1
|
Gonzàlez-Rosell A, Copp SM. An Atom-Precise Understanding of DNA-Stabilized Silver Nanoclusters. Acc Chem Res 2024; 57:2117-2129. [PMID: 38995323 PMCID: PMC11308368 DOI: 10.1021/acs.accounts.4c00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
ConspectusDNA-stabilized silver nanoclusters (AgN-DNAs) are sequence-encoded fluorophores. Like other noble metal nanoclusters, the optical properties of AgN-DNAs are dictated by their atomically precise sizes and shapes. What makes AgN-DNAs unique is that nanocluster size and shape are controlled by nucleobase sequence of the templating DNA oligomer. By choice of DNA sequence, it is possible to synthesize a wide range of AgN-DNAs with diverse emission colors and other intriguing photophysical properties. AgN-DNAs hold significant potential as "programmable" emitters for biological imaging due to their combination of small molecular-like sizes, bright and sequence-tuned fluorescence, low toxicities, and cost-effective synthesis. In particular, the potential to extend AgN-DNAs into the second near-infrared region (NIR-II) is promising for deep tissue imaging, which is a major area of interest for advancing biomedical imaging. Achieving this goal requires a deep understanding of the structure-property relationships that govern AgN-DNAs in order to design AgN-DNA emitters with sizes and geometries that support NIR-II emission.In recent years, major advances have been made in understanding the structure and composition of AgN-DNAs, enabling new insights into the correlation of nanocluster structure and photophysical properties. These advances have hinged on combined innovations in mass characterization and crystallography of compositionally pure AgN-DNAs, together with combinatorial experiments and machine learning-guided design. A combined approach is essential due to the major challenge of growing suitable AgN-DNA crystals for diffraction and to the labor-intensive nature of preparing and solving the molecular formulas of atomically precise AgN-DNAs by mass spectrometry. These approaches alone are not feasibly scaled to explore the large sequence space of DNA oligomer templates for AgN-DNAs.This account describes recent fundamental advances in AgN-DNA science that have been enabled by high throughput synthesis and fluorimetry together with detailed analytical studies of purified AgN-DNAs. First, short introductions to nanocluster chemistry and AgN-DNA basics are presented. Then, we review recent large-scale studies that have screened thousands of DNA templates for AgN-DNAs, leading to discovery of distinct classes of these emitters with unique cluster core compositions and ligand chemistries. In particular, the discovery of a new class of chloride-stabilized AgN-DNAs enabled the first ab initio calculations of AgN-DNA electronic structure and present new approaches to stabilize these emitters in biologically relevant conditions. Near-infrared (NIR) emissive AgN-DNAs are also found to exhibit diverse structures and properties. Finally, we conclude by highlighting recent proof-of-principle demonstrations of NIR AgN-DNAs for targeted fluorescence imaging. Continued efforts may future push AgN-DNAs into the tissue transparency window for fluorescence imaging in the NIR-II tissue transparency window.
Collapse
Affiliation(s)
- Anna Gonzàlez-Rosell
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92697, United States
| | - Stacy M. Copp
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92697, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, United States
- Department
of Physics and Astronomy, University of
California, Irvine, California 92697, United States
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
2
|
Hong S, Walker JN, Luong AT, Mathews J, Shields SWJ, Kuo YA, Chen YI, Nguyen TD, He Y, Nguyen AT, Ghimire ML, Kim MJ, Brodbelt JS, Yeh HC. A non-FRET DNA reporter that changes fluorescence colour upon nuclease digestion. NATURE NANOTECHNOLOGY 2024; 19:810-817. [PMID: 38351231 DOI: 10.1038/s41565-024-01612-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/15/2024] [Indexed: 06/21/2024]
Abstract
Fluorescence resonance energy transfer (FRET) reporters are commonly used in the final stages of nucleic acid amplification tests to indicate the presence of nucleic acid targets, where fluorescence is restored by nucleases that cleave the FRET reporters. However, the need for dual labelling and purification during manufacturing contributes to the high cost of FRET reporters. Here we demonstrate a low-cost silver nanocluster reporter that does not rely on FRET as the on/off switching mechanism, but rather on a cluster transformation process that leads to fluorescence color change upon nuclease digestion. Notably, a 90 nm red shift in emission is observed upon reporter cleavage, a result unattainable by a simple donor-quencher FRET reporter. Electrospray ionization-mass spectrometry results suggest that the stoichiometric change of the silver nanoclusters from Ag13 (in the intact DNA host) to Ag10 (in the fragments) is probably responsible for the emission colour change observed after reporter digestion. Our results demonstrate that DNA-templated silver nanocluster probes can be versatile reporters for detecting nuclease activities and provide insights into the interactions between nucleases and metallo-DNA nanomaterials.
Collapse
Affiliation(s)
- Soonwoo Hong
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Jada N Walker
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Aaron T Luong
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Jonathan Mathews
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Samuel W J Shields
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Yu-An Kuo
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Yuan-I Chen
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Trung Duc Nguyen
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Yujie He
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Anh-Thu Nguyen
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Madhav L Ghimire
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA
| | - Min Jun Kim
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA
| | | | - Hsin-Chih Yeh
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Texas Materials Institute, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
3
|
El Saftawy E, Farag MF, Gebreil HH, Abdelfatah M, Aboulhoda BE, Alghamdi M, Albadawi EA, Abd Elkhalek MA. Malaria: biochemical, physiological, diagnostic, and therapeutic updates. PeerJ 2024; 12:e17084. [PMID: 38529311 PMCID: PMC10962339 DOI: 10.7717/peerj.17084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/19/2024] [Indexed: 03/27/2024] Open
Abstract
Background Malaria has been appraised as a significant vector-borne parasitic disease with grave morbidity and high-rate mortality. Several challenges have been confronting the efficient diagnosis and treatment of malaria. Method Google Scholar, PubMed, Web of Science, and the Egyptian Knowledge Bank (EKB) were all used to gather articles. Results Diverse biochemical and physiological indices can mirror complicated malaria e.g., hypoglycemia, dyslipidemia, elevated renal and hepatic functions in addition to the lower antioxidant capacity that does not only destroy the parasite but also induces endothelial damage. Multiple trials have been conducted to improve recent points of care in malaria involving biosensors, lap on-chip, and microdevices technology. Regarding recent therapeutic trials, chemical falcipain inhibitors and plant extracts with anti-plasmodial activities are presented. Moreover, antimalaria nano-medicine and the emergence of nanocarrier (either active or passive) in drug transportation are promising. The combination therapeutic trials e.g., amodiaquine + artemether + lumefantrine are presented to safely counterbalance the emerging drug resistance in addition to the Tafenoquine as a new anti-relapse therapy. Conclusion Recognizing the pathophysiology indices potentiate diagnosis of malaria. The new points of care can smartly manipulate the biochemical and hematological alterations for a more sensitive and specific diagnosis of malaria. Nano-medicine appeared promising. Chemical and plant extracts remain points of research.
Collapse
Affiliation(s)
- Enas El Saftawy
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Cairo, Giza, Egypt
- Department of Medical Parasitology, Armed Forces College of Medicine, Cairo, Egypt
| | - Mohamed F. Farag
- Department of Medical Physiology, Armed Forces College of Medicine, Cairo, Giza, Egypt
| | - Hossam H. Gebreil
- Department of Medical Biochemistry & Molecular Biology, Armed Forces College of Medicine, Cairo, Egypt
| | - Mohamed Abdelfatah
- Department of Medical Physiology, Armed Forces College of Medicine, Cairo, Giza, Egypt
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Giza, Egypt
| | - Mansour Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Emad A. Albadawi
- Department of Anatomy, College of Medicine, Taibah University, Madinah, Saudi Arabia
| | - Marwa Ali Abd Elkhalek
- Department of Medical Biochemistry & Molecular Biology, Armed Forces College of Medicine, Cairo, Egypt
- Medical Biochemistry & Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
4
|
Mastracco P, Copp SM. Beyond nature's base pairs: machine learning-enabled design of DNA-stabilized silver nanoclusters. Chem Commun (Camb) 2023; 59:10360-10375. [PMID: 37575075 DOI: 10.1039/d3cc02890a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Sequence-encoded biomolecules such as DNA and peptides are powerful programmable building blocks for nanomaterials. This paradigm is enabled by decades of prior research into how nucleic acid and amino acid sequences dictate biomolecular interactions. The properties of biomolecular materials can be significantly expanded with non-natural interactions, including metal ion coordination of nucleic acids and amino acids. However, these approaches present design challenges because it is often not well-understood how biomolecular sequence dictates such non-natural interactions. This Feature Article presents a case study in overcoming challenges in biomolecular materials with emerging approaches in data mining and machine learning for chemical design. We review progress in this area for a specific class of DNA-templated metal nanomaterials with complex sequence-to-property relationships: DNA-stabilized silver nanoclusters (AgN-DNAs) with bright, sequence-tuned fluorescence colors and promise for biophotonics applications. A brief overview of machine learning concepts is presented, and high-throughput experimental synthesis and characterization of AgN-DNAs are discussed. Then, recent progress in machine learning-guided design of DNA sequences that select for specific AgN-DNA fluorescence properties is reviewed. We conclude with emerging opportunities in machine learning-guided design and discovery of AgN-DNAs and other sequence-encoded biomolecular nanomaterials.
Collapse
Affiliation(s)
- Peter Mastracco
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, USA.
| | - Stacy M Copp
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, USA.
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, USA
| |
Collapse
|
5
|
Kuo YA, Jung C, Chen YA, Kuo HC, Zhao OS, Nguyen TD, Rybarski JR, Hong S, Chen YI, Wylie DC, Hawkins JA, Walker JN, Shields SWJ, Brodbelt JS, Petty JT, Finkelstein IJ, Yeh HC. Massively Parallel Selection of NanoCluster Beacons. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204957. [PMID: 35945159 PMCID: PMC9588665 DOI: 10.1002/adma.202204957] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/18/2022] [Indexed: 06/15/2023]
Abstract
NanoCluster Beacons (NCBs) are multicolor silver nanocluster probes whose fluorescence can be activated or tuned by a proximal DNA strand called the activator. While a single-nucleotide difference in a pair of activators can lead to drastically different activation outcomes, termed polar opposite twins (POTs), it is difficult to discover new POT-NCBs using the conventional low-throughput characterization approaches. Here, a high-throughput selection method is reported that takes advantage of repurposed next-generation-sequencing chips to screen the activation fluorescence of ≈40 000 activator sequences. It is found that the nucleobases at positions 7-12 of the 18-nucleotide-long activator are critical to creating bright NCBs and positions 4-6 and 2-4 are hotspots to generate yellow-orange and red POTs, respectively. Based on these findings, a "zipper-bag" model is proposed that can explain how these hotspots facilitate the formation of distinct silver cluster chromophores and alter their chemical yields. Combining high-throughput screening with machine-learning algorithms, a pipeline is established to design bright and multicolor NCBs in silico.
Collapse
Affiliation(s)
- Yu-An Kuo
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Cheulhee Jung
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea
| | - Yu-An Chen
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Hung-Che Kuo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Oliver S Zhao
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Trung D Nguyen
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - James R Rybarski
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Soonwoo Hong
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Yuan-I Chen
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Dennis C Wylie
- Computational Biology and Bioinformatics, Center for Biomedical Research Support, University of Texas at Austin, Austin, TX, 78712, USA
| | - John A Hawkins
- European Molecular Biology Laboratory (EMBL), 69117, Heidelberg, Germany
| | - Jada N Walker
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Samuel W J Shields
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Jeffrey T Petty
- Department of Chemistry, Furman University, Greenville, SC, 29617, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
- Texas Materials Institute, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
6
|
Li T, Hu Z, Yu S, Liu Z, Zhou X, Liu R, Liu S, Deng Y, Li S, Chen H, Chen Z. DNA Templated Silver Nanoclusters for Bioanalytical Applications: A Review. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Due to their unique programmability, biocompatibility, photostability and high fluorescent quantum yield, DNA templated silver nanoclusters (DNA Ag NCs) have attracted increasing attention for bioanalytical application. This review summarizes the recent developments in fluorescence
properties of DNA templated Ag NCs, as well as their applications in bioanalysis. Finally, we herein discuss some current challenges in bioanalytical applications, to promote developments of DNA Ag NCs in biochemical analysis.
Collapse
Affiliation(s)
- Taotao Li
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Zhiyuan Hu
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Songlin Yu
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Zhanjun Liu
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Xiaohong Zhou
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Rong Liu
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Shiquan Liu
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
7
|
Ma H, Wang J, Zhang XD. Near-infrared II emissive metal clusters: From atom physics to biomedicine. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214184] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Qiao Z, Zhang J, Hai X, Yan Y, Song W, Bi S. Recent advances in templated synthesis of metal nanoclusters and their applications in biosensing, bioimaging and theranostics. Biosens Bioelectron 2021; 176:112898. [PMID: 33358287 DOI: 10.1016/j.bios.2020.112898] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/03/2020] [Accepted: 12/03/2020] [Indexed: 12/19/2022]
Abstract
As a kind of promising nanomaterials, metal nanoclusters (MNCs) generally composed of several to hundreds of metal atoms have received increasing interest owing to their unique properties, such as ultrasmall size (<2 nm), fascinating physical and chemical properties, and so on. Recently, template-assisted synthesis of MNCs (e.g., Au, Ag, Cu, Pt and Cd) has attracted extensive attention in biological fields. Up to now, various templates (e.g., dendrimers, polymers, DNAs, proteins and peptides) with different configurations and spaces have been applied to prepare MNCs with the advantages of facile preparation, controllable size, good water-solubility and biocompatibility. Herein, we focus on the recent advances in the template-assisted synthesis of MNCs, including the templates used to synthesize MNCs, and their applications in biosensing, bioimaging, and disease theranostics. Finally, the challenges and future perspectives of template-assisted synthesized MNCs are highlighted. We believe that this review could not only arouse more interest in MNCs but also promote their further development and applications by presenting the recent advances in this area to researchers from various fields, such as chemistry, material science, physiology, biomedicine, and so on.
Collapse
Affiliation(s)
- Zhenjie Qiao
- Research Center for Intelligent and Wearable Technology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Jian Zhang
- Research Center for Intelligent and Wearable Technology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Xin Hai
- Research Center for Intelligent and Wearable Technology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Yongcun Yan
- Research Center for Intelligent and Wearable Technology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Weiling Song
- Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Sai Bi
- Research Center for Intelligent and Wearable Technology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China.
| |
Collapse
|
9
|
Gonzàlez-Rosell A, Cerretani C, Mastracco P, Vosch T, Copp SM. Structure and luminescence of DNA-templated silver clusters. NANOSCALE ADVANCES 2021; 3:1230-1260. [PMID: 36132866 PMCID: PMC9417461 DOI: 10.1039/d0na01005g] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/21/2021] [Indexed: 05/05/2023]
Abstract
DNA serves as a versatile template for few-atom silver clusters and their organized self-assembly. These clusters possess unique structural and photophysical properties that are programmed into the DNA template sequence, resulting in a rich palette of fluorophores which hold promise as chemical and biomolecular sensors, biolabels, and nanophotonic elements. Here, we review recent advances in the fundamental understanding of DNA-templated silver clusters (Ag N -DNAs), including the role played by the silver-mediated DNA complexes which are synthetic precursors to Ag N -DNAs, structure-property relations of Ag N -DNAs, and the excited state dynamics leading to fluorescence in these clusters. We also summarize the current understanding of how DNA sequence selects the properties of Ag N -DNAs and how sequence can be harnessed for informed design and for ordered multi-cluster assembly. To catalyze future research, we end with a discussion of several opportunities and challenges, both fundamental and applied, for the Ag N -DNA research community. A comprehensive fundamental understanding of this class of metal cluster fluorophores can provide the basis for rational design and for advancement of their applications in fluorescence-based sensing, biosciences, nanophotonics, and catalysis.
Collapse
Affiliation(s)
- Anna Gonzàlez-Rosell
- Department of Materials Science and Engineering, University of California Irvine California 92697-2585 USA
| | - Cecilia Cerretani
- Nanoscience Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5 2100 Copenhagen Denmark
| | - Peter Mastracco
- Department of Materials Science and Engineering, University of California Irvine California 92697-2585 USA
| | - Tom Vosch
- Nanoscience Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5 2100 Copenhagen Denmark
| | - Stacy M Copp
- Department of Materials Science and Engineering, University of California Irvine California 92697-2585 USA
- Department of Physics and Astronomy, University of California Irvine California 92697-4575 USA
| |
Collapse
|
10
|
Liu L, Zhu S, Sun J, Xia M, Zhao X, Xu G. Ratiometric fluorescence detection of bleomycin based on proximity-dependent fluorescence conversion of DNA-templated silver nanoclusters. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.07.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Alipour M, Jalili S, Shirzad H, Ansari Dezfouli E, Fouani MH, Sadeghan AA, Bardania H, Hosseinkhani S. Development of dual-emission cluster of Ag atoms for genetically modified organisms detection. Mikrochim Acta 2020; 187:628. [PMID: 33095319 DOI: 10.1007/s00604-020-04591-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 10/07/2020] [Indexed: 12/18/2022]
Abstract
A DNA-silver nanocluster with two distinct emissions is devised, in which this unique modality has been exploited to develop a novel nanosensor for transgenic DNA detection. TEM and fluorescence analysis revealed the formation of Ag nanoclusters with a size of around 2 nm, which exhibit dual-emissions at 550 nm (green) and 630 nm (red). Moreover, in the presence of the target sequence (CaMV 35S promoter) from the transgenic plant, the nanoclusters showed an enhancement in the green emission and a reduction in the red emission. This property provided a ratiometric-sensing platform which lacks unavoidable noises. The ratio of green to red fluorescence emission (G/R) of the nanoclusters exhibited a linear relation with the target concentration in the range 10 to 1000 nM. However, the control DNA did not affect this ratio, which clearly confirmed the selective response of the designed nanosensor. This sensing platform had a detection limit of 1.5 nM and identified the DNA of transgenic soybeans within a short time. The mechanistic evaluation of the nanoclusters further revealed the role of protonated cytosine bases in the dual emission behavior. Finally, unique features of the designed nanosensor may improve the current approaches for the development and manufacturing of GMO detection tools.
Collapse
Affiliation(s)
- Mohsen Alipour
- Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.
| | - Shirin Jalili
- Research Institute of Police Science & Social Studies, Tehran, Iran
| | - Hadi Shirzad
- Research Institute of Police Science & Social Studies, Tehran, Iran
| | - Ehsan Ansari Dezfouli
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohamad Hassan Fouani
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Amiri Sadeghan
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
- Clinical Research Development Unit, Imamsajad Hospital, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Saman Hosseinkhani
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
12
|
Blevins MS, Kim D, Crittenden CM, Hong S, Yeh HC, Petty JT, Brodbelt JS. Footprints of Nanoscale DNA-Silver Cluster Chromophores via Activated-Electron Photodetachment Mass Spectrometry. ACS NANO 2019; 13:14070-14079. [PMID: 31755695 PMCID: PMC7047740 DOI: 10.1021/acsnano.9b06470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
DNA-templated silver clusters (AgC) are fluorescent probes and biosensors whose electronic spectra can be tuned by their DNA hosts. However, the underlying rules that relate DNA sequence and structure to DNA-AgC fluorescence and photophysics are largely empirical. Here, we employ 193 nm activated electron photodetachment (a-EPD) mass spectrometry as a hybrid MS3 approach to gain structural insight into these nanoscale chromophores. Two DNA-AgC systems are investigated with a 20 nt single-stranded DNA (ssDNA) and a 28 nt hybrid hairpin/single-stranded DNA (hpDNA). Both oligonucleotides template Ag10 clusters, but the two complexes are distinct chromophores: the former has a violet absorption at 400 nm with no observable emission, while the latter has a blue-green absorption at 490 nm with strong green emission at 550 nm. Via identification of both apo and holo (AgC-containing) sequence ions generated upon a-EPD and mapping areas of sequence dropout, specific DNA regions that encapsulate the AgC are assigned and attributed to the coordination with the DNA nucleobases. These a-EPD footprints are distinct for the two complexes. The ssDNA contacts the cluster via four nucleobases (CCTT) in the central region of the strand, whereas the hpDNA coordinates the cluster via 13 nucleobases (TTCCCGCCTTTTG) in the double-stranded region of the hairpin. This difference is consistent with prior X-ray scattering spectra and suggests that the clusters can adapt to different DNA hosts. More importantly, the a-EPD footprints directly identify the nucleobases that are in direct contact with the AgC. As these contacting nucleobases can tune the electronic structures of the Ag core and protect the AgC from collisional quenching in solution, understanding the DNA-silver contacts within these complexes will facilitate future biosensor designs.
Collapse
Affiliation(s)
- Molly S. Blevins
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Dahye Kim
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | | | - Soonwoo Hong
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
- Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jeffrey T. Petty
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
- Corresponding Author:.
| |
Collapse
|
13
|
Peng M, Fang Z, Na N, Ouyang J. A versatile single-molecule counting-based platform by generation of fluorescent silver nanoclusters for sensitive detection of multiple nucleic acids. NANOSCALE 2019; 11:16606-16613. [PMID: 31460540 DOI: 10.1039/c9nr04608a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The good photostability and strong brightness of individual DNA-templated silver nanoclusters (DNA-AgNCs) have been confirmed by single-molecule imaging in this work and DNA-AgNCs as a new class of outstanding fluorophores are applied in the construction of single-molecule counting-based probes for the first time. Based on the fluorescent AgNC-generating molecular beacons (AgNC-MBs), we present a versatile method for simultaneous analysis of multiple nucleic acids. Distinct from previous designs in which a AgNC stabilizing sequence is incorporated into the stem of a hairpin DNA to form the AgNC-MB, we prepared a nicked MB in which the AgNC stabilizing sequence is hybridized with the longer stem of a single-stranded DNA (ssDNA) with a stem-loop structure. Our proposed AgNC-MB is activated by probe-target hybridization then releasing the AgNC stabilizing sequence via a toehold-mediated strand displacement reaction, the versatility of which has been greatly improved because bases in the target-binding region are not involved in the formation of DNA-AgNCs. As a proof of concept, the simultaneous detection of two breast cancer-related MicroRNAs (miR-21 and let-7a miRNA) has been achieved with total internal reflection fluorescence (TIRF)-based imaging and the detection sensitivity of our method has been demonstrated to be improved by at least two orders of magnitude compared with conventional AgNC-MBs. Furthermore, in the single-nucleotide mutation identification assay, the simultaneous detection strategy introduces a competitive reaction between the two probe-target hybridizations, resulting in the excellent discrimination ability of the AgNC-MB sensing platform and the mutant-type targets can be successfully detected at low abundance. The new AgNC-MB sensing platform demonstrated potential to make AgNCs an attractive alternative to conventional organic dyes for single-molecule studies.
Collapse
Affiliation(s)
- Manshu Peng
- State Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Zhuyin Fang
- State Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Na Na
- State Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Jin Ouyang
- State Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
14
|
Kikuchi N, Reed A, Gerasimova YV, Kolpashchikov DM. Split Dapoxyl Aptamer for Sequence-Selective Analysis of Nucleic Acid Sequence Based Amplification Amplicons. Anal Chem 2019; 91:2667-2671. [PMID: 30680988 DOI: 10.1021/acs.analchem.8b03964] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hybridization probes have been used for the detection of single nucleotide variations (SNV) in DNA and RNA sequences in the mix-and-read formats. Among the most conventional are Taqman probes, which require expensive quantitative polymerase chain reaction (qPCR) instruments with melting capabilities. More affordable isothermal amplification format requires hybridization probes that can selectively detect SNVs isothermally. Here we designed a split DNA aptamer (SDA) hybridization probe based on a recently reported DNA sequence that binds a dapoxyl dye and increases its fluorescence ( Kato, T.; Shimada, I.; Kimura, R.; Hyuga, M., Light-up fluorophore-DNA aptamer pair for label-free turn-on aptamer sensors. Chem. Commun. 2016 , 52 , 4041 - 4044 ). SDA uses two DNA strands that have low affinity to the dapoxyl dye unless hybridized to abutting positions at a specific analyte and form a dye-binding site, which is accompanied by up to a 120-fold increase in fluorescence. SDA differentiates SNV in the inhA gene of Mycobacterium tuberculosis at ambient temperatures and detects a conserved region of the Zika virus after isothermal nucleic acid sequence based amplification (NASBA) reaction. The approach reported here can be used for detection of isothermal amplification products in the mix-and-read format as an alternative to qPCR.
Collapse
Affiliation(s)
- Nanami Kikuchi
- Chemistry Department , University of Central Florida , 4111 Libra Drive , Orlando , 32816 , Florida United States
| | - Adam Reed
- Chemistry Department , University of Central Florida , 4111 Libra Drive , Orlando , 32816 , Florida United States
| | - Yulia V Gerasimova
- Chemistry Department , University of Central Florida , 4111 Libra Drive , Orlando , 32816 , Florida United States
| | - Dmitry M Kolpashchikov
- Chemistry Department , University of Central Florida , 4111 Libra Drive , Orlando , 32816 , Florida United States.,Burnett School of Biomedical Sciences , University of Central Florida , Orlando , 32816 , Florida United States
| |
Collapse
|
15
|
Chen YA, Vu HT, Liu YL, Chen YI, Nguyen TD, Kuo YA, Hong S, Chen YA, Carnahan S, Petty JT, Yeh HC. Improving NanoCluster Beacon performance by blocking the unlabeled NC probes. Chem Commun (Camb) 2019; 55:462-465. [PMID: 30547174 DOI: 10.1039/c8cc08291j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
While NanoCluster Beacon (NCB) is a versatile molecular probe, it suffers from a low target-specific signal issue due to impurities. Here we show that adding a "blocker" strand to the reaction can effectively block the nonfunctional probes and enhance the target-specific signal by 14 fold at a 0.1 target/probe ratio.
Collapse
Affiliation(s)
- Yu-An Chen
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Franch O, Han X, Marcussen LB, Givskov A, Andersen MB, Godbole AA, Harmsen C, Nørskov-Lauritsen N, Thomsen J, Pedersen FS, Wang Y, Shi D, Wejse C, Pødenphant L, Nagaraja V, Bertl J, Stougaard M, Ho YP, Hede MS, Labouriau R, Knudsen BR. A new DNA sensor system for specific and quantitative detection of mycobacteria. NANOSCALE 2019; 11:587-597. [PMID: 30556557 DOI: 10.1039/c8nr07850e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In the current study, we describe a novel DNA sensor system for specific and quantitative detection of mycobacteria, which is the causative agent of tuberculosis. Detection is achieved by using the enzymatic activity of the mycobacterial encoded enzyme topoisomerase IA (TOP1A) as a biomarker. The presented work is the first to describe how the catalytic activities of a member of the type IA family of topoisomerases can be exploited for specific detection of bacteria. The principle for detection relies on a solid support anchored DNA substrate with dual functions namely: (1) the ability to isolate mycobacterial TOP1A from crude samples and (2) the ability to be converted into a closed DNA circle upon reaction with the isolated enzyme. The DNA circle can act as a template for rolling circle amplification generating a tandem repeat product that can be visualized at the single molecule level by fluorescent labelling. This reaction scheme ensures specific, sensitive, and quantitative detection of the mycobacteria TOP1A biomarker as demonstrated by the use of purified mycobacterial TOP1A and extracts from an array of non-mycobacteria and mycobacteria species. When combined with mycobacteriophage induced lysis as a novel way of effective yet gentle extraction of the cellular content from the model Mycobacterium smegmatis, the DNA sensor system allowed detection of mycobacteria in small volumes of cell suspensions. Moreover, it was possible to detect M. smegmatis added to human saliva. Depending on the composition of the sample, we were able to detect 0.6 or 0.9 million colony forming units (CFU) per mL of mycobacteria, which is within the range of clinically relevant infection numbers. We, therefore, believe that the presented assay, which relies on techniques that can be adapted to limited resource settings, may be the first step towards the development of a new point-of-care diagnostic test for tuberculosis.
Collapse
Affiliation(s)
- Oskar Franch
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Li B, Chen Y, Wang J, Lu Q, Zhu W, Luo J, Hong J, Zhou X. Detecting transcription factors with allosteric DNA-Silver nanocluster switches. Anal Chim Acta 2018; 1048:168-177. [PMID: 30598147 DOI: 10.1016/j.aca.2018.10.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/29/2018] [Accepted: 10/09/2018] [Indexed: 01/08/2023]
Abstract
Sensitive and efficient detection of protein markers, such as transcription factors (TFs), is an important issue in postgenomic era. In this paper, we report a DNA nanodevice, allosteric DNA-silver nanocluster switches (AgSwitches), for TFs detection. The mechanism of this nanodevice is based on the binding-induced allostery whereby the binding between AgSwitches and TFs alters the conformation of AgSwitches. This alteration brings DNA-silver nanocluster (DNA-AgNCs) and guanine-rich enhancer sequences (GRS) into close proximity, generating fluorescent enhancement for quantifications. Our results revealed that the sequence design of AgSwitches can be rationally optimized according to stimulated free energy, and we demonstrated that this method can not only be used for detecting TFs in nuclear extracts of cells, but also be developed as a tool for screening inhibitors of TFs. Overall, this work expanded the category allosteric DNA nanodevices by first introducing DNA-AgNCs into this area, and the obtained method was efficient for TFs-related investigations.
Collapse
Affiliation(s)
- Bingzhi Li
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Yue Chen
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, PR China
| | - Jing Wang
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Qiaoyun Lu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Wanying Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Jieping Luo
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Junli Hong
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Xuemin Zhou
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China.
| |
Collapse
|
18
|
Ang Y, Woon W, Yung LYL. The role of spacer sequence in modulating turn-on fluorescence of DNA-templated silver nanoclusters. Nucleic Acids Res 2018; 46:6974-6982. [PMID: 29982768 PMCID: PMC6101541 DOI: 10.1093/nar/gky521] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/18/2018] [Accepted: 06/09/2018] [Indexed: 12/18/2022] Open
Abstract
Guanine activation of fluorescence in DNA templated silver nanoclusters (AgNCs) is an interesting physical phenomenon which has yet to be fully understood to date. While the individual role of cytosine and guanine has been established, there is still a knowledge gap on how the AgNC-DNA system switches from dark to bright state. Here, we present evidence on the universal role of the DNA spacer sequence in physically separating two Ag+-binding cytosine sites to maintain the dark state while holding them together for structural re-organization by the guanine-rich strand to activate the bright state. The extent of turn-on signal could be modulated by adjusting the spacer length and composition. The ATATA spacer sequence was found to have negligible dark state fluorescence and a turn-on effect of 2440-fold, which was almost five times of the highest factor reported to date.
Collapse
Affiliation(s)
- Yan Shan Ang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
| | - Wei Wen Elvin Woon
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
| | - Lin-Yue Lanry Yung
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
| |
Collapse
|
19
|
Chen Z, Liu C, Cao F, Ren J, Qu X. DNA metallization: principles, methods, structures, and applications. Chem Soc Rev 2018; 47:4017-4072. [DOI: 10.1039/c8cs00011e] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review summarizes the research activities on DNA metallization since the concept was first proposed in 1998, covering the principles, methods, structures, and applications.
Collapse
Affiliation(s)
- Zhaowei Chen
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| | - Chaoqun Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| | - Fangfang Cao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| |
Collapse
|
20
|
Kolluri N, Klapperich CM, Cabodi M. Towards lab-on-a-chip diagnostics for malaria elimination. LAB ON A CHIP 2017; 18:75-94. [PMID: 29125615 DOI: 10.1039/c7lc00758b] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Malaria continues to be one of the most devastating diseases impacting global health. Although there have been significant reductions in global malaria incidence and mortality rates over the past 17 years, the disease remains endemic throughout the world, especially in low- and middle-income countries. The World Health Organization has put forth ambitious milestones moving toward a world free of malaria as part of the United Nations Millennium Goals. Mass screening and treatment of symptomatic and asymptomatic malaria infections in endemic regions is integral to these goals and requires diagnostics that are both sensitive and affordable. Lab-on-a-chip technologies provide a path toward sensitive, portable, and affordable diagnostic platforms. Here, we review and compare currently-available and emerging lab-on-a-chip diagnostic approaches in three categories: (1) protein-based tests, (2) nucleic acid tests, and (3) cell-based detection. For each category, we highlight the opportunities and challenges in diagnostics development for malaria elimination, and comment on their applicability to different phases of elimination strategies.
Collapse
Affiliation(s)
- N Kolluri
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| | | | | |
Collapse
|
21
|
Ge L, Sun X, Hong Q, Li F. Ratiometric Catalyzed-Assembly of NanoCluster Beacons: A Nonenzymatic Approach for Amplified DNA Detection. ACS APPLIED MATERIALS & INTERFACES 2017; 9:32089-32096. [PMID: 28849916 DOI: 10.1021/acsami.7b09034] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this work, a novel fluorescent transformation phenomenon of oligonucleotide-encapsulated silver nanoclusters (AgNCs) was demonstrated, in which green-emissive AgNCs effectively transformed to red-emissive AgNCs when placed in close proximity to a special DNA fragment (denoted as convertor here). Taking advantage of a catalyzed-hairpin-assembly (CHA) amplification strategy, we rationally and compatibly engineered a simple and sensitive AgNC-based fluorescent signal amplification strategy through the ratiometric catalyzed-assembly (RCA) of green-emissive NanoCluster Beacon (NCB) with a convertor modified DNA hairpin to induce the template transformation circularly. The proposed ratiometric fluorescent biosensing platform based on RCA-amplified NCB (RCA-NCB) emits intense green fluorescence in the absence of target DNA and will undergo consecutively fluorescent signal transformation from green emission to red emission upon exposure to its target DNA. The ratiometric adaptation of the NCB to CHA circuit advances their general usability as biosensing platform with great improvements in detection sensitivity. By measuring the fluorescence intensity ratio of the red emission and green emission, the proposed RCA-NCB platform exhibits sensitive and accurate analytical performance toward Werner Syndrome-relevant gene, the proof-of-concept target in this work. A low detection limit down to the pM level was achieved, which is lower than most of the reported AgNC-based fluorescent DNA biosensors, making the proposed RCA-NCB biosensing strategy appealing in amplifying the ratiometric fluorescent signal for sensitive DNA detection. Moreover, our proposed RCA-NCB platform shows good recovery toward the target DNA in real human serum samples, illustrating their potential promise for clinical and imaging applications in the future.
Collapse
Affiliation(s)
- Lei Ge
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao, 266109, People's Republic of China
| | - Ximei Sun
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao, 266109, People's Republic of China
| | - Qing Hong
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao, 266109, People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao, 266109, People's Republic of China
| |
Collapse
|
22
|
Li B, Xu L, Chen Y, Zhu W, Shen X, Zhu C, Luo J, Li X, Hong J, Zhou X. Sensitive and Label-Free Fluorescent Detection of Transcription Factors Based on DNA-Ag Nanoclusters Molecular Beacons and Exonuclease III-Assisted Signal Amplification. Anal Chem 2017; 89:7316-7323. [DOI: 10.1021/acs.analchem.7b00055] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Bingzhi Li
- School
of Pharmacy, Nanjing Medical University, Nanjing 211166, People’s Republic of China
| | - Lei Xu
- School
of Pharmacy, Nanjing Medical University, Nanjing 211166, People’s Republic of China
| | - Yue Chen
- Department
of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, People’s Republic of China
| | - Wanying Zhu
- School
of Pharmacy, Nanjing Medical University, Nanjing 211166, People’s Republic of China
| | - Xin Shen
- School
of Pharmacy, Nanjing Medical University, Nanjing 211166, People’s Republic of China
| | - Chunhong Zhu
- School
of Pharmacy, Nanjing Medical University, Nanjing 211166, People’s Republic of China
| | - Jieping Luo
- School
of Pharmacy, Nanjing Medical University, Nanjing 211166, People’s Republic of China
| | - Xiaoxu Li
- School
of Pharmacy, Nanjing Medical University, Nanjing 211166, People’s Republic of China
| | - Junli Hong
- School
of Pharmacy, Nanjing Medical University, Nanjing 211166, People’s Republic of China
| | - Xuemin Zhou
- School
of Pharmacy, Nanjing Medical University, Nanjing 211166, People’s Republic of China
| |
Collapse
|
23
|
Obliosca JM, Cheng SY, Chen YA, Llanos MF, Liu YL, Imphean DM, Bell DR, Petty JT, Ren P, Yeh HC. LNA Thymidine Monomer Enables Differentiation of the Four Single-Nucleotide Variants by Melting Temperature. J Am Chem Soc 2017; 139:7110-7116. [PMID: 28463488 DOI: 10.1021/jacs.7b03395] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
High-resolution melting (HRM) analysis of DNA is a closed-tube single-nucleotide polymorphism (SNP) detection method that has shown many advantages in point-of-care diagnostics and personalized medicine. While recently developed melting probes have demonstrated significantly improved discrimination of mismatched (mutant) alleles from matched (wild-type) alleles, no effort has been made to design a simple melting probe that can reliably distinguish all four SNP alleles in a single experiment. Such a new probe could facilitate the discovery of rare genetic mutations at lower cost. Here we demonstrate that a melting probe embedded with a single locked thymidine monomer (tL) can reliably differentiate the four SNP alleles by four distinct melting temperatures (termed the "4Tm probe"). This enhanced discriminatory power comes from the decreased melting temperature of the tL·C mismatched hybrid as compared to that of the t·C mismatched hybrid, while the melting temperatures of the tL-A, tL·G and tL·T hybrids are increased or remain unchanged as compared to those of their canonical counterparts. This phenomenon is observed not only in the HRM experiments but also in the molecular dynamics simulations.
Collapse
Affiliation(s)
- Judy M Obliosca
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin , Austin, Texas 78712, United States
| | - Sara Y Cheng
- Department of Physics, College of Natural Sciences, University of Texas at Austin , Austin, Texas 78712, United States
| | - Yu-An Chen
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin , Austin, Texas 78712, United States
| | - Mariana F Llanos
- Department of Chemistry, Department of Chemistry, Furman University , Greenville, South Carolina 29613, United States
| | - Yen-Liang Liu
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin , Austin, Texas 78712, United States
| | - Darren M Imphean
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin , Austin, Texas 78712, United States
| | - David R Bell
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin , Austin, Texas 78712, United States
| | - Jeffrey T Petty
- Department of Chemistry, Department of Chemistry, Furman University , Greenville, South Carolina 29613, United States
| | - Pengyu Ren
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin , Austin, Texas 78712, United States
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
24
|
Ge L, Sun X, Hong Q, Li F. Ratiometric NanoCluster Beacon: A Label-Free and Sensitive Fluorescent DNA Detection Platform. ACS APPLIED MATERIALS & INTERFACES 2017; 9:13102-13110. [PMID: 28367619 DOI: 10.1021/acsami.7b03198] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Although researches until now have emphasized the influence of an oligonucleotide sequence on the fluorescence of oligonucleotide-stabilized silver nanoclusters (AgNCs), this influence has been explored as a novel ratiometric fluorescent signal transduction in this work. This study builds on our original discovery of a template-transformation phenomenon, which demonstrated that the connection of a special DNA fragment (5'-CACCGCTTT-3') with a green-emitting AgNC nucleation sequence (GNuS, 5'-TGCCTTTTGGGGACGGATA-3') creates a red-emitting AgNC nucleation sequence (RNuS, 5'-CACCGCTTTTGCCTTTTGGGGACGGATA-3'). Attempts to expand this idea and construct elegant ratiometric NanoCluster Beacons (NCBs) for DNA sequence detection are not straightforward, and, thus, we carried out a series of investigations with the goal of understanding the mechanism of this template-transformation phenomenon. Experimental results showed that the six-nucleotide fragment (5'-CACCGC-3') at the 5'-end of RNuS acts as a template convertor and takes full responsibility for the template transformation from GNuS to RNuS. Moreover, we found that the appropriate proximity of the convertor to GNuS also plays a significant role in the template transformation. We then show that the insights gained here for the template-transformation mechanism allow us to construct ratiometric NCBs by simply appending the convertor and the GNuS onto a rationally designed stem-loop probe. This new type of NCB emits intense red fluorescence without the addition of a target DNA and emerges as a new, bright green emission only when hybridized to its target DNA. By measuring the distinct variation in the fluorescence intensity ratios of green and red emission, this ratiometric NCB was demonstrated to sensitively detect Hepatitis-A virus gene sequences, a proof-of-concept target in this work, with good selectivity.
Collapse
Affiliation(s)
- Lei Ge
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao 266109, P. R. China
| | - Ximei Sun
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao 266109, P. R. China
| | - Qing Hong
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao 266109, P. R. China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao 266109, P. R. China
| |
Collapse
|
25
|
Hao L, Gu H, Duan N, Wu S, Ma X, Xia Y, Wang H, Wang Z. A chemiluminescent aptasensor based on rolling circle amplification and Co 2+/N-(aminobutyl)-N-(ethylisoluminol) functional flowerlike gold nanoparticles for Salmonella typhimurium detection. Talanta 2016; 164:275-282. [PMID: 28107930 DOI: 10.1016/j.talanta.2016.11.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 11/16/2016] [Accepted: 11/22/2016] [Indexed: 12/22/2022]
Abstract
A sensitive steady-state chemiluminescent aptasensor based on rolling circle amplification (RCA) was fabricated for the detection of Salmonella typhimurium. The sensor utilized aptamer modified Fe3O4 magnetic nanoparticles (MNPs) as capture probes, aptamer as recognition molecules, and Co2+ enhanced N‑(aminobutyl)-N-(ethylisoluminol) (ABEI) functional flowerlike gold nanoparticles (AuNFs) and complementary strand (cDNA) complex (Co2+/ABEI-AuNFs-cDNA) as signal probes. And P-Iodophenol (PIP) was also added to form a typical ABEI- AuNFs-PIP-H2O2 steady-state CL system. By virtue of Fe3O4 MNPs based solid-phase RCA strategy, S. typhimurium can be first captured by the aptamer immobilized on the surface of Fe3O4 MNPs then complex with RCA products to form a sandwich complex. Co2+/ABEI-AuNFs-cDNA signal probes were then assembled on the RCA products to produce and enhance CL signals. Under optimal conditions, the logarithmic correlation between the concentration of S. typhimurium and the CL signal was found to be linear within the range of 32cfumL-1 to 3.2×106cfumL-1 (R2 =0.9921). The limits of detection of the developed method were found to be 10cfumL-1 for S. typhimurium. The method was also used to detect S. typhimurium in real pork samples. The results were compared with those obtained from the plate-counting methods and showed good consistency. Therefore, this detection aptasnesor can be a good candidate for sensitive and selective detection of S. typhimurium with simple and effective operations.
Collapse
Affiliation(s)
- Liling Hao
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Huajie Gu
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaoyuan Ma
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yu Xia
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haitao Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
26
|
Kikuchi N, Kolpashchikov DM. Split Spinach Aptamer for Highly Selective Recognition of DNA and RNA at Ambient Temperatures. Chembiochem 2016; 17:1589-92. [PMID: 27305425 DOI: 10.1002/cbic.201600323] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Indexed: 12/25/2022]
Abstract
Split spinach aptamer (SSA) probes for fluorescent analysis of nucleic acids were designed and tested. In SSA design, two RNA or RNA/DNA strands hybridized to a specific nucleic acid analyte and formed a binding site for low-fluorescent 3,5-difluoro-4-hydroxybenzylidene imidazolinone (DFHBI) dye, which resulted in up to a 270-fold increase in fluorescence. The major advantage of the SSA over state-of-the art fluorescent probes is high selectivity: it produces only background fluorescence in the presence of a single-base-mismatched analyte, even at room temperature. SSA is therefore a promising tool for label-free analysis of nucleic acids at ambient temperatures.
Collapse
Affiliation(s)
- Nanami Kikuchi
- Chemistry Department, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL, 32816-2366, USA
| | - Dmitry M Kolpashchikov
- Chemistry Department, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL, 32816-2366, USA.
| |
Collapse
|
27
|
Chen YA, Obliosca JM, Liu YL, Liu C, Gwozdz ML, Yeh HC. NanoCluster Beacons Enable Detection of a Single N⁶-Methyladenine. J Am Chem Soc 2015; 137:10476-9. [PMID: 26261877 DOI: 10.1021/jacs.5b06038] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
While N(6)-methyladenine (m(6)A) is a common modification in prokaryotic and lower eukaryotic genomes and has many biological functions, there is no simple and cost-effective way to identify a single N(6)-methyladenine in a nucleic acid target. Here we introduce a robust, simple, enzyme-free and hybridization-based method using a new silver cluster probe, termed methyladenine-specific NanoCluster Beacon (maNCB), which can detect single m(6)A in DNA targets based on the fluorescence emission spectra of silver clusters. Not only can maNCB identify m(6)A at the single-base level but it also can quantify the extent of adenine methylation in heterogeneous samples. Our method is superior to high-resolution melting analysis as we can pinpoint the location of m(6)A in the target.
Collapse
Affiliation(s)
- Yu-An Chen
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin , Austin, Texas 78712, United States
| | - Judy M Obliosca
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin , Austin, Texas 78712, United States
| | - Yen-Liang Liu
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin , Austin, Texas 78712, United States
| | - Cong Liu
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin , Austin, Texas 78712, United States
| | - Mary L Gwozdz
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin , Austin, Texas 78712, United States
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|