1
|
Zou JF, Li S, Liu P, Zhao Y, Wang T, Pan YX, Yan X. Strategy in Promoting Visible Light Absorption, Charge Separation, CO 2 Adsorption and Proton Production for Efficient Photocatalytic CO 2 Reduction with H 2O. Chem Asian J 2024:e202400781. [PMID: 39418204 DOI: 10.1002/asia.202400781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/14/2024] [Indexed: 10/19/2024]
Abstract
Solar-energy-driven photocatalytic CO2 reduction by H2O to high-valuable carbon-containing chemicals has become one of the greatest concerns in both scientific and industrial communities, due to its potential in solving energy and environmental problems. However, efficiency of photocatalytic CO2 reduction by H2O is still far below the needs of large-scale applications. The reduction efficiency is closely related to ability of photocatalysts in absorbing visible light which is the main part of sunlight (44 %), separating photogenerated electron-hole pairs, adsorbing CO2 and producing protons for reducing CO2. Thus, photocatalysts with enhanced visible light absorption, electron-hole separation, CO2 adsorption and proton production are highly desired. Herein, we aim to provide a picture of recent progresses in improving ability of photocatalysts in visible light absorption, electron-hole separation, CO2 adsorption and proton production, and give an outlook for future researches associated with photocatalytic CO2 reduction by H2O.
Collapse
Affiliation(s)
- Jia-Fu Zou
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, People's Republic of China
| | - Sha Li
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, People's Republic of China
| | - Peng Liu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yiyi Zhao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Tingwei Wang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yun-Xiang Pan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xiaoliang Yan
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, People's Republic of China
| |
Collapse
|
2
|
Lu Y, Wang H, Li Q, Zhang X, Jia Y, Zhao Z, Huan Y, Tang BZ. Spontaneous aggregation-enhanced electrochemiluminescence via galvanic strategy. Biosens Bioelectron 2024; 262:116555. [PMID: 39018982 DOI: 10.1016/j.bios.2024.116555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/27/2024] [Accepted: 07/03/2024] [Indexed: 07/19/2024]
Abstract
Researchers unremittingly strive to develop innovative luminophores to enhance intrinsic electrochemiluminescence (ECL) performance. However, the potential to harness facile strategies, such as manipulating the physical properties of luminophores while retaining functional chemical properties to fabricate cost-effective ECL complexes, remains underexplored. Herein, we reported a novel and efficient one-step galvanic technique to actualize aggregation-enhanced ECL (AEECL) of ruthenium complexes. It marked the first instance of the galvanic process being employed to synthesize aggregate luminophores through electrostatic attraction. The ECL intensity and efficiency of the prepared ruthenium complexes with AEECL properties surpassed traditional ruthenium complexes by 8.9 and 13.6 times, respectively, outperforming most reported luminophores. Remarkably, the target luminophore exhibited high stability across varied scan rates and temperatures. Furthermore, a binder-free and carbon paper-based AEECL analytical device for lidocaine detection was fabricated, achieving a satisfactory detection limit (0.34 nM) and selectivity. The convenient modulation strategy of aggregate structure, along with the transformative leap from insufficient ECL to AEECL, bring forth a new revenue in aggregate science. This research also promises a universally applicable and versatile protocol for future biological analysis and bioimaging applications.
Collapse
Affiliation(s)
- Yongzhuang Lu
- College of Chemistry, Jilin University, Changchun, 130012, Jilin, China; Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China.
| | - Haoran Wang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China.
| | - Qiyao Li
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China.
| | - Xiaoxu Zhang
- College of Chemistry, Jilin University, Changchun, 130012, Jilin, China.
| | - Yuying Jia
- College of Chemistry, Jilin University, Changchun, 130012, Jilin, China.
| | - Zheng Zhao
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China.
| | - Yanfu Huan
- College of Chemistry, Jilin University, Changchun, 130012, Jilin, China.
| | - Ben Zhong Tang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China; Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China.
| |
Collapse
|
3
|
An optofluidic planar microreactor with photoactive Cu2O/Mo2C/TiO2 heterostructures for enhanced visible light-driven CO2 conversion to methanol. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
4
|
Wang J, Zhou S, Li B, Liu X, Chen H, Wang H. Improving the Photostability of [Ru(bpy)3]2+ by Embedding in Silica. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jingjing Wang
- Nanjing Tech University School of Chemistry and Molecular Engineering Institution CHINA
| | - Shiyan Zhou
- Nanjing Tech University School of Chemistry and Molecular Engineering Institution CHINA
| | - Bo Li
- Nanjing Tech University School of Chemistry and Molecular Engineering Institution CHINA
| | - Xueyang Liu
- Nanjing Tech University School of Chemistry and Molecular Engineering Institution CHINA
| | - Hongyu Chen
- Westlake University Institute of Natural Sciences CHINA
| | - Hong Wang
- University of Science and Technology of China Department of Environmental Science and Engineering N0. 96 Jinzhai road 230026 Hefei CHINA
| |
Collapse
|
5
|
Sabri MA, Al Jitan S, Bahamon D, Vega LF, Palmisano G. Current and future perspectives on catalytic-based integrated carbon capture and utilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148081. [PMID: 34091328 DOI: 10.1016/j.scitotenv.2021.148081] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/03/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
There exist several well-known methods with varying maturity for capturing carbon dioxide from emission sources of different concentrations, including absorption, adsorption, cryogenics and membrane separation, among others. The capture and separation steps can produce almost pure CO2, but at substantial cost for being conditioned for transport and final utilization, with high economical risks to be considered. A possible way for the elimination of this conditioning and cost is direct CO2 utilization, whether on-site in a further process but within the same plant, or in-situ, coupling both capture and conversion in the same unit. This approach is usually called integrated carbon capture and utilization (ICCU) or integrated carbon capture and conversion (ICCC), and has lately started receiving considerable attention in many circles. As CO2 is already industrially employed in other sectors, such as food preservation, water treatment and conversion to high added-value chemicals and fuels such as methanol, methane, etc., among others, it is of great interest to explore the global ICCC approach. Catalytic-based processes play a key role in CO2 conversion, and different technologies are gaining great attention from both academia and industry. However, the 'big picture of ICCU' and in which technology the efforts should focus on at large scale is still unclear. This review analyzes some promising concepts of ICCU specifically on CO2 catalytic conversion, highlighting their current commercial relevance as well as challenges that have to be faced today and in the next future.
Collapse
Affiliation(s)
- Muhammad Ashraf Sabri
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Samar Al Jitan
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Research and Innovation Center on CO(2) and H(2) (RICH Center), Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Daniel Bahamon
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Research and Innovation Center on CO(2) and H(2) (RICH Center), Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Lourdes F Vega
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Research and Innovation Center on CO(2) and H(2) (RICH Center), Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates.
| | - Giovanni Palmisano
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Research and Innovation Center on CO(2) and H(2) (RICH Center), Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates.
| |
Collapse
|
6
|
Feng X, Pan F, Zhang P, Wang X, Zhou H, Huang Y, Li Y. Metal‐Organic Framework MIL‐125 Derived Mg
2+
‐Doped Mesoporous TiO
2
for Photocatalytic CO
2
Reduction. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xuhui Feng
- J. Mike Walker'66 Department of Mechanical Engineering Texas A&M University College Station Texas 77843 USA
| | - Fuping Pan
- J. Mike Walker'66 Department of Mechanical Engineering Texas A&M University College Station Texas 77843 USA
| | - Peng Zhang
- Department of Chemistry Texas A&M University College Station Texas 77843 USA
| | - Xiao Wang
- Department of Biological and Agricultural Engineering Texas A&M University College Station Texas 77843 USA
| | - Hong‐Cai Zhou
- Department of Chemistry Texas A&M University College Station Texas 77843 USA
- Department of Materials Science and Engineering Texas A&M University College Station Texas 77843 USA
| | - Yongheng Huang
- Department of Biological and Agricultural Engineering Texas A&M University College Station Texas 77843 USA
| | - Ying Li
- J. Mike Walker'66 Department of Mechanical Engineering Texas A&M University College Station Texas 77843 USA
| |
Collapse
|
7
|
Visible light assisted photocatalytic reduction of CO2 to methanol using Fe3O4@N-C/Cu2O nanostructure photocatalyst. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112763] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Iqbal F, Mumtaz A, Shahabuddin S, Abd Mutalib MI, Shaharun MS, Nguyen TD, Khan MR, Abdullah B. Photocatalytic reduction of
CO
2
to methanol over
ZnFe
2
O
4
/
TiO
2
(p–n) heterojunctions under visible light irradiation. JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY 2020; 95:2208-2221. [DOI: 10.1002/jctb.6408] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Affiliation(s)
- Farukh Iqbal
- Department of Chemical and Environmental Engineering, School of EngineeringRMIT University Melbourne Australia
- Chemical Engineering DepartmentUniversiti Teknologi PETRONAS Bandar Seri Iskandar Malaysia
| | - Asad Mumtaz
- Department of Fundamental and Applied SciencesUniversiti Teknologi PETRONAS Bandar Seri Iskandar Malaysia
- School of Natural Sciences (SNS)National University of Sciences and Technology (NUST) Islamabad Pakistan
| | - Syed Shahabuddin
- Department of Science, School of TechnologyPandit Deendayal Petroleum University Gandhinagar India
| | | | - Maizatul Shima Shaharun
- Department of Fundamental and Applied SciencesUniversiti Teknologi PETRONAS Bandar Seri Iskandar Malaysia
| | - Trinh Duy Nguyen
- Center of Excellence for Green Energy Environmental Nanomaterials (CE@GrEEN)Nguyen Tat Thanh University Ho Chi Minh City Vietnam
| | - Maksudur Rahman Khan
- Department of Natural Resource and Chemical EngineeringUniversiti Malaysia Pahang Pekan Malaysia
| | - Bawadi Abdullah
- Chemical Engineering DepartmentUniversiti Teknologi PETRONAS Bandar Seri Iskandar Malaysia
- Chemical Engineering DepartmentCenter of Contaminant Control and Utilization (CenCoU), Institute Contaminant Management for Oil and Gas Bandar Seri Iskandar Malaysia
| |
Collapse
|
9
|
Abstract
TiO2 probably plays the most important role in photocatalysis due to its excellent chemical and physical properties. However, the band gap of TiO2 corresponds to the Ultraviolet (UV) region, which is inactive under visible irradiation. At present, TiO2 has become activated in the visible light region by metal and nonmetal doping and the fabrication of composites. Recently, nano-TiO2 has attracted much attention due to its characteristics of larger specific surface area and more exposed surface active sites. nano-TiO2 has been obtained in many morphologies such as ultrathin nanosheets, nanotubes, and hollow nanospheres. This work focuses on the application of nano-TiO2 in efficient environmental photocatalysis such as hydrogen production, dye degradation, CO2 degradation, and nitrogen fixation, and discusses the methods to improve the activity of nano-TiO2 in the future.
Collapse
|
10
|
Berlanga I. Synthesis of Non-Uniform Functionalized Amphiphilic Block Copolymers and Giant Vesicles in the Presence of the Belousov-Zhabotinsky Reaction. Biomolecules 2019; 9:E352. [PMID: 31398958 PMCID: PMC6723531 DOI: 10.3390/biom9080352] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 12/14/2022] Open
Abstract
Giant vesicles with several-micrometer diameters were prepared by the self-assembly of an amphiphilic block copolymer in the presence of the Belousov-Zhabotinsky (BZ) reaction. The vesicle is composed of a non-uniform triblock copolymer synthesized by multi-step reactions in the presence of air at room temperature. The triblock copolymer contains poly(glycerol monomethacrylate) (PGMA) as the hydrophilic block copolymerized with tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)3), which catalyzes the BZ reaction, and 2-hydroxypropyl methacrylate (HPMA) as the hydrophobic block. In this new approach, the radicals generated in the BZ reaction can activate a reversible addition-fragmentation chain transfer (RAFT) polymerization to self-assemble the polymer into vesicles with diameters of approximately 3 µm. X-ray photoelectron spectroscopy (XPS) measurements demonstrated that the PGMA-b-Ru(bpy)3-b-PHPMA triblock copolymer is brominated and increases the osmotic pressure inside the vesicle, leading to micrometer-sized features. The effect of solvent on the morphological transitions are also discussed briefly. This BZ strategy, offers a new perspective to prepare giant vesicles as a platform for promising applications in the areas of microencapsulation and catalyst support, due to their significant sizes and large microcavities.
Collapse
Affiliation(s)
- Isadora Berlanga
- Department of Earth and Planetary Sciences and Origins of Life Initiative, Harvard University, 100 Edwin H. Land Bvld., Cambridge, MA 02138, USA.
- Department of Chemical Engineering, Biotechnology and Materials. FCFM, Universidad de Chile, Beauchef 851, Santiago 8370456, Chile.
| |
Collapse
|
11
|
Mian MM, Liu G, Yousaf B, Fu B, Ahmed R, Abbas Q, Munir MAM, Ruijia L. One-step synthesis of N-doped metal/biochar composite using NH 3-ambiance pyrolysis for efficient degradation and mineralization of Methylene Blue. J Environ Sci (China) 2019; 78:29-41. [PMID: 30665648 DOI: 10.1016/j.jes.2018.06.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/01/2018] [Accepted: 06/20/2018] [Indexed: 06/09/2023]
Abstract
A series of new biochar-supported composite based on the combination of biochar and metallic nanoparticles (NPs) were produced through single-step pyrolysis of FeCl3-Ti(OBu)4 laden agar biomass under NH3 environment. The physiochemical properties of composites were characterized thoroughly. It has found that heating temperature and N-doping through NH3-ambiance pyrolysis significantly influence the visible-light sensitivity and bandgap energy of composites. The catalytic activities of composites were measured by degradation of Methylene Blue (MB) in the presence or absence of H2O2 and visible-light irradiation. Our best catalyst (N-TiO2-Fe3O4-biochar) exhibits rapid and high MB removal competency (99.99%) via synergism of adsorption, photodegradation, and Fenton-like reaction. Continuous production of O2- and OH radicles performs MB degradation and mineralization, confirmed by scavenging experiments and degradation product analysis. The local trap state Ti3+, Fe3O4, and N-carbon of the catalyst acted as active sites. It has suggested that the Ti3+ and N-doped dense carbon layer improve charge separation and shuttle that prolonged photo-Fenton like reaction. Moreover, the catalyst is highly stable, collectible, and recyclable up to 5 cycles with high MB degradation efficiency. This work provides a new insight into the synthesis of highly visible-light sensitized biochar-supported photocatalyst through NH3-ambiance pyrolysis of NPs-laden biomass.
Collapse
Affiliation(s)
- Md Manik Mian
- CAS Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Shaanxi 710075, China
| | - Guijian Liu
- CAS Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Shaanxi 710075, China.
| | - Balal Yousaf
- CAS Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Shaanxi 710075, China
| | - Biao Fu
- CAS Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Shaanxi 710075, China
| | - Rafay Ahmed
- CAS Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Shaanxi 710075, China
| | - Qumber Abbas
- CAS Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Shaanxi 710075, China
| | - Mehr Ahmed Mujtaba Munir
- CAS Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Shaanxi 710075, China
| | - Liu Ruijia
- CAS Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Shaanxi 710075, China
| |
Collapse
|
12
|
Rana P, Gaur R, Gupta R, Arora G, Jayashree A, Sharma RK. Cross-dehydrogenative C(sp3)–C(sp3) coupling via C–H activation using magnetically retrievable ruthenium-based photoredox nanocatalyst under aerobic conditions. Chem Commun (Camb) 2019; 55:7402-7405. [DOI: 10.1039/c9cc02386k] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A robust, magnetically retrievable photoredox Ru-based heterogeneous nanocatalyst was fabricated for the highly regio-selective synthesis of N-aryl-tetrahydroisoquinoline derivatives.
Collapse
Affiliation(s)
- Pooja Rana
- Green Chemistry Network Centre
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| | - Rashmi Gaur
- Green Chemistry Network Centre
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| | - Radhika Gupta
- Green Chemistry Network Centre
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| | - Gunjan Arora
- Green Chemistry Network Centre
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| | - A. Jayashree
- Centre for Chemical Sciences & Technology
- IST
- Jawaharlal Nehru Technological University
- Hyderabad 500085
- India
| | - Rakesh Kumar Sharma
- Green Chemistry Network Centre
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| |
Collapse
|
13
|
Prajapati PK, Jain SL. Synthesis and evaluation of CoPc grafted bismuth oxyhalide (Bi24O31Br10): a visible light-active photocatalyst for CO2 reduction into methanol. Dalton Trans 2019; 48:4941-4948. [DOI: 10.1039/c9dt00792j] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The present study describes the synthesis, characterization, and evaluation of cobalt(ii) phthalocyanine embedded bismuth oxyhalide (CoPc@Bi24O31Br10) for the photoreduction of CO2 into methanol selectively using triethylamine (TEA) as a sacrificial donor under visible light illumination.
Collapse
Affiliation(s)
- Pankaj Kumar Prajapati
- Chemical and Material Sciences Division
- CSIR-Indian Institute of Petroleum
- Dehradun-248005
- India
- Academy of Scientific and Innovative Research
| | - Suman L. Jain
- Chemical and Material Sciences Division
- CSIR-Indian Institute of Petroleum
- Dehradun-248005
- India
| |
Collapse
|
14
|
Kumar A, Kumar P, M.S. A, Singh DP, Behera B, Jain SL. A bridged ruthenium dimer (Ru–Ru) for photoreduction of CO2 under visible light irradiation. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.12.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Mian MM, Liu G. Recent progress in biochar-supported photocatalysts: synthesis, role of biochar, and applications. RSC Adv 2018; 8:14237-14248. [PMID: 35540749 PMCID: PMC9079915 DOI: 10.1039/c8ra02258e] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 03/25/2018] [Indexed: 12/15/2022] Open
Abstract
Incorporating photocatalytic nanoparticles with biochar templates can produce biochar-supported photocatalysts (BSPs) and combine the advantages of biochar with catalytic nanoparticles. The obtained composite exhibits excellent surface properties, crystallinity, chemical stability, recoverability, and higher photocatalytic competency than the bare semiconductor photocatalyst. The literature and advances in BSPs based on the combination of low-cost biochar and catalytic nanoparticles are presented in this review. Various synthetic techniques and physicochemical properties of BSPs are summarized. The article then discusses in detail the important role of biochar in influencing the photocatalytic performance of BSPs such as supporting nanoparticles, increasing the surface area and the number of active sites, shuttling electrons, acting as an electron reservoir, increasing charge separation, and reducing band gap energy. Furthermore, the synergistic effects of adsorption and photodegradation of organic pollutants by BSPs are discussed with in-depth mechanistic evidence. Finally, the application of BSPs in various fields and constructive suggestions for their future development are reported.
Collapse
Affiliation(s)
- Md Manik Mian
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China Hefei 230026 China +86 551 63621485 +86 551 63603714
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences Xi'an Shaanxi 710075 PR China
| | - Guijian Liu
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China Hefei 230026 China +86 551 63621485 +86 551 63603714
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences Xi'an Shaanxi 710075 PR China
| |
Collapse
|
16
|
Zhang L, Kong G, Meng Y, Tian J, Zhang L, Wan S, Lin J, Wang Y. Direct Coupling of Thermo- and Photocatalysis for Conversion of CO 2 -H 2 O into Fuels. CHEMSUSCHEM 2017; 10:4709-4714. [PMID: 29045065 DOI: 10.1002/cssc.201701472] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/14/2017] [Indexed: 05/08/2023]
Abstract
Photocatalytic CO2 reduction into renewable hydrocarbon solar fuels is considered as a promising strategy to simultaneously address global energy and environmental issues. This study focused on the direct coupling of photocatalytic water splitting and thermocatalytic hydrogenation of CO2 in the conversion of CO2 -H2 O into fuels. Specifically, it was found that direct coupling of thermo- and photocatalysis over Au-Ru/TiO2 leads to activity 15 times higher (T=358 K; ca. 99 % CH4 selectivity) in the conversion of CO2 -H2 O into fuels than that of photocatalytic water splitting. This is ascribed to the promoting effect of thermocatalytic hydrogenation of CO2 by hydrogen atoms generated in situ by photocatalytic water splitting.
Collapse
Affiliation(s)
- Li Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Guoguo Kong
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yaping Meng
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jinshu Tian
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Lijie Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Shaolong Wan
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- National Engineering Laboratory for Green Chemical Production of Alcohols, Ethers, and Esters, Xiamen University, Xiamen, 361005, P. R. China
- Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Jingdong Lin
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- National Engineering Laboratory for Green Chemical Production of Alcohols, Ethers, and Esters, Xiamen University, Xiamen, 361005, P. R. China
| | - Yong Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- National Engineering Laboratory for Green Chemical Production of Alcohols, Ethers, and Esters, Xiamen University, Xiamen, 361005, P. R. China
- Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, 361005, P. R. China
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
17
|
Kumar P, Kumar A, Queffélec C, Gudat D, Wang Q, Jain SL, Boukherroub R, Szunerits S. Visible light assisted hydrogen generation from complete decomposition of hydrous hydrazine using rhodium modified TiO 2 photocatalysts. Photochem Photobiol Sci 2017; 16:1036-1042. [PMID: 28548158 DOI: 10.1039/c6pp00432f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 05/12/2017] [Indexed: 06/29/2024]
Abstract
Hydrogen is considered to be an ideal energy carrier, which produces only water when combined with oxygen and thus has no detrimental effect on the environment. While the catalytic decomposition of hydrous hydrazine for the production of hydrogen is well explored, little is known about its photocatalytic decomposition. The present paper describes a highly efficient photochemical methodology for the production of hydrogen through the decomposition of aqueous hydrazine using titanium dioxide nanoparticles modified with a Rh(i) coordinated catechol phosphane ligand (TiO2-Rh) as a photocatalyst under visible light irradiation. After 12 h of visible light irradiation, the hydrogen yield was 413 μmol g-1 cat with a hydrogen evolution rate of 34.4 μmol g-1 cat h-1. Unmodified TiO2 nanoparticles offered a hydrogen yield of 83 μmol g-1 cat and a hydrogen evolution rate of only 6.9 μmol g-1 cat h-1. The developed photocatalyst was robust under the experimental conditions and could be efficiently reused for five subsequent runs without any significant change in its activity. The higher stability of the photocatalyst is attributed to the covalent attachment of the Rh complex, whereas the higher activity is believed to be due to the synergistic mechanism that resulted in better electron transfer from the Rh complex to the conduction band of TiO2.
Collapse
Affiliation(s)
- Pawan Kumar
- Chemical Sciences Division, CSIR-Indian Institute of Petroleum, Dehradun-248005, India. and Academy of Scientific and Industrial Research (AcSIR), New Delhi, 110001, India
| | - Anurag Kumar
- Chemical Sciences Division, CSIR-Indian Institute of Petroleum, Dehradun-248005, India. and Academy of Scientific and Industrial Research (AcSIR), New Delhi, 110001, India
| | - Clémence Queffélec
- Chimie Et Interdisciplinarité: Synthèse Analyse Modélisation (CEISAM), Université de Nantes, CNRS, UMR 6230, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Dietrich Gudat
- Institut für Anorganische Chemie, University of Stuttgart, Pfaffenwaldring 55, 70550 Stuttgart, Germany
| | - Qi Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Shandong University, Jinan 250061, China
| | - Suman L Jain
- Chemical Sciences Division, CSIR-Indian Institute of Petroleum, Dehradun-248005, India.
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 - IEMN, F-59000 Lille, France.
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 - IEMN, F-59000 Lille, France.
| |
Collapse
|
18
|
Bhar S, Ananthakrishnan R. Ru(ii)-Metal complex immobilized mesoporous SBA-15 hybrid for visible light induced photooxidation of chlorophenolic compounds in aqueous medium. Photochem Photobiol Sci 2017; 16:1290-1300. [DOI: 10.1039/c6pp00363j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The work focuses on room-temperature photocatalytic degradation of phenolic compounds by Ru(ii)-complex immobilized mesoporous silica SBA-15 under visible light in an aqueous medium.
Collapse
Affiliation(s)
- Sumana Bhar
- Department of Chemistry
- Green Environmental Materials & Analytical Chemistry Laboratory
- Indian Institute of Technology
- Kharagpur 721302
- India
| | - Rajakumar Ananthakrishnan
- Department of Chemistry
- Green Environmental Materials & Analytical Chemistry Laboratory
- Indian Institute of Technology
- Kharagpur 721302
- India
| |
Collapse
|
19
|
Xu Q, Zeng J, Wang H, Li X, Xu J, Wu J, Xiao G, Xiao FX, Liu X. Ligand-triggered electrostatic self-assembly of CdS nanosheet/Au nanocrystal nanocomposites for versatile photocatalytic redox applications. NANOSCALE 2016; 8:19161-19173. [PMID: 27827501 DOI: 10.1039/c6nr07356e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A facile and efficient ligand-triggered electrostatic self-assembly strategy has been developed to fabricate a series of Au/CdS nanosheet (Ns) (Au-CdS Ns) nanocomposites with varied weight addition ratios of Au nanoparticles (NPs) by judiciously utilizing the intrinsic surface charge properties of assembly units, through which uniform dispersion and controllable deposition of Au NPs on the CdS Ns were achieved. Versatile probe reactions including photocatalytic oxidation of an organic dye pollutant, selective photocatalytic reduction of aromatic nitro compounds and photocatalytic hydrogen production reactions under visible light irradiation and ambient conditions were used to systematically evaluate the photoredox performances of the as-assembled well-defined Au-CdS Ns nanocomposites. It was unveiled that the photoactivities of Au-CdS Ns nanocomposites strongly depend on the weight addition ratio of Au NPs and the addition of an excess amount of Au NPs is detrimental to the separation of photogenerated charge carriers from CdS Ns. With the optimum addition amount of Au NPs (1 wt%), it was found that spontaneous assembly of Au NPs on the CdS Ns remarkably prolonged the lifetime of the photogenerated charge carriers from CdS Ns under visible light irradiation, thus resulting in significantly enhanced photocatalytic redox activities of Au-CdS Ns nanocomposites compared with those of CdS Ns. The crucial role of Au NPs in the photoredox reactions as efficient electron traps rather than plasmonic sensitizers was determined. Moreover, predominant active species responsible for the photocatalytic process were unambiguously determined and a possible photocatalytic mechanism was elucidated. It is anticipated that our work could open up a new avenue to rationally prepare various 2D semiconductors-metal nanocomposites by utilizing such a simple and efficient self-assembly strategy for extensive photocatalytic applications in a myriad of fields.
Collapse
Affiliation(s)
- Qingchi Xu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials, Xiamen University, Xiamen, 361005, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Li K, Peng B, Peng T. Recent Advances in Heterogeneous Photocatalytic CO2 Conversion to Solar Fuels. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02089] [Citation(s) in RCA: 804] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kan Li
- College of Chemistry and
Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Bosi Peng
- College of Chemistry and
Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Tianyou Peng
- College of Chemistry and
Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
21
|
Liu J, Shi H, Huang X, Shen Q, Zhao G. Efficient Photoelectrochemical Reduction of CO 2 on Pyridyl Covalent Bonded Ruthenium(II) Based-Photosensitizer. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.08.135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Wu T, Long J, Fan Z, Du M, Xiong S, Zhao D, Ji F, He Q, Zeng Y, Xu X. Synthesis and photocatalytic activity of hexagonal phase NaYF4:Ho3+@TiO2core–shell microcrystals. CrystEngComm 2016. [DOI: 10.1039/c6ce01022a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|