physical supramolecular properties of croconaine dyes have rarely been investigated, especially in water. This study focuses on a molecular threading process that encapsulates a croconaine dye inside a tetralactam macrocycle in organic or aqueous solvent. Macrocycle association and rate constant data are reported for a series of croconaine structures with different substituents attached to the ends of the dye. The association constants were highest in water (Ka ∼ 10(9) M(-1)), and the threading rate constants (kon) increased in the solvent order H2O > MeOH > CHCl3. Systematic variation of croconaine substituents located just outside the croconaine/macrocycle complexation interface hardly changed Ka but had a strong influence on kon. A croconaine dye with N-propyl groups at each end of the structure exhibited a desirable mixture of macrocycle threading properties; that is, there was rapid and quantitative croconaine/macrocycle complexation at relatively high concentrations in water, and no dissociation of the preassembled complex when it was diluted into a solution of fetal bovine serum, even after laser-induced photothermal heating of the solution. The combination of favorable near-infrared absorption properties and tunable mechanical stability makes threaded croconaine/macrocycle complexes very attractive as molecular probes or as supramolecular composites for various applications in absorption-based imaging or photothermal therapy.
Collapse
Affiliation(s)
- Wenqi Liu
- Department of Chemistry and Biochemistry, University of Notre Dame , 236 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Evan M Peck
- Department of Chemistry and Biochemistry, University of Notre Dame , 236 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, University of Notre Dame , 236 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
6
|
Smith BD. Smart molecules for imaging, sensing and health (SMITH). Beilstein J Org Chem 2015; 11:2540-8. [PMID: 26734100 PMCID: PMC4685796 DOI: 10.3762/bjoc.11.274] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/28/2015] [Indexed: 12/11/2022] Open
Abstract
This autobiographical review provides a personal account of the author's academic journey in supramolecular chemistry, including brief summaries of research efforts in membrane transport, molecular imaging, ion-pair receptors, rotaxane synthesis, squaraine rotaxanes, and synthtavidin technology. The article concludes with a short perspective of likely future directions in biomedical supramolecular chemistry.
Collapse
|
7
|
Guha S, Shaw SK, Spence GT, Roland FM, Smith BD. Clean Photothermal Heating and Controlled Release from Near-Infrared Dye Doped Nanoparticles without Oxygen Photosensitization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:7826-34. [PMID: 26149326 PMCID: PMC4634570 DOI: 10.1021/acs.langmuir.5b01878] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The photothermal heating and release properties of biocompatible organic nanoparticles, doped with a near-infrared croconaine (Croc) dye, were compared with analogous nanoparticles doped with the common near-infrared dyes ICG and IR780. Separate formulations of lipid-polymer hybrid nanoparticles and liposomes, each containing Croc dye, absorbed strongly at 808 nm and generated clean laser-induced heating (no production of (1)O2 and no photobleaching of the dye). In contrast, laser-induced heating of nanoparticles containing ICG or IR780 produced reactive (1)O2, leading to bleaching of the dye and also decomposition of coencapsulated payload such as the drug doxorubicin. Croc dye was especially useful as a photothermal agent for laser-controlled release of chemically sensitive payload from nanoparticles. Solution state experiments demonstrated repetitive fractional release of water-soluble fluorescent dye from the interior of thermosensitive liposomes. Additional experiments used a focused laser beam to control leakage from immobilized liposomes with very high spatial and temporal precision. The results indicate that fractional photothermal leakage from nanoparticles doped with Croc dye is a promising method for a range of controlled release applications.
Collapse
|