1
|
Lu D, Bobrin VA. Scalable Macroscopic Engineering from Polymer-Based Nanoscale Building Blocks: Existing Challenges and Emerging Opportunities. Biomacromolecules 2024; 25:7058-7077. [PMID: 39470717 DOI: 10.1021/acs.biomac.4c01212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Natural materials exhibit exceptional properties due to their hierarchical structures spanning from the nano- to the macroscale. Replicating these intricate spatial arrangements in synthetic materials presents a significant challenge as it requires precise control of nanometric features within large-scale structures. Addressing this challenge depends on developing methods that integrate assembly techniques across multiple length scales to construct multiscale-structured synthetic materials in practical, bulk forms. Polymers and polymer-hybrid nanoparticles, with their tunable composition and structural versatility, are promising candidates for creating hierarchically organized materials. This review highlights advances in scalable techniques for nanoscale organization of polymer-based building blocks within macroscopic structures, including block copolymer self-assembly with additive manufacturing, polymer brush nanoparticles capable of self-assembling into larger, ordered structures, and direct-write colloidal assembly. These techniques offer promising pathways toward the scalable fabrication of materials with emergent properties suited for advanced applications such as bioelectronic interfaces, artificial muscles, and other biomaterials.
Collapse
Affiliation(s)
- Derong Lu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Valentin A Bobrin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
2
|
Mitkovskiy DA, Lazutin AA, Talis AL, Vasilevskaya VV. Self-assembly of amphiphilic homopolymers grafted onto spherical nanoparticles: complete embedded minimal surfaces and a machine learning algorithm for their recognition. SOFT MATTER 2024; 20:8385-8394. [PMID: 39387800 DOI: 10.1039/d4sm00616j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
By means of computer modelling, the self-assembly of amphiphilic A-graft-B macromolecules, grafted onto a spherical nanoparticle, is studied. In a solvent, that is poor for side pendants, the macromolecules self-assemble into thin membrane-like ABBA bilayers deviated from spherical nanoparticles. The bilayers form morphological structures that depend on the grafting density and macromolecular polymerization degree and can be referred to as the classical family of complete embedded minimal surfaces. The plane disk, catenoid, helicoid, Costa and Enneper surfaces as well as "double" helicoid and "complex minimal surface" were identified, and the fields of their stability were defined. The surfaces can be grouped according to the sequences of conformal transformations that transform them into each other. These surfaces arise in different experiments situationally. Results are summarized in a pie diagram constructed using a machine learning algorithm based on matching grafting points with a specially created planar graphic image.
Collapse
Affiliation(s)
- D A Mitkovskiy
- A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences, Vavilova ul. 28, bld. 1, Moscow, 119334, Russia.
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - A A Lazutin
- A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences, Vavilova ul. 28, bld. 1, Moscow, 119334, Russia.
| | - A L Talis
- A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences, Vavilova ul. 28, bld. 1, Moscow, 119334, Russia.
| | - V V Vasilevskaya
- A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences, Vavilova ul. 28, bld. 1, Moscow, 119334, Russia.
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
3
|
Serkhacheva NS, Prokopov NI, Lysenko EA, Kozhunova EY, Chernikova EV. Modern Trends in Polymerization-Induced Self-Assembly. Polymers (Basel) 2024; 16:1408. [PMID: 38794601 PMCID: PMC11125046 DOI: 10.3390/polym16101408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Polymerization-induced self-assembly (PISA) is a powerful and versatile technique for producing colloidal dispersions of block copolymer particles with desired morphologies. Currently, PISA can be carried out in various media, over a wide range of temperatures, and using different mechanisms. This method enables the production of biodegradable objects and particles with various functionalities and stimuli sensitivity. Consequently, PISA offers a broad spectrum of potential commercial applications. The aim of this review is to provide an overview of the current state of rational synthesis of block copolymer particles with diverse morphologies using various PISA techniques and mechanisms. The discussion begins with an examination of the main thermodynamic, kinetic, and structural aspects of block copolymer micellization, followed by an exploration of the key principles of PISA in the formation of gradient and block copolymers. The review also delves into the main mechanisms of PISA implementation and the principles governing particle morphology. Finally, the potential future developments in PISA are considered.
Collapse
Affiliation(s)
- Natalia S. Serkhacheva
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, pr. Vernadskogo, 86, 119571 Moscow, Russia;
| | - Nickolay I. Prokopov
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, pr. Vernadskogo, 86, 119571 Moscow, Russia;
| | - Evgenii A. Lysenko
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, bld. 3, 119991 Moscow, Russia; (E.A.L.); (E.Y.K.)
| | - Elena Yu. Kozhunova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, bld. 3, 119991 Moscow, Russia; (E.A.L.); (E.Y.K.)
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1, bld. 2, 119991 Moscow, Russia
| | - Elena V. Chernikova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, bld. 3, 119991 Moscow, Russia; (E.A.L.); (E.Y.K.)
| |
Collapse
|
4
|
Gao TN, Huang S, Nooijen R, Zhu Y, Kociok-Köhn G, Stuerzer T, Li G, Bitter JH, Salentijn GIJ, Chen B, Miloserdov FM, Zuilhof H. Rim-Based Binding of Perfluorinated Acids to Pillararenes Purifies Water. Angew Chem Int Ed Engl 2024; 63:e202403474. [PMID: 38506404 DOI: 10.1002/anie.202403474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/21/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) pose a rapidly increasing global problem as their widespread use and high stability lead worldwide to water contamination, with significant detrimental health effects.[1] Supramolecular chemistry has been invoked to develop materials geared towards the specific capture of PFAS from water,[2] to reduce the concentration below advisory safety limits (e.g., 70 ng/L for the sum of perfluorooctane sulfonic acid, PFOS and perfluorooctanoic acid, PFOA). Scale-up and use in natural waters with high PFAS concentrations has hitherto posed a problem. Here we report a new type of host-guest interaction between deca-ammonium-functionalized pillar[5]arenes (DAF-P5s) and perfluoroalkyl acids. DAF-P5 complexes show an unprecedented 1 : 10 stoichiometry, as confirmed by isothermal calorimetry and X-ray crystallographic studies, and high binding constants (up to 106 M-1) to various polyfluoroalkyl acids. In addition, non-fluorinated acids do not hamper this process significantly. Immobilization of DAF-P5s allows a simple single-time filtration of PFAS-contaminated water to reduce the PFOS/PFOA concentration 106 times to 15-50 ng/L level. The effective and fast (<5 min) orthogonal binding to organic molecules without involvement of fluorinated supramolecular hosts, high breakthrough capacity (90 mg/g), and robust performance (>10 regeneration cycles without decrease in performance) set a new benchmark in PFAS-absorbing materials.
Collapse
Affiliation(s)
- Tu-Nan Gao
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
- Biobased Chemistry and Technology, Wageningen University, Bornse Weilanden 9, 6708WG, Wageningen, The Netherlands
| | - Si Huang
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
- Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, 410081, Changsha, China
| | - Rick Nooijen
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Yumei Zhu
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Gabriele Kociok-Köhn
- Materials and Chemical Characterisation Facility (MC2), University of Bath Claverton Down, BA2 7AY, Bath, United Kingdom
| | - Tobias Stuerzer
- Bruker AXS GmbH, Östliche Rheinbrückenstraße 49, 76187, Karlsruhe, Germany
| | - Guanna Li
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
- Biobased Chemistry and Technology, Wageningen University, Bornse Weilanden 9, 6708WG, Wageningen, The Netherlands
| | - Johannes H Bitter
- Biobased Chemistry and Technology, Wageningen University, Bornse Weilanden 9, 6708WG, Wageningen, The Netherlands
| | - Gert I J Salentijn
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, 6700AE, Wageningen, The Netherlands
| | - Bo Chen
- Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, 410081, Changsha, China
| | - Fedor M Miloserdov
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- China-Australia Institute for Advanced Materials and Manufacturing, Jiaxing University, 314001, Jiaxing, China
| |
Collapse
|
5
|
Dang Y, Zhang Q, Ou Z, Hu S. Improving the capturing ability of swirl-based microfluidic chip by introducing baffle wall. Biotechnol Appl Biochem 2024; 71:336-355. [PMID: 38082547 DOI: 10.1002/bab.2544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/25/2023] [Indexed: 04/11/2024]
Abstract
Microfluidics technology is promising in developing microparticle manipulation technology due to its nondestructive control and notable adaptability. The manipulation of microparticle based on swirling stagnation point is one of the feasible microfluidics biotechnologies. Aiming to improve the regulation and control of microparticle, baffle wall is introduced into the 2-microchannel flow field. The theory of wall attachment jet is employed to elucidate the effect of baffle wall. Subsequently, finite volume method simulation is conducted by modeling the swirling flow region (SFR), and the swirling strength is calculated to characterize the SFR's particle-capturing ability. Experimental validation of the modeling and simulation methods is performed using a printed microfluidic chip, which has demonstrated exceptional reliability. Simulation results show that the baffle wall makes considerable influence on the SFR. Strikingly, a global range adjustment of stagnation point is realized when the baffle wall is configured with a convex shape, which has remarkably outperformed our previous work, where the stagnation point could only move within half range of the field. This work significantly contributes to advanced flow field structure and provides insight into better regulation of stagnation point as well as microparticles. These findings have potential applications in the analysis of the effect of bio/chemical substances on single cell.
Collapse
Affiliation(s)
- Yanping Dang
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, P. R. China
| | - Qin Zhang
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, P. R. China
| | - Zhiming Ou
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, P. R. China
| | - Shuai Hu
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, P. R. China
| |
Collapse
|
6
|
Li X, Jin Y, Zhu N, Yin J, Jin LY. Recent Developments of Fluorescence Sensors Constructed from Pillar[ n]arene-Based Supramolecular Architectures Containing Metal Coordination Sites. SENSORS (BASEL, SWITZERLAND) 2024; 24:1530. [PMID: 38475066 DOI: 10.3390/s24051530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
The field of fluorescence sensing, leveraging various supramolecular self-assembled architectures constructed from macrocyclic pillar[n]arenes, has seen significant advancement in recent decades. This review comprehensively discusses, for the first time, the recent innovations in the synthesis and self-assembly of pillar[n]arene-based supramolecular architectures (PSAs) containing metal coordination sites, along with their practical applications and prospects in fluorescence sensing. Integrating hydrophobic and electron-rich cavities of pillar[n]arenes into these supramolecular structures endows the entire system with self-assembly behavior and stimulus responsiveness. Employing the host-guest interaction strategy and complementary coordination forces, PSAs exhibiting both intelligent and controllable properties are successfully constructed. This provides a broad horizon for advancing fluorescence sensors capable of detecting environmental pollutants. This review aims to establish a solid foundation for the future development of fluorescence sensing applications utilizing PSAs. Additionally, current challenges and future perspectives in this field are discussed.
Collapse
Affiliation(s)
- Xu Li
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China
| | - Yan Jin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China
| | - Nansong Zhu
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China
| | - Jinghua Yin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China
| | - Long Yi Jin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China
| |
Collapse
|
7
|
Jambhulkar S, Ravichandran D, Zhu Y, Thippanna V, Ramanathan A, Patil D, Fonseca N, Thummalapalli SV, Sundaravadivelan B, Sun A, Xu W, Yang S, Kannan AM, Golan Y, Lancaster J, Chen L, Joyee EB, Song K. Nanoparticle Assembly: From Self-Organization to Controlled Micropatterning for Enhanced Functionalities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306394. [PMID: 37775949 DOI: 10.1002/smll.202306394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/02/2023] [Indexed: 10/01/2023]
Abstract
Nanoparticles form long-range micropatterns via self-assembly or directed self-assembly with superior mechanical, electrical, optical, magnetic, chemical, and other functional properties for broad applications, such as structural supports, thermal exchangers, optoelectronics, microelectronics, and robotics. The precisely defined particle assembly at the nanoscale with simultaneously scalable patterning at the microscale is indispensable for enabling functionality and improving the performance of devices. This article provides a comprehensive review of nanoparticle assembly formed primarily via the balance of forces at the nanoscale (e.g., van der Waals, colloidal, capillary, convection, and chemical forces) and nanoparticle-template interactions (e.g., physical confinement, chemical functionalization, additive layer-upon-layer). The review commences with a general overview of nanoparticle self-assembly, with the state-of-the-art literature review and motivation. It subsequently reviews the recent progress in nanoparticle assembly without the presence of surface templates. Manufacturing techniques for surface template fabrication and their influence on nanoparticle assembly efficiency and effectiveness are then explored. The primary focus is the spatial organization and orientational preference of nanoparticles on non-templated and pre-templated surfaces in a controlled manner. Moreover, the article discusses broad applications of micropatterned surfaces, encompassing various fields. Finally, the review concludes with a summary of manufacturing methods, their limitations, and future trends in nanoparticle assembly.
Collapse
Affiliation(s)
- Sayli Jambhulkar
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dharneedar Ravichandran
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Yuxiang Zhu
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Varunkumar Thippanna
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Arunachalam Ramanathan
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dhanush Patil
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Nathan Fonseca
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sri Vaishnavi Thummalapalli
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Barath Sundaravadivelan
- Department of Mechanical and Aerospace Engineering, School for Engineering of Matter, Transport & Energy, Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Tempe, AZ, 85281, USA
| | - Allen Sun
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Weiheng Xu
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sui Yang
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy (SEMTE), Arizona State University (ASU), Tempe, AZ, 85287, USA
| | - Arunachala Mada Kannan
- The Polytechnic School (TPS), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Yuval Golan
- Department of Materials Engineering and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Jessica Lancaster
- Department of Immunology, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Lei Chen
- Mechanical Engineering, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI, 48128, USA
| | - Erina B Joyee
- Mechanical Engineering and Engineering Science, University of North Carolina, Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
| | - Kenan Song
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia (UGA), Athens, GA, 30602, USA
- Adjunct Professor of School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| |
Collapse
|
8
|
Lu Y, Gao J, Ren Y, Ding Y, Jia L. Synergetic Self-Assembly of Liquid Crystalline Block Copolymer with Amphiphiles for Fabrication of Hierarchical Assemblies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304955. [PMID: 37649168 DOI: 10.1002/smll.202304955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/19/2023] [Indexed: 09/01/2023]
Abstract
Novel functions and advanced structure, where each single component could not be produced individually, can exhibit from the collective and synergistic behavior of component systems. This synergetic strategy has been successfully demonstrated for co-assembly of polymer-polymer to construct hierarchical nanomaterials. However, differences in the natures of polymer and small molecules impose challenges in the construction of sophisticated co-assemblies with geometrical and compositional control. Herein, a synergetic self-assembly strategy is proposed to prepare organic-organic hybrid colloidal mesostructures by blending a liquid crystalline block copolymer (LC-BCP) with small molecular amphiphiles. Through a classic solvent-exchange process, amphiphiles embedded with LC-BCP realize multi-component nucleation and hierarchical assembly driven by anisotropic interaction from the LC ordering alignment of the core-forming block. 1D nanofibers with a periodic striped structure are formed by further LC component fusion and refinement. In addition, LC ordering effect of LC-BCP can be regulated by selecting appropriate solvents and leads to the formation of vesicular co-micelles. By means of the thermal-responsive behavior of amphiphiles, hexagonal pore arrays are finally generated on the surface of those vesicles.
Collapse
Affiliation(s)
- Yue Lu
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| | - Juanjuan Gao
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| | - Yangge Ren
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| | - Yi Ding
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| | - Lin Jia
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| |
Collapse
|
9
|
Rana P, Jennifer G A, Rao T S, Mukhopadhyay S, Varathan E, Das P. Polarity-Induced Morphological Transformation with Tunable Optical Output of Terpyridine-Phenanthro[9,10- d]imidazole-Based Ligand and Its Zn(II) Complexes with I- V Characteristics. ACS OMEGA 2023; 8:48855-48872. [PMID: 38162736 PMCID: PMC10753698 DOI: 10.1021/acsomega.3c06283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
Self-assembled nanostructures obtained from various functional π-conjugated organic molecules have been able to draw substantial interest due to their inherent optical properties, which are imperative for developing optoelectronic devices, multiple-color-emitting devices with color-tunable displays, and optical sensors. These π-conjugated molecules have proven their potential employment in various organic electronic applications. Therefore, the stimuli-responsive fabrication of these π-conjugated systems into a well-ordered assembly is extremely crucial to tuning their inherent optical properties for improved performance in organic electronic applications. To this end, herein, we have designed and synthesized a functional π-conjugated molecule (TP) having phenanthro[9,10-d]imidazole with terpyridine substitution at the 2 position and its corresponding metal complexes (TPZn and (TP)2Zn). By varying the polarity of the self-assembly medium, TP, TPZn, and (TP)2Zn are fabricated into well-ordered superstructures with morphological individualities. However, this medium polarity-induced self-assembly can tune the inherent optical properties of TP, TPZn, and (TP)2Zn and generate multiple fluorescence colors. Particularly, this property makes them useful for organic electronic applications, which require adjustable luminescence output. More importantly, in 10% aqueous-THF medium, TPZn exhibited H-type aggregation-induced white light emission and behaved as a single-component white light emitter. The experimentally obtained results of the solvent polarity-induced variation in optical properties as well as self-assembly patterns were further confirmed by theoretical investigation using density functional theory calculations. Furthermore, we investigated the I-V characteristics, both vertical and horizontal, using ITO and glass surfaces coated with TP, TPZn, and (TP)2Zn, respectively, and displayed maximum current density for the TPZn-coated surface with the order of measured current density TPZn > TP > (TP)2Zn. This observed order of current density measurements was also supported by a direct band gap calculation associated with the frontier molecular orbitals using the Tauc plot. Hence, solvent polarity-induced self-assembly behavior with adjustable luminescence output and superior I-V characteristics of TPZn make it an exceptional candidate for organic electronic applications and electronic device fabrication.
Collapse
Affiliation(s)
- Priya Rana
- Department
of Chemistry, SRM Institute of Science and
Technology, SRM Nagar, Potheri, Kattankulathur, Tamil Nadu 603203, India
| | - Abigail Jennifer G
- Department
of Chemistry, SRM Institute of Science and
Technology, SRM Nagar, Potheri, Kattankulathur, Tamil Nadu 603203, India
| | - Shanmuka Rao T
- Department
of Physics, SRM University, Village − Neeru Konda, Guntur, Andhra Pradesh 522240, India
| | - Sabyasachi Mukhopadhyay
- Department
of Physics, SRM University, Village − Neeru Konda, Guntur, Andhra Pradesh 522240, India
| | - Elumalai Varathan
- Department
of Chemistry, SRM Institute of Science and
Technology, SRM Nagar, Potheri, Kattankulathur, Tamil Nadu 603203, India
| | - Priyadip Das
- Department
of Chemistry, SRM Institute of Science and
Technology, SRM Nagar, Potheri, Kattankulathur, Tamil Nadu 603203, India
| |
Collapse
|
10
|
Xu Q, Yu C, Jiang L, Wang Y, Liu F, Jiang W, Zhou Y. Coacervate-Assisted Polymerization-Induced Self-Assembly of Chiral Alternating Copolymers into Hierarchical Bishell Capsules with Sub-5 nm Ultrathin Lamellae. SMALL METHODS 2023; 7:e2300136. [PMID: 37116085 DOI: 10.1002/smtd.202300136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Hierarchical self-assembly of synthetic polymers in solution represents one of the sophisticated strategies to replicate the natural superstructures which lay the basis for their superb functions. However, it is still quite challenging to increase the degree of complexity of the as-prepared assemblies, especially in a large scale. Liquid-liquid phase separation (LLPS) widely exists in cells and is assumed to be responsible for the formation of many cellular organelles without membranes. Herein, through integrating LLPS with the polymerization-induced self-assembly (PISA), a coacervate-assisted PISA (CAPISA) methodology to realize the one-pot and scalable preparation of hierarchical bishell capsules (BCs) from nanosheets with ultrathin lamellae phase (sub-5 nm), microflakes, unishell capsules to final BCs in a bottom-up sequence is presented. Both the self-assembled structure and the dynamic formation process of BCs have been disclosed. Since CAPISA has combined the advantages of coacervates, click chemistry, interfacial reaction and PISA, it is believed that it will become a promising option to fabricate biomimetic polymer materials with higher structural complexity and more sophisticated functions.
Collapse
Affiliation(s)
- Qingsong Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Lingsheng Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Yuling Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Feng Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Wenfeng Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
11
|
Cui J, Zhang W, Han Y, Wang Y, Jiang W. Solution Self-Assembly of Amphiphilic Tadpole-like Giant Molecules Constructed by Monotethering Diblock Copolymer Chain onto a Nanoparticle. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13335-13344. [PMID: 37690120 DOI: 10.1021/acs.langmuir.3c02056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The self-assembly behavior of a tadpole-like giant molecule (TGM) constructed from a hydrophobic nanoparticle (NP) monotethered by a single amphiphilic AB diblock copolymer chain was investigated by combining self-consistent field theory and density functional theory in solution. The effects of the hydrophobicities of the B blocks and NPs (i.e., solvent properties) on the self-assembly behavior of the TGMs were investigated in the cases of weak and strong intramolecular interactions (i.e., incompatibilities) between the components of giant molecules, respectively. Besides conventional ordered aggregates (such as spheres, rings, and vesicles) with hydrophobic B-cores covered by NP shells, several aggregates with novel hierarchical structures, including vesicles with NP-inserted hydrophobic walls, bead-string-like micelles, and long cylindrical micelles with NP bumps, were obtained by tuning the solvent properties under different intramolecular interactions. Noteworthy that the simulation results show that the arrangement of the NP bumps on the long cylindrical micelles may have a certain degree of helicity, which means that these micelles may have some unique electromagnetic features such as circular dichroism. Phase diagrams as a function of the hydrophobicities of the B blocks and NPs were constructed to show the formation conditions of these novel structures. These findings can not only offer new insights into understanding of the self-assembly behavior of the TGM in solution but also provide useful guidance for simple and efficient regulation of the morphology, as well as the NP distribution and arrangement of the ordered aggregates in experiments.
Collapse
Affiliation(s)
- Jie Cui
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Wenyu Zhang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Yuanyuan Han
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Yingying Wang
- School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, P. R. China
| | - Wei Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
12
|
Dang Y, Hu S, Ou Z, Zhang Q. Microparticle Manipulation Performed on a Swirl-Based Microfluidic Chip Featured by Dual-Stagnation Points. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11245-11258. [PMID: 37535467 DOI: 10.1021/acs.langmuir.3c00794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Stagnation-based microfluidics technology is promising for microparticle control due to its noncontact and low cost. However, the current research is still hindered by insufficient pose regulating ability and soft control. Based on our previous work on controlling single particles by generating a swirling flow region (SFR) with a stagnation point in the designed flow field, a new 3-microchannel structure is herein proposed for simultaneous control of two microparticles. It is addressed as the dual-stagnation model because there are two SFRs generated for particle capturing and manipulation. Simulation study is conducted to optimize the fluid field structure and explore the regulation of the two SFRs by adjusting velocities of microchannel inlets. Experiments are carried out on a 3D-printed microfluidic chip to validate the feasibility of the dual-stagnation model and the predicting capacity of the simulations. It is demonstrated that two SFRs with stagnation points are successfully formed in specific locations, indicating that two microparticles can be concurrently captured and controlled. Significantly, the results of simulation and experimental studies agree well with each other referring to flow streamlines and stagnation point regulation. During experiments, it is confirmed that microparticles with different shapes and varied sizes can be captured. Besides, the deviation between the positions of microparticles and the generated stagnation points is characterized to reveal the trapping stability of this microfluidic chip. This work contributes to an advanced flow field structure for swirl-based microfluidic chips and provides insights into soft contact and flexible manipulation of multiple microparticles for revealing the interaction between two bio-/chemical microparticles.
Collapse
Affiliation(s)
- Yanping Dang
- School of Mechanical and Automotive Engineering, South China University of Technology, Wushan Road, Tianhe District, 510641 Guangzhou, P. R. China
| | - Shuai Hu
- School of Mechanical and Automotive Engineering, South China University of Technology, Wushan Road, Tianhe District, 510641 Guangzhou, P. R. China
| | - Zhiming Ou
- School of Mechanical and Automotive Engineering, South China University of Technology, Wushan Road, Tianhe District, 510641 Guangzhou, P. R. China
| | - Qin Zhang
- School of Mechanical and Automotive Engineering, South China University of Technology, Wushan Road, Tianhe District, 510641 Guangzhou, P. R. China
| |
Collapse
|
13
|
Cui Y, Wang J, Liang J, Qiu H. Molecular Engineering of Colloidal Atoms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207609. [PMID: 36799197 DOI: 10.1002/smll.202207609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/02/2023] [Indexed: 05/18/2023]
Abstract
Creation of architectures with exquisite hierarchies actuates the germination of revolutionized functions and applications across a wide range of fields. Hierarchical self-assembly of colloidal particles holds the promise for materialized realization of structural programing and customizing. This review outlines the general approaches to organize atom-like micro- and nanoparticles into prescribed colloidal analogs of molecules by exploiting diverse interparticle driving motifs involving confining templates, interactive surface ligands, and flexible shape/surface anisotropy. Furthermore, the self-regulated/adaptive co-assembly of simple unvarnished building blocks is discussed to inspire new designs of colloidal assembly strategies.
Collapse
Affiliation(s)
- Yan Cui
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jingchun Wang
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Juncong Liang
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
14
|
Archer RJ, Hamada S, Shimizu R, Nomura SIM. Scalable Synthesis of Planar Macroscopic Lipid-Based Multi-Compartment Structures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4863-4871. [PMID: 36973945 PMCID: PMC10100540 DOI: 10.1021/acs.langmuir.2c02859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/28/2023] [Indexed: 06/18/2023]
Abstract
As life evolved, the path from simple single cell organisms to multicellular enabled increasingly complex functionalities. The spatial separation of reactions at the micron scale achieved by cellular structures allowed diverse and scalable implementation in biomolecular systems. Mimicking such spatially separated domains in a scalable approach could open a route to creating synthetic cell-like structured systems. Here, we report a facile and scalable method to create multicellular-like, multi-compartment (MC) structures. Aqueous droplet-based compartments ranging from 50 to 400 μm were stabilized and connected together by hydrophobic layers composed of phospholipids and an emulsifier. Planar centimeter-scale MC structures were formed by droplet deposition on a water interface. Further, the resulting macroscopic shapes were shown to be achieved by spatially controlled deposition. To demonstrate configurability and potential versatility, MC assemblies of both homogeneous and mixed compartment types were shown. Notably, magnetically heterogeneous systems were achieved by the inclusion of magnetic nanoparticles in defined sections. Such structures demonstrated actuated motion with structurally imparted directionality. These novel and functionalized structures exemplify a route toward future applications including compartmentally assembled "multicellular" molecular robots.
Collapse
|
15
|
Lebedeva IO, Zhulina EB, Borisov OV. Polymorphism of self-assembled colloidal nanostructures of comblike and bottlebrush block copolymers. Colloid Polym Sci 2023. [DOI: 10.1007/s00396-023-05073-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
16
|
Kotha R, Kara DD, Roychowdhury R, Tanvi K, Rathnanand M. Polymersomes Based Versatile Nanoplatforms for Controlled Drug Delivery and Imaging. Adv Pharm Bull 2023; 13:218-232. [PMID: 37342386 PMCID: PMC10278216 DOI: 10.34172/apb.2023.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/11/2021] [Accepted: 01/07/2022] [Indexed: 10/29/2023] Open
Abstract
Drug delivery systems made based on nanotechnology represent a novel drug carrier system that can change the face of therapeutics and diagnosis. Among all the available nanoforms polymersomes have wider applications due to their unique characteristic features like drug loading carriers for both hydrophilic and hydrophobic drugs, excellent biocompatibility, biodegradability, longer shelf life in the bloodstream and ease of surface modification by ligands. Polymersomes are defined as the artificial vesicles which are enclosed in a central aqueous cavity which are composed of self-assembly with a block of amphiphilic copolymer. Various techniques like film rehydration, direct hydration, nanoprecipitation, double emulsion technique and microfluidic technique are mostly used in formulating polymersomes employing different polymers like PEO-b-PLA, poly (fumaric/sebacic acid), poly(N-isopropylacrylamide) (PNIPAM), poly (dimethylsiloxane) (PDMS), and poly(butadiene) (PBD), PTMC-b-PGA (poly (dimethyl aminoethyl methacrylate)-b-poly(l-glutamic acid)) etc. Polymersomes have been extensively considered for the conveyance of therapeutic agents for diagnosis, targeting, treatment of cancer, diabetes etc. This review focuses on a comprehensive description of polymersomes with suitable case studies under the following headings: chemical structure, polymers used in the formulation, formulation methods, characterization methods and their application in the therapeutic, and medicinal filed.
Collapse
Affiliation(s)
- Rohini Kotha
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal-576104, India
| | - Divya Dhatri Kara
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal-576104, India
| | - Rajeshwari Roychowdhury
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal-576104, India
| | - Katikala Tanvi
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal-576104, India
| | - Mahalaxmi Rathnanand
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal-576104, India
| |
Collapse
|
17
|
Guo L, Xu J, Du B. Self-assembly of ABCBA Linear Pentablock Terpolymers. POLYM REV 2023. [DOI: 10.1080/15583724.2023.2178008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Lei Guo
- State Key Laboratory of Motor Vehicle Biofuel Technology, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou, China
| | - Junting Xu
- State Key Laboratory of Motor Vehicle Biofuel Technology, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou, China
| | - Binyang Du
- State Key Laboratory of Motor Vehicle Biofuel Technology, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Schaller R, Hils C, Karg M, Schmalz H. Surface-Compartmentalized Micelles by Stereocomplex-Driven Self-Assembly. Macromol Rapid Commun 2023; 44:e2200682. [PMID: 36285394 DOI: 10.1002/marc.202200682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/11/2022] [Indexed: 11/08/2022]
Abstract
The unique corona structure of surface-compartmentalized micelles (Janus micelles, patchy micelles) opens highly relevant applications, e.g. as efficient particulate surfactants for emulsion stabilization or compatibilization of polymer blends. Here, stereocomplex-driven self-assembly (SCDSA) as a facile route to micelles with a semicrystalline stereocomplex (SC) core and a patch-like microphase separated corona, employing diblock copolymers with enantiomeric poly(L-lactide)/poly(D-lactide) blocks and highly incompatible corona-forming blocks (polystyrene (PS), poly(tert-butyl methacrylate)) is introduced. The spherical patchy SC micelles feature a narrow size distribution and show a compartmentalized, shamrock-like corona structure. Compared to SC micelles with a homogeneous PS corona the patchy micelles have a significantly higher interfacial activity attributable to the synergistic combination of an amphiphilic corona with the Pickering effect of nanoparticles. The patchy micelles are successfully employed in the stabilization of emulsions, underlining their application potential.
Collapse
Affiliation(s)
- Roman Schaller
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Christian Hils
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Matthias Karg
- Physical Chemistry I / Colloids and Nanooptics, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Holger Schmalz
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany.,Bavarian Polymer Institute, Universitätsstraße 30, 95447, Bayreuth, Germany
| |
Collapse
|
19
|
Xiang L, Li Q, Li C, Yang Q, Xu F, Mai Y. Block Copolymer Self-Assembly Directed Synthesis of Porous Materials with Ordered Bicontinuous Structures and Their Potential Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207684. [PMID: 36255138 DOI: 10.1002/adma.202207684] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Porous materials with their ordered bicontinuous structures have attracted great interest owing to ordered periodic structures as well as 3D interconnected network and pore channels. Bicontinuous structures may favor efficient mass diffusion to the interior of materials, thus increasing the utilization ratio of active sites. In addition, ordered bicontinuous structures confer materials with exceptional optical and magnetic properties, including tunable photonic bandgap, negative refraction, and multiple equivalent magnetization configurations. The attractive structural advantages and physical properties have inspired people to develop strategies for preparing bicontinuous-structured porous materials. Among a few synthetic approaches, the self-assembly of block copolymers represents a versatile strategy to prepare various bicontinuous-structured functional materials with pore sizes and lattice parameters ranging from 1 to 500 nm. This article overviews progress in this appealing area, with an emphasis on the synthetic strategies, the structural control (including topologies, pore sizes, and unit cell parameters), and their potential applications in energy storage and conversion, metamaterials, photonic crystals, cargo delivery and release, nanoreactors, and biomolecule selection.
Collapse
Affiliation(s)
- Luoxing Xiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Chen Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Qiqi Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Fugui Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
20
|
Ma S, Hou Y, Hao J, Lin C, Zhao J, Sui X. Well-Defined Nanostructures by Block Copolymers and Mass Transport Applications in Energy Conversion. Polymers (Basel) 2022; 14:polym14214568. [PMID: 36365562 PMCID: PMC9655174 DOI: 10.3390/polym14214568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/27/2022] Open
Abstract
With the speedy progress in the research of nanomaterials, self-assembly technology has captured the high-profile interest of researchers because of its simplicity and ease of spontaneous formation of a stable ordered aggregation system. The self-assembly of block copolymers can be precisely regulated at the nanoscale to overcome the physical limits of conventional processing techniques. This bottom-up assembly strategy is simple, easy to control, and associated with high density and high order, which is of great significance for mass transportation through membrane materials. In this review, to investigate the regulation of block copolymer self-assembly structures, we systematically explored the factors that affect the self-assembly nanostructure. After discussing the formation of nanostructures of diverse block copolymers, this review highlights block copolymer-based mass transport membranes, which play the role of “energy enhancers” in concentration cells, fuel cells, and rechargeable batteries. We firmly believe that the introduction of block copolymers can facilitate the novel energy conversion to an entirely new plateau, and the research can inform a new generation of block copolymers for more promotion and improvement in new energy applications.
Collapse
|
21
|
Quintieri G, Schlattmann D, Schönhoff M, Gröschel AH. Fabrication of diverse multicompartment micelles by redispersion of triblock terpolymer bulk morphologies. NANOSCALE 2022; 14:12658-12667. [PMID: 36018306 DOI: 10.1039/d2nr03874a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Redispersing block copolymer (BCP) bulk films in selective solvents is a simple and efficient method to prepare BCP micelles and polymersomes. While ABC triblock terpolymers are known to form multicompartment micelles (MCMs) with intricate nanoarchitecture, this is typically done by solvent exchange instead of redispersion of bulk films despite obvious advantages of greatly reduced solvent usage. Here, we provide guidelines on how to form MCMs with defined shapes and inner structure through direct redispersion of terpolymer bulk morphologies in selective plasticizing solvents. For this purpose, we redisperse a series of polystyrene-b-polybutadiene-b-poly(tert-butyl methacrylate) (PS-b-PB-b-PT) triblock terpolymers in acetone/isopropanol mixtures, where PT is always soluble, PB always insoluble, and PS will range from soft (high acetone content) to kinetically frozen (high isopropanol content). We investigate the effect of solvent mixtures, block composition, and thermal annealing on MCM shape and core morphology. Additionally, we performed terpolymer blend experiments to open up a simple route to further diversify the range of accessible MCM morphologies.
Collapse
Affiliation(s)
- Giada Quintieri
- Physical Chemistry, University of Münster, Corrensstr. 28-30, 48149 Münster, Germany.
- Center for Soft Nanoscience (SoN), University of Münster, Busso-Peus-Str. 10, 48149 Münster, Germany
| | - Daniel Schlattmann
- Physical Chemistry, University of Münster, Corrensstr. 28-30, 48149 Münster, Germany.
- Center for Soft Nanoscience (SoN), University of Münster, Busso-Peus-Str. 10, 48149 Münster, Germany
| | - Monika Schönhoff
- Physical Chemistry, University of Münster, Corrensstr. 28-30, 48149 Münster, Germany.
- Center for Soft Nanoscience (SoN), University of Münster, Busso-Peus-Str. 10, 48149 Münster, Germany
| | - André H Gröschel
- Physical Chemistry, University of Münster, Corrensstr. 28-30, 48149 Münster, Germany.
- Center for Soft Nanoscience (SoN), University of Münster, Busso-Peus-Str. 10, 48149 Münster, Germany
| |
Collapse
|
22
|
Kobayashi Y, Nikoubashman A. Self-Assembly of Amphiphilic Cubes in Suspension. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10642-10648. [PMID: 35972298 DOI: 10.1021/acs.langmuir.2c01614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We study the self-assembly of amphiphilic cubic colloids using molecular dynamics as well as rejection-free kinetic Monte Carlo simulations. We vary both the number and location of the solvophobic faces (patches) on the cubes at several colloid volume fractions and determine the resulting size and shape distributions of the self-assembled aggregates. When the binding energy is comparable to the thermal energy of the system, aggregates typically consist of only few spontaneously associating/dissociating colloids. Increasing the binding energy (or lowering the temperature) leads to the emergence of highly stable aggregates, e.g., small dimers in pure suspensions of one-patch cubes or large (system-spanning) aggregates in suspensions of multipatch colloids. In mixtures of one- and multipatch cubes, the average aggregation number increases with increasing number of solvophobic faces on the multipatch cubes as well with increasing fraction of multipatch cubes. The resulting aggregate shapes range from elongated rods over fractal objects to compact spheres, depending on the number and arrangement of solvophobic patches on the cubic colloids. Our findings establish the complex self-assembly pathways for a class of building blocks that combine both interaction and shape anisotropy, with the potential of forming hierarchically ordered superstructures.
Collapse
Affiliation(s)
- Yusei Kobayashi
- Department of Mechanical Engineering, Keio University, 223-8522 Yokohama, Japan
| | - Arash Nikoubashman
- Department of Mechanical Engineering, Keio University, 223-8522 Yokohama, Japan
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| |
Collapse
|
23
|
Yuan S, Wang J, Xiang Y, Zheng S, Wu Y, Liu J, Zhu X, Zhang Y. Shedding Light on Luminescent Janus Nanoparticles: From Synthesis to Photoluminescence and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200020. [PMID: 35429137 DOI: 10.1002/smll.202200020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Luminescent Janus nanoparticles refer to a special category of Janus-based nanomaterials that not only exhibit dual-asymmetric surface nature but also attractive optical properties. The introduction of luminescence has endowed conventional Janus nanoparticles with many alluring light-responsive functionalities and broadens their applications in imaging, sensing, nanomotors, photo-based therapy, etc. The past few decades have witnessed significant achievements in this field. This review first summarizes well-established strategies to design and prepare luminescent Janus nanoparticles and then discusses optical properties of luminescent Janus nanoparticles based on downconversion and upconversion photoluminescence mechanisms. Various emerging applications of luminescent Janus nanoparticles are also introduced. Finally, opportunities and future challenges are highlighted with respect to the development of next-generation luminescent Janus nanoparticles with diverse applications.
Collapse
Affiliation(s)
- Shanshan Yuan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jing Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yi Xiang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Shanshan Zheng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yihan Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jinliang Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xiaohui Zhu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yong Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583, Singapore
| |
Collapse
|
24
|
Weak Polyelectrolytes as Nanoarchitectonic Design Tools for Functional Materials: A Review of Recent Achievements. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103263. [PMID: 35630741 PMCID: PMC9145934 DOI: 10.3390/molecules27103263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/23/2022]
Abstract
The ionization degree, charge density, and conformation of weak polyelectrolytes can be adjusted through adjusting the pH and ionic strength stimuli. Such polymers thus offer a range of reversible interactions, including electrostatic complexation, H-bonding, and hydrophobic interactions, which position weak polyelectrolytes as key nano-units for the design of dynamic systems with precise structures, compositions, and responses to stimuli. The purpose of this review article is to discuss recent examples of nanoarchitectonic systems and applications that use weak polyelectrolytes as smart components. Surface platforms (electrodeposited films, brushes), multilayers (coatings and capsules), processed polyelectrolyte complexes (gels and membranes), and pharmaceutical vectors from both synthetic or natural-type weak polyelectrolytes are discussed. Finally, the increasing significance of block copolymers with weak polyion blocks is discussed with respect to the design of nanovectors by micellization and film/membrane nanopatterning via phase separation.
Collapse
|
25
|
Mhanna R, Gao Y, Van Tol I, Springer E, Wu N, Marr DWM. Chain Assembly Kinetics from Magnetic Colloidal Spheres. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5730-5737. [PMID: 35486385 DOI: 10.1021/acs.langmuir.2c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Magnetic colloidal chains are a microrobotic system with promising applications due to their versatility, biocompatibility, and ease of manipulation under magnetic fields. Their synthesis involves kinetic pathways that control chain quality, length, and flexibility, a process performed by first aligning superparamagnetic particles under a one-dimensional magnetic field and then chemically linking them using a four-armed maleimide-functionalized poly(ethylene glycol). Here, we systematically vary the concentration of the poly(ethylene glycol) linkers, the reaction temperature, and the magnetic field strength to study their impact on the physical properties of synthesized chains, including the chain length distribution, reaction temperature, and bending modulus. We find that this chain fabrication process resembles step-growth polymerization and can be accurately described by the Flory-Schulz model. Under optimized experimental conditions, we have successfully synthesized long flexible colloidal chains with a bending modulus, which is 4 orders of magnitude smaller than previous studies. Such flexible and long chains can be folded entirely into concentric rings and helices with multiple turns, demonstrating the potential for investigating the actuation, assembly, and folding behaviors of these colloidal polymer analogues.
Collapse
Affiliation(s)
- Ramona Mhanna
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Yan Gao
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Isaac Van Tol
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Ela Springer
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Ning Wu
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - David W M Marr
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
26
|
An H, Smith JW, Ji B, Cotty S, Zhou S, Yao L, Kalutantirige FC, Chen W, Ou Z, Su X, Feng J, Chen Q. Mechanism and performance relevance of nanomorphogenesis in polyamide films revealed by quantitative 3D imaging and machine learning. SCIENCE ADVANCES 2022; 8:eabk1888. [PMID: 35196079 PMCID: PMC8865778 DOI: 10.1126/sciadv.abk1888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Biological morphogenesis has inspired many efficient strategies to diversify material structure and functionality using a fixed set of components. However, implementation of morphogenesis concepts to design soft nanomaterials is underexplored. Here, we study nanomorphogenesis in the form of the three-dimensional (3D) crumpling of polyamide membranes used for commercial molecular separation, through an unprecedented integration of electron tomography, reaction-diffusion theory, machine learning (ML), and liquid-phase atomic force microscopy. 3D tomograms show that the spatial arrangement of crumples scales with monomer concentrations in a form quantitatively consistent with a Turing instability. Membrane microenvironments quantified from the nanomorphologies of crumples are combined with the Spiegler-Kedem model to accurately predict methanol permeance. ML classifies vastly heterogeneous crumples into just four morphology groups, exhibiting distinct mechanical properties. Our work forges quantitative links between synthesis and performance in polymer thin films, which can be applicable to diverse soft nanomaterials.
Collapse
Affiliation(s)
- Hyosung An
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, USA
- Materials Research Laboratory, University of Illinois, Urbana, IL, USA
| | - John W. Smith
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, USA
| | - Bingqiang Ji
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, IL, USA
| | - Stephen Cotty
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL, USA
| | - Shan Zhou
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, USA
| | - Lehan Yao
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, USA
| | | | - Wenxiang Chen
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, USA
- Materials Research Laboratory, University of Illinois, Urbana, IL, USA
| | - Zihao Ou
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, USA
| | - Xiao Su
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL, USA
| | - Jie Feng
- Materials Research Laboratory, University of Illinois, Urbana, IL, USA
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, IL, USA
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, USA
- Materials Research Laboratory, University of Illinois, Urbana, IL, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL, USA
- Department of Chemistry, University of Illinois, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, IL, USA
| |
Collapse
|
27
|
Bhatt M, Shende P. Surface patterning techniques for proteins on nano- and micro-systems: a modulated aspect in hierarchical structures. J Mater Chem B 2022; 10:1176-1195. [PMID: 35119060 DOI: 10.1039/d1tb02455h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The surface patterning of protein using fabrication or the external functionalization of structures demonstrates various applications in the biomedical field for bioengineering, biosensing and antifouling. This review article offers an outline of the existing advances in protein patterning technology with a special emphasis on the current physical and physicochemical methods, including stencil patterning, trap- and droplet-based microfluidics, and chemical modification of surfaces via photolithography, microcontact printing and scanning probe nanolithography. Different approaches are applied for the biological studies of recent trends for single-protein patterning technology, such as robotic printing, stencil printing and colloidal lithography, wherein the concepts of physical confinement, electrostatic and capillary forces, as well as dielectrophoretics, are summarised to understand the design approaches. Photochemical alterations with diazirine, nitrobenzyl and aryl azide functional groups for the implication of modified substrates, such as self-assembled monolayers functionalized with amino silanes, organosilanes and alkanethiols on gold surfaces, as well as topographical effects of patterning techniques for protein functionalization and orientation, are discussed. Analytical methods for the evaluation of protein functionality are also mentioned. Regarding their selectivity, protein pattering methods will be readily used to fabricate modified surfaces and target-specific delivery systems for the transportation of macromolecules such as streptavidin, and albumin. Future applications of patterning techniques include high-throughput screening, the evaluation of intracellular interactions, accurate screening and personalized treatments.
Collapse
Affiliation(s)
- Maitri Bhatt
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India.
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
28
|
Kim EJ, Shin JJ, Lee GS, Kim S, Park S, Park J, Choe Y, Lee D, Choi J, Bang J, Kim YH, Li S, Hur SM, Kim JG, Kim BJ. Synthesis and Self-Assembly of Poly(vinylpyridine)-Containing Brush Block Copolymers: Combined Synthesis of Grafting-Through and Grafting-to Approaches. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eun Ji Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jaeman J. Shin
- Department of Organic Materials and Fiber Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Gue Seon Lee
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Sejong Kim
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Sora Park
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Juhae Park
- Alan G. MacDiarmid Energy Research Institute & School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yeojin Choe
- Alan G. MacDiarmid Energy Research Institute & School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dahye Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jinwoong Choi
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Joona Bang
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Young Hun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sheng Li
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Su-Mi Hur
- Alan G. MacDiarmid Energy Research Institute & School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jeung Gon Kim
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Bumjoon J. Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
29
|
Coban D, Gridina O, Karg M, Gröschel AH. Morphology Control of Multicompartment Micelles in Water through Hierarchical Self-Assembly of Amphiphilic Terpolymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c01840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Deniz Coban
- Institute of Physical Chemistry, Center for Soft Nanoscience (SoN), and Center for Nanotechnology (CeNTech), University of Münster, 48149 Münster, Germany
| | - Olga Gridina
- Colloids and Nanooptics, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Matthias Karg
- Colloids and Nanooptics, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - André H. Gröschel
- Institute of Physical Chemistry, Center for Soft Nanoscience (SoN), and Center for Nanotechnology (CeNTech), University of Münster, 48149 Münster, Germany
| |
Collapse
|
30
|
Ahn NY, Kwon S, Cho S, Kang C, Jeon J, Lee WB, Lee E, Kim Y, Seo M. In Situ Supramolecular Polymerization of Micellar Nanoobjects Induced by Polymerization. ACS Macro Lett 2022; 11:149-155. [PMID: 35574796 DOI: 10.1021/acsmacrolett.1c00625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Supramolecular polymerization offers a fascinating opportunity to develop dynamic soft materials by associating monomeric building blocks via noncovalent interactions. We report that polymerization can spontaneously drive the supramolecular polymerization of nanoscale micellar objects. We constructed the patchy micelles via two-step polymerization-induced self-assembly. A horizontal association between the patches results in a 1D supermicellar chain in situ by minimizing the enthalpic penalty of exposing the growing chains to solvent. Its length grows with increasing degree of polymerization, confirming that the supramolecular polymerization was triggered and controlled by polymerization. Our results highlight the observation that (1) the entire self-assembly process of forming, compartmentalizing, and associating the micelles can be driven by polymerization in a concerted manner and that (2) polymerization-induced self-assembly now can use compartmentalized nanoobjects as substrates beyond block copolymer chains. Polymerization-induced supramolecular polymerization could be useful for the autonomous preparation of hierarchical nanostructures.
Collapse
Affiliation(s)
- Nam Young Ahn
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sangwoo Kwon
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Suchan Cho
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Chanhyuk Kang
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Jiwon Jeon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Won Bo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Eunji Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - YongJoo Kim
- School of Advanced Materials Engineering, Kookmin University, Seoul 02707, Republic of Korea
| | - Myungeun Seo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for Nanocentury, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
31
|
Geng Z, Liu J, Guo Q, Mao X, Chen S, Deng R, Zhu J. Structure Regulation of Block Copolymer Assemblies in Emulsion Droplets by Adding a Selective Solvent. Macromol Rapid Commun 2022; 43:e2100845. [PMID: 35032147 DOI: 10.1002/marc.202100845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/03/2022] [Indexed: 11/09/2022]
Abstract
Generally, nanostructured polymer particles are prepared by three-dimensional (3D) confined self-assembly (3D-CSA) of block copolymers (BCPs), while micelles are obtained through self-assembly of BCPs in dilute solutions. Herein, a facile yet robust strategy is developed to regulate the assembled structures of BCP, poly(styrene-block-4-vinylpyridine) (PS-b-P4VP), from nanostructured particles to micelles. The assemblies are prepared by an emulsion-solvent diffusion-induced self-assembly route, which is conducted by dialysis. A key feature of this strategy is that a P4VP-selective solvent (e.g., ethanol) is added to the dialysate to tune the interfacial behavior of the droplets and assembled structures of PS-b-P4VP. Our results reveal that in the presence of slight ethanol, the surface and internal structural transitions of nanostructured particles are caused by changes in the interfacial selectivity and packing parameter. Interestingly, interfacial instability, which results in the formation of micelles, is observed when the dialysate contains 50 vol.% ethanol or more. The reason can be ascribed to the decreased interface tension, which is induced by the increase in ethanol and enhanced solubility of P4VP. This facile strategy provides a new opportunity to bridge the gap between traditional 3D-CSA and solution self-assembly of BCPs, offering a promising route to engineer morphologies and nanostructures of polymeric assemblies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zhen Geng
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jingye Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Qi Guo
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xi Mao
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Senbin Chen
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Renhua Deng
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jintao Zhu
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
32
|
Song S, Jiang J, Nikbin E, Howe JY, Manners I, Winnik MA. The role of cooling rate in crystallization-driven block copolymer self-assembly. Chem Sci 2022; 13:396-409. [PMID: 35126972 PMCID: PMC8729813 DOI: 10.1039/d1sc05937h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 12/26/2022] Open
Abstract
Self-assembly of crystalline-coil block copolymers (BCPs) in selective solvents is often carried out by heating the mixture until the sample appears to dissolve and then allowing the solution to cool back to room temperature. In self-seeding experiments, some crystallites persist during sample annealing and nucleate the growth of core-crystalline micelles upon cooling. There is evidence in the literature that the nature of the self-assembled structures formed is independent of the annealing time at a particular temperature. There are, however, no systematic studies of how the rate of cooling affects self-assembly. We examine three systems based upon poly(ferrocenyldimethylsilane) BCPs that generated uniform micelles under typical conditions where cooling took pace on the 1–2 h time scale. For example, several of the systems generated elongated 1D micelles of uniform length under these slow cooling conditions. When subjected to rapid cooling (on the time scale of a few minutes or faster), branched structures were obtained. Variation of the cooling rate led to a variation in the size and degree of branching of some of the structures examined. These changes can be explained in terms of the high degree of supersaturation that occurs when unimer solutions at high temperature are suddenly cooled. Enhanced nucleation, seed aggregation, and selective growth of the species of lowest solubility contribute to branching. Cooling rate becomes another tool for manipulating crystallization-driven self-assembly and controlling micelle morphologies. In the self-assembly of crystalline-coil block copolymers in solution, heating followed by different cooling rates can lead to different structures.![]()
Collapse
Affiliation(s)
- Shaofei Song
- Department of Chemistry, University of Toronto Toronto Ontario M5S 3H6 Canada +1-416-978-6495
| | - Jingjie Jiang
- Department of Chemistry, University of Toronto Toronto Ontario M5S 3H6 Canada +1-416-978-6495
| | - Ehsan Nikbin
- Department of Materials Science and Engineering, University of Toronto, 184 College Street Toronto Ontario M5S 3E4 Canada
| | - Jane Y Howe
- Department of Chemistry, University of Toronto Toronto Ontario M5S 3H6 Canada +1-416-978-6495.,Department of Materials Science and Engineering, University of Toronto, 184 College Street Toronto Ontario M5S 3E4 Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto Toronto Ontario M5S 3E2 Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria Victoria British Columbia V8P 5C2 Canada
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto Toronto Ontario M5S 3H6 Canada +1-416-978-6495.,Department of Chemical Engineering and Applied Chemistry, University of Toronto Toronto Ontario M5S 3E2 Canada
| |
Collapse
|
33
|
A robust method for the development of mechanically, thermally stable anti-reflective and self-cleaning coatings through in-situ formation of hierarchical raspberry-like mesoporous nanoparticles. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.09.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Lee D, Kim J, Ku KH, Li S, Shin JJ, Kim B. Poly(vinylpyridine)-Containing Block Copolymers for Smart, Multicompartment Particles. Polym Chem 2022. [DOI: 10.1039/d2py00150k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multicompartment particles generated by the self-assembly of block copolymers (BCPs) have received considerable attention due to their unique morphologies and functionalities. A class of important building blocks for multicomponent particles...
Collapse
|
35
|
Müller M, Abetz V. Nonequilibrium Processes in Polymer Membrane Formation: Theory and Experiment. Chem Rev 2021; 121:14189-14231. [PMID: 34032399 DOI: 10.1021/acs.chemrev.1c00029] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Porous polymer and copolymer membranes are useful for ultrafiltration of functional macromolecules, colloids, and water purification. In particular, block copolymer membranes offer a bottom-up approach to form isoporous membranes. To optimize permeability, selectivity, longevity, and cost, and to rationally design fabrication processes, direct insights into the spatiotemporal structure evolution are necessary. Because of a multitude of nonequilibrium processes in polymer membrane formation, theoretical predictions via continuum models and particle simulations remain a challenge. We compiled experimental observations and theoretical approaches for homo- and block copolymer membranes prepared by nonsolvent-induced phase separation and highlight the interplay of multiple nonequilibrium processes─evaporation, solvent-nonsolvent exchange, diffusion, hydrodynamic flow, viscoelasticity, macro- and microphase separation, and dynamic arrest─that dictates the complex structure of the membrane on different scales.
Collapse
Affiliation(s)
- Marcus Müller
- Georg-August Universität, Institut für Theoretische Physik, 37073 Göttingen, Germany
| | - Volker Abetz
- Helmholtz-Zentrum Hereon, Institut für Membranforschung, 21502 Geesthacht, Germany.,Universität Hamburg, Institut für Physikalische Chemie, 20146 Hamburg, Germany
| |
Collapse
|
36
|
Sarkar J, Lim YF, Goto A. Synthesis of Biologically Decomposable Terpolymer Nanocapsules and Higher‐Order Nanoassemblies Using RCMP‐PISA. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jit Sarkar
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Nanyang 637371 Singapore
| | - Ying Faye Lim
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Nanyang 637371 Singapore
| | - Atsushi Goto
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Nanyang 637371 Singapore
| |
Collapse
|
37
|
Tan Z, Lan W, Mao X, Zhang L, Luo X, Xu J, Zhu J. Structure-Controlled Preparation of Multicompartment Micelles with Tunable Emission through Hydrodynamics-Dependent Self-Assembly in Microfluidic Chips. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13099-13106. [PMID: 34705469 DOI: 10.1021/acs.langmuir.1c02259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Multicompartment micelles (MCMs) attracted much attention since they have subdivided domains that could be employed to encapsulate and transport diverse compounds simultaneously. Usually, preparation of MCMs relied on precise synthesis of block copolymers (BCPs) and elegant control of assembly kinetics, making it difficult to successively produce MCMs. Herein, we report a facile yet effective method for preparing MCMs by adjusting the hydrodynamics in microfluidic channels. It was found that well-defined MCMs were formed through hydrodynamics-dependent secondary assembly in microfluidic chips. By adjusting the flow diffusion process by varying the flow rate ratio and total flow rate, both the internal structure and size of MCMs could be effectively changed. A product diagram of micellar morphologies associated to the initial polymer concentration and flow rate ratio of water/BCPs solution was constructed. More interestingly, quantum dots (QDs) could be selectively loaded into different domains of the MCMs. Consequently, the Förster resonance energy transfer among QDs could be effectively suppressed. Thus, the emission spectrum of MCMs/QDs hybrid particles could be easily tuned by changing the ratio of QDs, showing great potential application in photonics and sensors.
Collapse
Affiliation(s)
- Zhengping Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Wei Lan
- School of Energy and Power Engineering, HUST, Wuhan 430074, China
| | - Xi Mao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Lianbin Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Xiaobing Luo
- School of Energy and Power Engineering, HUST, Wuhan 430074, China
| | - Jiangping Xu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jintao Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| |
Collapse
|
38
|
Mushtaq I, Akhter Z, Farooq M, Jabeen F, Rehman AU, Rehman S, Ayub S, Mirza B, Siddiq M, Zaman F. A unique amphiphilic triblock copolymer, nontoxic to human blood and potential supramolecular drug delivery system for dexamethasone. Sci Rep 2021; 11:21507. [PMID: 34728694 PMCID: PMC8563740 DOI: 10.1038/s41598-021-00871-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/19/2021] [Indexed: 01/02/2023] Open
Abstract
The drug delivery system (DDS) often causes toxicity, triggering undesired cellular injuries. Thus, developing supramolecules used as DDS with tunable self-assembly and nontoxic behavior is highly desired. To address this, we aimed to develop a tunable amphiphilic ABA-type triblock copolymer that is nontoxic to human blood cells but also capable of self-assembling, binding and releasing the clinically used drug dexamethasone. We synthesized an ABA-type amphiphilic triblock copolymer (P2L) by incorporating tetra(aniline) TANI as a hydrophobic and redox active segment along with monomethoxy end-capped polyethylene glycol (mPEG2k; Mw = 2000 g mol-1) as biocompatible, flexible and hydrophilic part. Cell cytotoxicity was measured in whole human blood in vitro and lung cancer cells. Polymer-drug interactions were investigated by UV-Vis spectroscopy and computational analysis. Our synthesized copolymer P2L exhibited tuned self-assembly behavior with and without external stimuli and showed no toxicity in human blood samples. Computational analysis showed that P2L can encapsulate the clinically used drug dexamethasone and that drug uptake or release can also be triggered under oxidation or low pH conditions. In conclusion, copolymer P2L is nontoxic to human blood cells with the potential to carry and release anticancer/anti-inflammatory drug dexamethasone. These findings may open up further investigations into implantable drug delivery systems/devices with precise drug administration and controlled release at specific locations.
Collapse
Affiliation(s)
- Irrum Mushtaq
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Zareen Akhter
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Farooq
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Farukh Jabeen
- Department of Chemistry and Biochemistry, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, P3E 2C6, Canada
| | - Ashfaq Ur Rehman
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| | - Sadia Rehman
- Institute of Biomedical and Genetic Engineering, Islamabad, Pakistan
| | - Sidra Ayub
- Department of Biochemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Bushra Mirza
- Department of Biochemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Siddiq
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Farasat Zaman
- Department of Women's and Children's Health, Karolinska Institutet and Pediatric Endocrinology Unit, Karolinska University Hospital, Bioclinicum J9:30, SE-171 74, Solna, Sweden.
| |
Collapse
|
39
|
Zhou Y, Ma J, Gao C, Fan X, Lashari NUR, Li J. Electrospun nanofibers from
ferrocene‐containing
multiblock copolymers prepared via
RAFT
polymerization with
F127
modified precursor. J Appl Polym Sci 2021. [DOI: 10.1002/app.50984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yingxue Zhou
- Department of Polymeric Materials and Engineering College of Materials Science and Engineering, Xi'an Polytechnic University Xi'an China
| | - Jianhua Ma
- Department of Polymeric Materials and Engineering College of Materials Science and Engineering, Xi'an Polytechnic University Xi'an China
| | - Chaofeng Gao
- Shaanxi Research Design institute Petroleum and Chemical Industry Xi'an China
| | - Xiaodong Fan
- Shaanxi Key Laboratory of Macromolecular Science and Technology School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an China
| | - Najeeb ur Rehman Lashari
- Department of Polymeric Materials and Engineering College of Materials Science and Engineering, Xi'an Polytechnic University Xi'an China
| | - Junpeng Li
- Department of Applied Chemistry School of Science, Xi'an University of Technology Xi'an China
| |
Collapse
|
40
|
Song S, Zhou H, Manners I, Winnik MA. Block copolymer self-assembly: Polydisperse corona-forming blocks leading to uniform morphologies. Chem 2021. [DOI: 10.1016/j.chempr.2021.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
41
|
Hils C, Schmelz J, Drechsler M, Schmalz H. Janus Micelles by Crystallization-Driven Self-Assembly of an Amphiphilic, Double-Crystalline Triblock Terpolymer. J Am Chem Soc 2021; 143:15582-15586. [PMID: 34529422 DOI: 10.1021/jacs.1c08076] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Surface-compartmentalized micellar nanostructures (Janus and patchy micelles) have gained increasing interest due to their unique properties opening highly relevant applications, e.g., as efficient particulate surfactants, compatibilizers in polymer blends, or templates for catalytically active nanoparticles. We present a facile method for the production of worm-like Janus micelles based on crystallization-driven self-assembly of a double-crystalline triblock terpolymer with a crystallizable polyethylene middle block and two highly incompatible corona blocks, polystyrene and poly(ethylene oxide). This approach enables the production of amphiphilic Janus micelles with excellent interfacial activity by a comparably simple heating and cooling protocol directly in solution.
Collapse
Affiliation(s)
- Christian Hils
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Joachim Schmelz
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Markus Drechsler
- Keylab Electron and Optical Microscopy, Bavarian Polymer Institute, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Holger Schmalz
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany.,Keylab Synthesis and Molecular Characterization, Bavarian Polymer Institute, Universitätsstraße 30, 95447 Bayreuth, Germany
| |
Collapse
|
42
|
Feng W, Wang L, Lv Y, Liu F, Lin S. Crosslinking Modulated Hierarchical Self-Assembly of Rod–Coil Diblock Copolymer Patchy Nanoparticles. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Weisheng Feng
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yisheng Lv
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fan Liu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
43
|
Frank A, Hils C, Weber M, Kreger K, Schmalz H, Schmidt H. Hierarchical Superstructures by Combining Crystallization-Driven and Molecular Self-Assembly. Angew Chem Int Ed Engl 2021; 60:21767-21771. [PMID: 34038613 PMCID: PMC8518951 DOI: 10.1002/anie.202105787] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Indexed: 11/11/2022]
Abstract
Combining the unique corona structure of worm-like patchy micelles immobilized on a polymer fiber with the molecular self-assembly of 1,3,5-benzenetricarboxamides (BTAs) leads to hierarchical superstructures with a fir-tree-like morphology. For this purpose, worm-like patchy micelles bearing pendant, functional tertiary amino groups in one of the corona patches were prepared by crystallization-driven self-assembly and immobilized on a supporting polystyrene fiber by coaxial electrospinning. The obtained patchy fibers were then immersed in an aqueous solution of a tertiary amino-functionalized BTA to induce patch-mediated molecular self-assembly to well-defined fir-tree-like superstructures upon solvent evaporation. Interestingly, defined superstructures are obtained only if the pendant functional groups in the surface patches match with the peripheral substituents of the BTA, which is attributed to a local increase in BTA concentration at the polymer fibers' surface.
Collapse
Affiliation(s)
- Andreas Frank
- Macromolecular Chemistry IUniversity of Bayreuth and Bavarian Polymer InstituteUniversitätsstrasse 3095447BayreuthGermany
| | - Christian Hils
- Macromolecular Chemistry IIUniversity of Bayreuth and Bavarian Polymer InstituteKeylab Synthesis and Molecular CharacterizationUniversitätsstrasse 3095447BayreuthGermany
| | - Melina Weber
- Macromolecular Chemistry IUniversity of Bayreuth and Bavarian Polymer InstituteUniversitätsstrasse 3095447BayreuthGermany
| | - Klaus Kreger
- Macromolecular Chemistry IUniversity of Bayreuth and Bavarian Polymer InstituteUniversitätsstrasse 3095447BayreuthGermany
| | - Holger Schmalz
- Macromolecular Chemistry IIUniversity of Bayreuth and Bavarian Polymer InstituteKeylab Synthesis and Molecular CharacterizationUniversitätsstrasse 3095447BayreuthGermany
| | - Hans‐Werner Schmidt
- Macromolecular Chemistry IUniversity of Bayreuth and Bavarian Polymer InstituteUniversitätsstrasse 3095447BayreuthGermany
| |
Collapse
|
44
|
Frank A, Hils C, Weber M, Kreger K, Schmalz H, Schmidt H. Hierarchische Überstrukturen durch Kombination von kristallisationsinduzierter und molekularer Selbstassemblierung. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Andreas Frank
- Makromolekulare Chemie I Universität Bayreuth und Bayerisches Polymerinstitut Universitätsstraße 30 95447 Bayreuth Deutschland
| | - Christian Hils
- Makromolekulare Chemie II Universität Bayreuth und Bayerisches Polymerinstitut Keylab Synthesis and Molecular Characterization Universitätsstraße 30 95447 Bayreuth Deutschland
| | - Melina Weber
- Makromolekulare Chemie I Universität Bayreuth und Bayerisches Polymerinstitut Universitätsstraße 30 95447 Bayreuth Deutschland
| | - Klaus Kreger
- Makromolekulare Chemie I Universität Bayreuth und Bayerisches Polymerinstitut Universitätsstraße 30 95447 Bayreuth Deutschland
| | - Holger Schmalz
- Makromolekulare Chemie II Universität Bayreuth und Bayerisches Polymerinstitut Keylab Synthesis and Molecular Characterization Universitätsstraße 30 95447 Bayreuth Deutschland
| | - Hans‐Werner Schmidt
- Makromolekulare Chemie I Universität Bayreuth und Bayerisches Polymerinstitut Universitätsstraße 30 95447 Bayreuth Deutschland
| |
Collapse
|
45
|
Kaup R, Ten Hove JB, Bunschoten A, van Leeuwen FWB, Velders AH. Multicompartment dendrimicelles with binary, ternary and quaternary core composition. NANOSCALE 2021; 13:15422-15430. [PMID: 34505610 DOI: 10.1039/d1nr04556c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hierarchically built-up multicompartment nanoaggregate systems are of interest for, e.g., novel materials and medicine. Here we present a versatile strategy to generate and unambiguously characterize complex coacervate-core micelles by exploiting four different dendrimeric subcomponents as core-units. The resulting mesoscale structures have a hydrodynamic diameter of 50 nm and a core size of 33 nm, and host about thirty 6th generation polyamidoamine (PAMAM) dendrimers. We have used FRET (efficiency of ∼0.2) between fluorescein and rhodamine moieties immobilized on separate PAMAM dendrimers (G6-F and G6-R, respectively) to prove synchronous encapsulation in the micelle core. Tuning the proximity of the FRET pair molecules either by varying the G6-F : G6-R ratio, or by co-assembling non-functionalized dendrimer (G6-E) in the core, reveals the optimal FRET efficiency to occur at a minimum of 70% loading with G6-F and G6-R. Additional co-encapsulation of 6th generation gold dendrimer-encapsulated nanoparticles (G6-Au) in the micelle core shows a dramatic reduction of the FRET efficiency, which can be restored by chemical etching of the gold nanoparticles from within the micellar core with thiols, leaving the micelle itself intact. This study reveals the controlled co-assembly of up to four different types of subcomponents in one single micellar core and concomitantly shows the wide variety of structures that can be made with a well-defined basic set of subcomponents. It is straightforward to design related strategies, to incorporate inside one micellar core, e.g., even more than 4 different dendrimers, or other classes of (macro)molecules, with different functional groups, other FRET pairs or different encapsulated metal nanoparticles.
Collapse
Affiliation(s)
- Rebecca Kaup
- Laboratory of BioNanoTechnology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
| | - Jan Bart Ten Hove
- Laboratory of BioNanoTechnology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anton Bunschoten
- Laboratory of BioNanoTechnology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
| | - Fijs W B van Leeuwen
- Laboratory of BioNanoTechnology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Aldrik H Velders
- Laboratory of BioNanoTechnology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Instituto Regional de Investigacion Cientifica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
46
|
Wan J, Fan B, Putera K, Kim J, Banaszak Holl MM, Thang SH. Polymerization-Induced Hierarchical Self-Assembly: From Monomer to Complex Colloidal Molecules and Beyond. ACS NANO 2021; 15:13721-13731. [PMID: 34375086 DOI: 10.1021/acsnano.1c05089] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The nanoscale hierarchical design that draws inspiration from nature's biomaterials allows the enhancement of material performance and enables multifarious applications. Self-assembly of block copolymers represents one of these artificial techniques that provide an elegant bottom-up strategy for the synthesis of soft colloidal hierarchies. Fast-growing polymerization-induced self-assembly (PISA) renders a one-step process for the polymer synthesis and in situ self-assembly at high concentrations. Nevertheless, it is exceedingly challenging for the fabrication of hierarchical colloids via aqueous PISA, simply because most monomers produce kinetically trapped spheres except for a few PISA-suitable monomers. We demonstrate here a sequential one-pot synthesis of hierarchically self-assembled polymer colloids with diverse morphologies via aqueous PISA that overcomes the limitation. Complex formation of water-immiscible monomers with cyclodextrin via "host-guest" inclusion, followed by sequential aqueous polymerization, provides a linear triblock terpolymer that can in situ self-assemble into hierarchical nanostructures. To access polymer colloids with different morphologies, three types of linear triblock terpolymers were synthesized through this methodology, which allows the preparation of AXn-type colloidal molecules (CMs), core-shell-corona micelles, and raspberry-like nanoparticles. Furthermore, the phase separations between polymer blocks in nanostructures were revealed by transmission electron microscopy and atomic force microscopy-infrared spectroscopy. The proposed mechanism explained how the interfacial tensions and glass transition temperatures of the core-forming blocks affect the morphologies. Overall, this study provides a scalable method of the production of CMs and other hierarchical structures. It can be applied to different block copolymer formulations to enrich the complexity of morphology and enable diverse functions of nano-objects.
Collapse
|
47
|
Li Z, Cai B, Yang W, Chen CL. Hierarchical Nanomaterials Assembled from Peptoids and Other Sequence-Defined Synthetic Polymers. Chem Rev 2021; 121:14031-14087. [PMID: 34342989 DOI: 10.1021/acs.chemrev.1c00024] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In nature, the self-assembly of sequence-specific biopolymers into hierarchical structures plays an essential role in the construction of functional biomaterials. To develop synthetic materials that can mimic and surpass the function of these natural counterparts, various sequence-defined bio- and biomimetic polymers have been developed and exploited as building blocks for hierarchical self-assembly. This review summarizes the recent advances in the molecular self-assembly of hierarchical nanomaterials based on peptoids (or poly-N-substituted glycines) and other sequence-defined synthetic polymers. Modern techniques to monitor the assembly mechanisms and characterize the physicochemical properties of these self-assembly systems are highlighted. In addition, discussions about their potential applications in biomedical sciences and renewable energy are also included. This review aims to highlight essential features of sequence-defined synthetic polymers (e.g., high stability and protein-like high-information content) and how these unique features enable the construction of robust biomimetic functional materials with high programmability and predictability, with an emphasis on peptoids and their self-assembled nanomaterials.
Collapse
Affiliation(s)
- Zhiliang Li
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
| | - Bin Cai
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,School of Chemistry and Chemical Engineering, Shandong University, Shandong 250100, China
| | - Wenchao Yang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
48
|
Aljuaid N, Tully M, Seitsonen J, Ruokolainen J, Hamley IW. Benzene tricarboxamide derivatives with lipid and ethylene glycol chains self-assemble into distinct nanostructures driven by molecular packing. Chem Commun (Camb) 2021; 57:8360-8363. [PMID: 34338257 DOI: 10.1039/d1cc03437e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The self-assembly in aqueous solution of benzene-1,3,5-tricarboxamide (BTA) bearing one alkyl chain and two PEG (polyethylene glycol) chains or two alkyl chains and one PEG chain yields completely distinct nanostructures. Two series of derivatives were synthesized and extensively characterized and electron microscopy and small-angle X-ray scattering (SAXS) reveal micelle structures for derivatives with one alkyl and two PEG chains, but nanotapes and nanoribbons for the series with two alkyl and one PEG chain.
Collapse
Affiliation(s)
- Nada Aljuaid
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK.
| | | | | | | | | |
Collapse
|
49
|
Vrbata D, Kereiche S, Kalíková K, Uchman M. Stimuli-responsive multifunctional micelles of ABC vs. ACB triblock terpolymers using reversible covalent bonding of phenylboronic acid: controlled synthesis, self-assembly and model drug release. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Application of poly(amidoamine) dendrimer as transfer agent to synthesize poly(amidoamine)-b-poly(methyl acrylate) amphiphilc block copolymers: Self-assembly in aqueous media and drug delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|