1
|
Song C, Guo Y, Wang T, Liu K, Zhao PY, Liu Y, Huang H, Lu R, Zhang S. A dual-template synergistic assembly strategy towards the synthesis of extra-small nitrogen-doped mesoporous carbon nanospheres with large pores. NANOSCALE 2024; 16:16967-16976. [PMID: 38990172 DOI: 10.1039/d4nr01072h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Functional mesoporous carbon nanomaterials with large pores and small particle sizes have broad accessibility, but remain challenging to achieve. This study proposed a dual-template synergistic assembly strategy to facilely synthesize extra-small nitrogen-doped mesoporous carbon nanospheres with large pores in a low-cost manner. Directed by the synergistic effect of the combination of surfactants, sodium oleate (anionic surfactant) and triblock copolymer-P123 (nonionic surfactant) were selected as templates to construct nanomicelles (nanoemulsions), which were co-assembled with melamine-based oligomers to form composite nanomicelles, thus obtaining nitrogen-doped mesoporous polymer nanospheres (NMePS) and then nitrogen-doped mesoporous carbon nanospheres (NMeCS). Based on Schiff base chemistry, the melamine-based oligomers with self-assembly capability were synthesized as precursors, which is different from the conventional synthetic route of melamine-formaldehyde resin. The key parameters involved in the route were investigated comprehensively and correlated with the characterization results. Furthermore, the 50 nm-scale particle size and the large mesoporous size of 5.5 nm of NMeCS can facilitate effective mass transport, coupled with their high nitrogen content (15.7 wt%), contributing to their excellent performance in lithium-ion batteries.
Collapse
Affiliation(s)
- Caicheng Song
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
- SINOPEC, Dalian Res Inst Petr & Petrochem Co. Ltd, 96 Nankai St, Dalian 116045, P. R. China
| | - Yiwen Guo
- Institute of Materials and Technology, Dalian Maritime University, Dalian 116026, China
| | - Tianwei Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Kun Liu
- SINOPEC, Dalian Res Inst Petr & Petrochem Co. Ltd, 96 Nankai St, Dalian 116045, P. R. China
- Institute of Materials and Technology, Dalian Maritime University, Dalian 116026, China
| | - Pin-Yi Zhao
- SINOPEC, Dalian Res Inst Petr & Petrochem Co. Ltd, 96 Nankai St, Dalian 116045, P. R. China
- Institute for Materials Discovery, University College London, WC1E 7JE, UK
- Department of Chemistry, University College London, WC1H 0AJ, UK
| | - Ying Liu
- SINOPEC, Dalian Res Inst Petr & Petrochem Co. Ltd, 96 Nankai St, Dalian 116045, P. R. China
| | - He Huang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Rongwen Lu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
2
|
Griffin A, Chen G, Robertson M, Wang K, Xiang Y, Qiang Z. Accelerated Synthesis of Ordered Mesoporous Carbons Using Plasma. ACS OMEGA 2023; 8:15781-15789. [PMID: 37151511 PMCID: PMC10157878 DOI: 10.1021/acsomega.3c01523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023]
Abstract
Conventional ordered mesoporous carbon (OMC) production usually requires long processing times in the carbonization step to achieve desired temperatures through controlled ramps. To enable expedited materials discovery, developing advanced manufacturing capability with significantly improved throughput is highly desired. Current approaches for accelerating the synthesis of OMCs include using microwave and Joule heating. However, both methods rely on the introduction of additional components, such as microwave absorbers and electrically conductive agents, within the bulk materials to impart the ability to reach high carbonization temperatures. This work demonstrates accelerated synthesis and functionalization of OMCs through the use of a dielectric barrier discharge plasma, where carbonization can be accomplished within 15 min using 30 W plasma sources, representing more than an order of magnitude increase in polymer-to-carbon conversion kinetics compared to that of a traditionally pyrolyzed analogue. Particularly, the ability of performing rapid carbonization without the use of additional substrates within the OMC precursor systems is advantageous. A systematic investigation of how plasma power, time, and gas atmosphere impact the resulting OMC pore textures and properties is performed, demonstrating the broad applicability of plasma-enabled carbonization methods. Furthermore, we demonstrate that the plasma treatment strategy can be extended to incorporate heteroatoms into the carbon framework by introducing ammonia gas, resulting in OMCs with a nitrogen content up to 4.7 at %, as well as non-Pluronic templating systems for synthesizing OMC with pore sizes larger than 10 nm. As employing a plasma source for materials pyrolysis is an industrially relevant approach, our system can be extended toward scaled synthesis of OMCs with much faster production rates.
Collapse
Affiliation(s)
- Anthony Griffin
- School
of Polymer Science and Engineering, University
of Southern Mississippi, Hattiesburg, Mississippi, 39406, United States
| | - Genwei Chen
- Dave
C. Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Mark Robertson
- School
of Polymer Science and Engineering, University
of Southern Mississippi, Hattiesburg, Mississippi, 39406, United States
| | - Kun Wang
- Department
of Physics and Astronomy, Mississippi State
University, Mississippi
State, Mississippi, 39762, United States
- Department
of Chemistry, Mississippi State University, Mississippi State, Mississippi, 39762, United
States
| | - Yizhi Xiang
- Dave
C. Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Zhe Qiang
- School
of Polymer Science and Engineering, University
of Southern Mississippi, Hattiesburg, Mississippi, 39406, United States
| |
Collapse
|
3
|
Liu JY, Song HR, Wang M, Jin SH, Liang Z, Mao X, Li W, Deng RH, Zhu JT. Asymmetric Mesoporous Carbon Microparticles by 3D-Confined Self-Assembly of Block Copolymer/Homopolymer Blends and Selective Carbonization. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2935-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
4
|
Robertson M, Guillen-Obando A, Barbour A, Smith P, Griffin A, Qiang Z. Direct synthesis of ordered mesoporous materials from thermoplastic elastomers. Nat Commun 2023; 14:639. [PMID: 36746971 PMCID: PMC9902477 DOI: 10.1038/s41467-023-36362-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
The ability to manufacture ordered mesoporous materials using low-cost precursors and scalable processes is essential for unlocking their enormous potential to enable advancement in nanotechnology. While templating-based methods play a central role in the development of mesoporous materials, several limitations exist in conventional system design, including cost, volatile solvent consumption, and attainable pore sizes from commercial templating agents. This work pioneers a new manufacturing platform for producing ordered mesoporous materials through direct pyrolysis of crosslinked thermoplastic elastomer-based block copolymers. Specifically, olefinic majority phases are selectively crosslinked through sulfonation reactions and subsequently converted to carbon, while the minority block can be decomposed to form ordered mesopores. We demonstrate that this process can be extended to different polymer precursors for synthesizing mesoporous polymer, carbon, and silica. Furthermore, the obtained carbons possess large mesopores, sulfur-doped carbon framework, with tailorable pore textures upon varying the precursor identities.
Collapse
Affiliation(s)
- Mark Robertson
- grid.267193.80000 0001 2295 628XSchool of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, 39406 MS USA
| | - Alejandro Guillen-Obando
- grid.267193.80000 0001 2295 628XSchool of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, 39406 MS USA
| | - Andrew Barbour
- grid.267193.80000 0001 2295 628XSchool of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, 39406 MS USA
| | - Paul Smith
- grid.267193.80000 0001 2295 628XSchool of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, 39406 MS USA
| | - Anthony Griffin
- grid.267193.80000 0001 2295 628XSchool of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, 39406 MS USA
| | - Zhe Qiang
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, 39406, MS, USA.
| |
Collapse
|
5
|
Wang M, Mao X, Liu J, Deng B, Deng S, Jin S, Li W, Gong J, Deng R, Zhu J. A Versatile 3D-Confined Self-Assembly Strategy for Anisotropic and Ordered Mesoporous Carbon Microparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202394. [PMID: 35780503 PMCID: PMC9443438 DOI: 10.1002/advs.202202394] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/27/2022] [Indexed: 05/19/2023]
Abstract
Mesoporous carbon microparticles (MCMPs) with anisotropic shapes and ordered structures are attractive materials that remain challenging to access. In this study, a facile yet versatile route is developed to prepare anisotropic MCMPs by combining neutral interface-guided 3D confined self-assembly (3D-CSA) of block copolymer (BCP) with a self-templated direct carbonization strategy. This route enables pre-engineering BCP into microparticles with oblate shape and hexagonal packing cylindrical mesostructures, followed by selective crosslinking and decorating of their continuous phase with functional species (such as platinum nanoparticles, Pt NPs) via in situ growth. To realize uniform in situ growth, a "guest exchange" strategy is proposed to make room for functional species and a pre-crosslinking strategy is developed to preserve the structural stability of preformed BCP microparticles during infiltration. Finally, Pt NP-loaded MCMPs are derived from the continuous phase of BCP microparticles through selective self-templated direct carbonization without using any external carbon source. This study introduces an effective concept to obtain functional species-loaded and N-doped MCMPs with oblate shape and almost hexagonal structure (p6mm), which would find important applications in fuel cells, separation, and heterogeneous catalysis.
Collapse
Affiliation(s)
- Mian Wang
- State Key Laboratory of Materials Processing and Die & Mould TechnologyKey Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Xi Mao
- State Key Laboratory of Materials Processing and Die & Mould TechnologyKey Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Jingye Liu
- State Key Laboratory of Materials Processing and Die & Mould TechnologyKey Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Bite Deng
- State Key Laboratory of Materials Processing and Die & Mould TechnologyKey Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Shuai Deng
- State Key Laboratory of Materials Processing and Die & Mould TechnologyKey Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Shaohong Jin
- State Key Laboratory of Materials Processing and Die & Mould TechnologyKey Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Wang Li
- State Key Laboratory of Materials Processing and Die & Mould TechnologyKey Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Jiang Gong
- State Key Laboratory of Materials Processing and Die & Mould TechnologyKey Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Renhua Deng
- State Key Laboratory of Materials Processing and Die & Mould TechnologyKey Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Jintao Zhu
- State Key Laboratory of Materials Processing and Die & Mould TechnologyKey Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| |
Collapse
|
6
|
Mazzucato M, Daniel G, Perazzolo V, Brandiele R, Rizzi GA, Isse AA, Gennaro A, Durante C. Mesoporosity and nitrogen doping: The leading effect in oxygen reduction reaction activity and selectivity at nitrogen‐doped carbons prepared by using polyethylene oxide‐block‐polystyrene as a sacrificial template. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Marco Mazzucato
- Department of Chemical Sciences University of Padova Padova Italy
| | - Giorgia Daniel
- Department of Chemical Sciences University of Padova Padova Italy
| | | | | | | | | | - Armando Gennaro
- Department of Chemical Sciences University of Padova Padova Italy
| | | |
Collapse
|
7
|
Attia MS, Hassaballah MY, Abdelqawy MA, Emad-Eldin M, Farag AK, Negida A, Ghaith H, Emam SE. An updated review of mesoporous carbon as a novel drug delivery system. Drug Dev Ind Pharm 2021; 47:1029-1037. [PMID: 34590548 DOI: 10.1080/03639045.2021.1988097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The nanotechnology approach has been recently adopted to provide more reliable, effective, controlled, and safe drug delivery systems. Nanostructured materials have gained great interest, including siliceous and carbonaceous nanoparticles. The effectiveness of mesoporous carbon nanoparticles (MCNs) in tumor imaging, targeting, and treatment is urging for more future studies. MCNs possess superior properties such as their biocompatibility, large surface area, large pore volume, tunability, and more responsive behavior to internal and external release triggers. These outstanding features make MCNs more applicable for stimuli-responsive drug delivery than the conventional forms of mesoporous silica nanoparticles (MSNs) and other carbon nanoparticles. In this review, we outlined the latest updates regarding the safety, benefits, and potential applications of MCNs.
Collapse
Affiliation(s)
- Mohamed S Attia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | | | | | - Mahmoud Emad-Eldin
- Department of Pharmacy Practice, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Aya K Farag
- Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Ahmed Negida
- Zagazig University Hospitals, Zagazig University, Zagazig, Egypt.,Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Hazem Ghaith
- Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Sherif E Emam
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
8
|
Raja G, Selvaraj V, Suk M, Suk KT, Kim TJ. Metabolic phenotyping analysis of graphene oxide nanosheets exposures in breast cancer cells: Metabolomics profiling techniques. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Perazzolo V, Daniel G, Brandiele R, Picelli L, Rizzi GA, Isse AA, Durante C. PEO‐b‐PS Block Copolymer Templated Mesoporous Carbons: A Comparative Study of Nitrogen and Sulfur Doping in the Oxygen Reduction Reaction to Hydrogen Peroxide. Chemistry 2020; 27:1002-1014. [DOI: 10.1002/chem.202003355] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/15/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Valentina Perazzolo
- Department of Chemical Sciences University of Padua Via Marzolo 1 35131 Padova Italy
| | - Giorgia Daniel
- Department of Chemical Sciences University of Padua Via Marzolo 1 35131 Padova Italy
| | - Riccardo Brandiele
- Department of Chemical Sciences University of Padua Via Marzolo 1 35131 Padova Italy
| | - Luca Picelli
- Department of Chemical Sciences University of Padua Via Marzolo 1 35131 Padova Italy
| | - Gian Andrea Rizzi
- Department of Chemical Sciences University of Padua Via Marzolo 1 35131 Padova Italy
| | - Abdirisak Ahmed Isse
- Department of Chemical Sciences University of Padua Via Marzolo 1 35131 Padova Italy
| | - Christian Durante
- Department of Chemical Sciences University of Padua Via Marzolo 1 35131 Padova Italy
| |
Collapse
|
10
|
Pálvölgyi PS, Nelo M, Pitkänen O, Peräntie J, Liimatainen H, Myllymäki S, Jantunen H, Kordas K. Ultra-low permittivity porous silica-cellulose nanocomposite substrates for 6G telecommunication. NANOTECHNOLOGY 2020; 31:435203. [PMID: 32650329 DOI: 10.1088/1361-6528/aba4cc] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The continuously increasing demand for faster data traffic of our telecommunication devices requires new and better materials and devices that operate at higher frequencies than today. In this work, a porous composite of silica nanoshells and cellulose nanofibers is demonstrated as a suitable candidate of dielectric substrates to be used in future 6G frequency bands. The hollow nanospheres of amorphous SiO2 with outstanding electromagnetic properties were obtained by a template-assisted Stöber process, in which a thin shell of silica is grown on polystyrene nanospheres first, and then the polymer core is burned off in a subsequent step. To be able to produce substrates with sufficient mechanical integrity, the nanoshells of SiO2 were reinforced with cellulose nanofibers resulting in a porous composite of very low mass density (0.19 ± 0.02 g cm-3), which is easy to press and mold to form films or slabs. The low relative dielectric permittivity (ε r = 1.19 ± 0.01 at 300 GHz and ε r = 1.17 ± 0.01 at 2.0 THz) and corresponding loss tangent (tan δ= 0.011 ± 0.001 at 300 GHz and tan δ = 0.011 ± 0.001 at 2.0 THz) of the composite films are exploited in substrates for radio frequency filter structures designed for 300 GHz operation.
Collapse
Affiliation(s)
- Petra S Pálvölgyi
- Microelectronics research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, P.O. Box 4500, FI-90014, Finland
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Construction Hierarchically Mesoporous/Microporous Materials Based on Block Copolymer and Covalent Organic Framework. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.06.013] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Zou Y, Zhou X, Ma J, Yang X, Deng Y. Recent advances in amphiphilic block copolymer templated mesoporous metal-based materials: assembly engineering and applications. Chem Soc Rev 2020; 49:1173-1208. [PMID: 31967137 DOI: 10.1039/c9cs00334g] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mesoporous metal-based materials (MMBMs) have received unprecedented attention in catalysis, sensing, and energy storage and conversion owing to their unique electronic structures, uniform mesopore size and high specific surface area. In the last decade, great progress has been made in the design and application of MMBMs; in particular, many novel assembly engineering methods and strategies based on amphiphilic block copolymers as structure-directing agents have also been developed for the "bottom-up" construction of a variety of MMBMs. Development of MMBMs is therefore of significant importance from both academic and practical points of view. In this review, we provide a systematic elaboration of the molecular assembly methods and strategies for MMBMs, such as tuning the driving force between amphiphilic block copolymers and various precursors (i.e., metal salts, nanoparticles/clusters and polyoxometalates) for pore characteristics and physicochemical properties. The structure-performance relationship of MMBMs (e.g., pore size, surface area, crystallinity and crystal structure) based on various spectroscopy analysis techniques and density functional theory (DFT) calculation is discussed and the influence of the surface/interfacial properties of MMBMs (e.g., active surfaces, heterojunctions, binding sites and acid-base properties) in various applications is also included. The prospect of accurately designing functional mesoporous materials and future research directions in the field of MMBMs is pointed out in this review, and it will open a new avenue for the inorganic-organic assembly in various fields.
Collapse
Affiliation(s)
- Yidong Zou
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China.
| | - Xinran Zhou
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China.
| | - Junhao Ma
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China.
| | - Xuanyu Yang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China.
| | - Yonghui Deng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China. and State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
13
|
Tkachenko V, Matei Ghimbeu C, Vaulot C, Josien L, Vidal L, Poly J, Chemtob A. Diblock Copolymer Core-Shell Nanoparticles as Template for Mesoporous Carbons: Independent Tuning of Pore Size and Pore Wall Thickness. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16324-16334. [PMID: 31722182 DOI: 10.1021/acs.langmuir.9b02994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Latex templating using core-shell particles represents a unique opportunity to design mesoporous carbons with a high level of control on textural properties. This new class of organic colloid templates is synthesized by polymerization-induced self-assembly (PISA) in which a solvophilic poly(hydroxyethyl acrylate) (PHEA) homopolymer is chain extended with a solvophobic polystyrene (PS) via a photomediated reversible-addition-fragmentation-transfer (RAFT) polymerization. The resultant PHEA-b-PS diblock copolymer nanoparticles exhibit a PS core stabilized by a PHEA shell, with two blocks characterized by a low molecular weight dispersity (1.1-1.3) and an adjustable degree of polymerization (DP). The core-shell structured nanoparticles are used as soft template for the formation of mesostructured carbons from phloroglucinol and glyoxylic acid in methanol solution. A micro- and mesostructured cellular foam is obtained having uniform, interconnected, and narrowly distributed mesopores ranging between 15 and 30 nm in diameter, a specific surface area up to 719 m2 g-1, and a total pore volume of (0.4-1.3) cm3 g-1. The mesopore size can be controlled by adjusting the diameter of the PS core (16-29 nm), while the wall thickness can be tailored independently by varying the size of the solvated PHEA shell (5-25 nm). An increase of PHEA block's DP from 25 to 85 gradually extends the stabilizing shell dimension, thus increasing the wall thickness up to 10 nm, and causing the shift from interconnected to isolated mesopores. By comparison, much thinner walls (2-3 nm) are obtained with conventional latex templates such as polystyrene nanoparticles or colloidal silica. Decreasing PHEA DP to 17 induces the formation of copolymer vesicles that can be used as template to create mesoporous carbons with nonspherical mesopores.
Collapse
Affiliation(s)
- Vitalii Tkachenko
- Université de Haute-Alsace , CNRS, IS2M UMR7361, Mulhouse F-68100 , France
- Université de Strasbourg , Strasbourg 67081 , France
| | - Camélia Matei Ghimbeu
- Université de Haute-Alsace , CNRS, IS2M UMR7361, Mulhouse F-68100 , France
- Université de Strasbourg , Strasbourg 67081 , France
| | - Cyril Vaulot
- Université de Haute-Alsace , CNRS, IS2M UMR7361, Mulhouse F-68100 , France
- Université de Strasbourg , Strasbourg 67081 , France
| | - Ludovic Josien
- Université de Haute-Alsace , CNRS, IS2M UMR7361, Mulhouse F-68100 , France
- Université de Strasbourg , Strasbourg 67081 , France
| | - Loïc Vidal
- Université de Haute-Alsace , CNRS, IS2M UMR7361, Mulhouse F-68100 , France
- Université de Strasbourg , Strasbourg 67081 , France
| | - Julien Poly
- Université de Haute-Alsace , CNRS, IS2M UMR7361, Mulhouse F-68100 , France
- Université de Strasbourg , Strasbourg 67081 , France
| | - Abraham Chemtob
- Université de Haute-Alsace , CNRS, IS2M UMR7361, Mulhouse F-68100 , France
- Université de Strasbourg , Strasbourg 67081 , France
| |
Collapse
|
14
|
Qiu Y, Hou M, Gao J, Zhai H, Liu H, Jin M, Liu X, Lai L. One-Step Synthesis of Monodispersed Mesoporous Carbon Nanospheres for High-Performance Flexible Quasi-Solid-State Micro-Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903836. [PMID: 31539210 DOI: 10.1002/smll.201903836] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Cost-effective synthesis of carbon nanospheres with a desirable mesoporous network for diversified energy storage applications remains a challenge. Herein, a direct templating strategy is developed to fabricate monodispersed N-doped mesoporous carbon nanospheres (NMCSs) with an average particle size of 100 nm, a pore diameter of 4 nm, and a specific area of 1093 m2 g-1 . Hexadecyl trimethyl ammonium bromide and tetraethyl orthosilicate not only play key roles in the evolution of mesopores but also guide the assembly of phenolic resins to generate carbon nanospheres. Benefiting from the high surface area and optimum mesopore structure, NMCSs deliver a large specific capacitance up to 433 F g-1 in 1 m H2 SO4 . The NMCS electrodes-based symmetric sandwich supercapacitor has an output voltage of 1.4 V in polyvinyl alcohol/H2 SO4 gel electrolyte and delivers an energy density of 10.9 Wh kg-1 at a power density of 14014.5 W kg-1 . Notably, NMCSs can be directly applied through the mask-assisted casting technique by a doctor blade to fabricate micro-supercapacitors. The micro-supercapacitors exhibit excellent mechanical flexibility, long-term stability, and reliable power output.
Collapse
Affiliation(s)
- Yongting Qiu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 5 XinMofan Road, Nanjing, 210009, China
| | - Mingzhen Hou
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 5 XinMofan Road, Nanjing, 210009, China
| | - Jingchang Gao
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 5 XinMofan Road, Nanjing, 210009, China
| | - Haili Zhai
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 5 XinMofan Road, Nanjing, 210009, China
| | - Haimin Liu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 5 XinMofan Road, Nanjing, 210009, China
| | - Mengmeng Jin
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 5 XinMofan Road, Nanjing, 210009, China
| | - Xiang Liu
- College of Energy Science and Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, China
| | - Linfei Lai
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 5 XinMofan Road, Nanjing, 210009, China
| |
Collapse
|
15
|
Zhang Y, Yang L, Yan L, Wang G, Liu A. Recent advances in the synthesis of spherical and nanoMOF-derived multifunctional porous carbon for nanomedicine applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.04.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Kopeć M, Lamson M, Yuan R, Tang C, Kruk M, Zhong M, Matyjaszewski K, Kowalewski T. Polyacrylonitrile-derived nanostructured carbon materials. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Zhao M, Cui X, Xu Y, Chen L, He Z, Yang S, Wang Y. An ordered mesoporous carbon nanosphere-encapsulated graphene network with optimized nitrogen doping for enhanced supercapacitor performance. NANOSCALE 2018; 10:15379-15386. [PMID: 30083690 DOI: 10.1039/c8nr04194f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Developing a simple strategy to simultaneously overcome the aggregation of graphene nanosheets and endow the ordered mesoporous carbon with the high conductivity required for a practical supercapacitor remains a great challenge. Herein, a strategy involving ethanol dispersive mixing, followed by co-carbonization was developed to prepare a N-doped ordered mesoporous carbon nanosphere-encapsulated graphene network (N-OMCN@GN), where the ordered mesoporous carbon nanosphere (OMCN) was inserted into the interlayers of graphene nanosheets and an optimized nitrogen doping level of up to 11.7 at% was simultaneously achieved. The as-prepared N-OMCN@GN possesses hierarchically porous architectures with largely accessible surfaces, short ion access/diffusion length with fast ion transfer, and a sphere (electron reservoir)-encapsulated plane (electron highway) configuration for convenient electron transfer. As a result, the N-OMCN@GN supercapacitor exhibited a high specific capacitance of 242.3 F g-1 at 1 A g-1 and excellent cycling stability with a capacitance retention of 95% at 5 A g-1 after 10 000 cycles. This study would pave the way to excavate the synergistic effects of graphene and OMCN for energy storage applications.
Collapse
Affiliation(s)
- Mingyu Zhao
- Center for Advanced Low-dimension Materials & College of Material Science and Engineering, Donghua University, Shanghai 201620, China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Zhou J, Chen Z, Hu Z, Li K, Ai Y, Li S, Qi L, Tang Z, Liu L, Sun HB. Rhodium Nanoparticles Loaded on Carbon-Wrapped Fe3
O4
Sphere: an Efficient, Stable and Magnetically Recoverable Catalyst for the Catalytic Transfer Hydrogenation of Nitroarenes in Water. ChemistrySelect 2017. [DOI: 10.1002/slct.201701598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Junjie Zhou
- Department of Chemistry; Northeastern University; Shenyang 110819, P.R. China
| | - Zhangpei Chen
- Department of Chemistry; Northeastern University; Shenyang 110819, P.R. China
| | - Zenan Hu
- Department of Chemistry; Northeastern University; Shenyang 110819, P.R. China
| | - Kang Li
- Department of Chemistry; Northeastern University; Shenyang 110819, P.R. China
| | - Yongjian Ai
- Department of Chemistry; Northeastern University; Shenyang 110819, P.R. China
| | - Shuang Li
- Department of Chemistry; Northeastern University; Shenyang 110819, P.R. China
| | - Li Qi
- Department of Chemistry; Northeastern University; Shenyang 110819, P.R. China
| | - Zhike Tang
- Department of Chemistry; Northeastern University; Shenyang 110819, P.R. China
| | - Lei Liu
- Department of Chemistry; Northeastern University; Shenyang 110819, P.R. China
| | - Hong-bin Sun
- Department of Chemistry; Northeastern University; Shenyang 110819, P.R. China
| |
Collapse
|
19
|
Yu Q, Guan D, Zhuang Z, Li J, Shi C, Luo W, Zhou L, Zhao D, Mai L. Mass Production of Monodisperse Carbon Microspheres with Size-Dependent Supercapacitor Performance via Aqueous Self-Catalyzed Polymerization. Chempluschem 2017; 82:872-878. [DOI: 10.1002/cplu.201700182] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/23/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Qiang Yu
- State Key Laboratory of Advanced Technology for; Materials Synthesis and Processing; International School of Materials Science and Engineering; Wuhan University of Technology; Wuhan 430070 P.R. China
| | - Doudou Guan
- State Key Laboratory of Advanced Technology for; Materials Synthesis and Processing; International School of Materials Science and Engineering; Wuhan University of Technology; Wuhan 430070 P.R. China
| | - Zechao Zhuang
- State Key Laboratory of Advanced Technology for; Materials Synthesis and Processing; International School of Materials Science and Engineering; Wuhan University of Technology; Wuhan 430070 P.R. China
| | - Jiantao Li
- State Key Laboratory of Advanced Technology for; Materials Synthesis and Processing; International School of Materials Science and Engineering; Wuhan University of Technology; Wuhan 430070 P.R. China
| | - Changwei Shi
- State Key Laboratory of Advanced Technology for; Materials Synthesis and Processing; International School of Materials Science and Engineering; Wuhan University of Technology; Wuhan 430070 P.R. China
| | - Wen Luo
- State Key Laboratory of Advanced Technology for; Materials Synthesis and Processing; International School of Materials Science and Engineering; Wuhan University of Technology; Wuhan 430070 P.R. China
| | - Liang Zhou
- State Key Laboratory of Advanced Technology for; Materials Synthesis and Processing; International School of Materials Science and Engineering; Wuhan University of Technology; Wuhan 430070 P.R. China
| | - Dongyuan Zhao
- State Key Laboratory of Advanced Technology for; Materials Synthesis and Processing; International School of Materials Science and Engineering; Wuhan University of Technology; Wuhan 430070 P.R. China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for; Materials Synthesis and Processing; International School of Materials Science and Engineering; Wuhan University of Technology; Wuhan 430070 P.R. China
- Department of Chemistry; University of California; Berkeley CA 94720 USA
| |
Collapse
|
20
|
Raja G, Kim S, Yoon D, Yoon C, Kim S. 1H-NMR-based Metabolomics Studies of the Toxicity of Mesoporous Carbon Nanoparticles in Zebrafish (Danio rerio). B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Ganesan Raja
- Department of Chemistry, Center for Proteome Biophysics and Chemistry Institute for Functional Materials; Pusan National University; Busan 46241 Republic of Korea
| | - Siwon Kim
- Department of Chemistry, Center for Proteome Biophysics and Chemistry Institute for Functional Materials; Pusan National University; Busan 46241 Republic of Korea
| | - Dahye Yoon
- Department of Chemistry, Center for Proteome Biophysics and Chemistry Institute for Functional Materials; Pusan National University; Busan 46241 Republic of Korea
| | - Changshin Yoon
- Department of Chemistry, Center for Proteome Biophysics and Chemistry Institute for Functional Materials; Pusan National University; Busan 46241 Republic of Korea
| | - Suhkmann Kim
- Department of Chemistry, Center for Proteome Biophysics and Chemistry Institute for Functional Materials; Pusan National University; Busan 46241 Republic of Korea
| |
Collapse
|
21
|
Wei J, Sun Z, Luo W, Li Y, Elzatahry AA, Al-Enizi AM, Deng Y, Zhao D. New Insight into the Synthesis of Large-Pore Ordered Mesoporous Materials. J Am Chem Soc 2017; 139:1706-1713. [PMID: 28085258 DOI: 10.1021/jacs.6b11411] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ordered mesoporous materials (OMMs) have received increasing interest due to their uniform pore size, high surface area, various compositions and wide applications in energy conversion and storage, biomedicine and environmental remediation, etc. The soft templating synthesis using surfactants or amphiphilic block copolymers is the most efficient method to produce OMMs with tailorable pore structure and surface property. However, due to the limited choice of commercially available soft templates, the common OMMs usually show small pore size and amorphous (or semicrystalline) frameworks. Tailor-made amphiphilic block copolymers with controllable molecular weights and compositions have recently emerged as alternative soft templates for synthesis of new OMMs with many unique features including adjustable mesostructures and framework compositions, ultralarge pores, thick pore walls, high thermal stability and crystalline frameworks. In this Perspective, recent progresses and some new insights into the coassembly process about the synthesis of OMMs based on these tailor-made copolymers as templates are summarized, and typical newly developed synthesis methods and strategies are discussed in depth, including solvent evaporation induced aggregation, ligand-assisted coassembly, solvent evaporation induced micelle fusion-aggregation assembly, homopolymer assisted pore expanding and carbon-supported crystallization strategy. Then, the applications of the obtained large-pore OMMs in catalysis, sensor, energy conversion and storage, and biomedicine by loading large-size guest molecules (e.g., protein and RNA), precious metal nanoparticles and quantum dots, are discussed. At last, the outlook on the prospects and challenges of future research about the synthesis of large-pore OMMs by using tailor-made amphiphilic block copolymers are included.
Collapse
Affiliation(s)
- Jing Wei
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University , Shanghai 200433, PR China.,The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University , Xi'an, Shaanxi 710049, PR China
| | - Zhenkun Sun
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University , Shanghai 200433, PR China
| | - Wei Luo
- College of Materials Science and Engineering, Donghua University , Shanghai 201620, PR China
| | - Yuhui Li
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University , Shanghai 200433, PR China
| | - Ahmed A Elzatahry
- Materials Science and Technology Program, College of Arts and Sciences, Qatar University , PO Box 2713, Doha, Qatar
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University , Riyadh 11451, Saudi Arabia
| | - Yonghui Deng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University , Shanghai 200433, PR China.,State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences , Shanghai 200050, PR China
| | - Dongyuan Zhao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University , Shanghai 200433, PR China
| |
Collapse
|
22
|
Mesoporous carbon foam, synthesized via modified Pechini method, in a new dispersant of Salep as a novel substrate for electroanalytical determination of epinephrine in the presence of uric acid. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:544-551. [DOI: 10.1016/j.msec.2016.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/26/2016] [Accepted: 09/06/2016] [Indexed: 11/22/2022]
|
23
|
N-doped hierarchical porous carbon derived from hypercrosslinked diblock copolymer for capacitive deionization. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2016.04.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|