1
|
Cazzoli R, Zamborlin A, Ermini ML, Salerno A, Curcio M, Nicoletta FP, Iemma F, Vittorio O, Voliani V, Cirillo G. Evolving approaches in glioma treatment: harnessing the potential of copper metabolism modulation. RSC Adv 2023; 13:34045-34056. [PMID: 38020008 PMCID: PMC10661684 DOI: 10.1039/d3ra06434d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023] Open
Abstract
The key properties and high versatility of metal nanoparticles have shed new perspectives on cancer therapy, with copper nanoparticles gaining great interest because of the ability to couple the intrinsic properties of metal nanoparticles with the biological activities of copper ions in cancer cells. Copper, indeed, is a cofactor involved in different metabolic pathways of many physiological and pathological processes. Literature data report on the use of copper in preclinical protocols for cancer treatment based on chemo-, photothermal-, or copper chelating-therapies. Copper nanoparticles exhibit anticancer activity via multiple routes, mainly involving the targeting of mitochondria, the modulation of oxidative stress, the induction of apoptosis and autophagy, and the modulation of immune response. Moreover, compared to other metal nanoparticles (e.g. gold, silver, palladium, and platinum), copper nanoparticles are rapidly cleared from organs with low systemic toxicity and benefit from the copper's low cost and wide availability. Within this review, we aim to explore the impact of copper in cancer research, focusing on glioma, the most common primary brain tumour. Glioma accounts for about 80% of all malignant brain tumours and shows a poor prognosis with the five-year survival rate being less than 5%. After introducing the glioma pathogenesis and the limitation of current therapeutic strategies, we will discuss the potential impact of copper therapy and present the key results of the most relevant literature to establish a reliable foundation for future development of copper-based approaches.
Collapse
Affiliation(s)
- Riccardo Cazzoli
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales Sydney NSW Australia
| | - Agata Zamborlin
- NEST-Scuola Normale Superiore Piazza San Silvestro 12 - 56127 Pisa Italy
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia Piazza San Silvestro 12 - 56127 Pisa Italy
| | - Maria Laura Ermini
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia Piazza San Silvestro 12 - 56127 Pisa Italy
| | - Antonietta Salerno
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales Sydney NSW Australia
| | - Manuela Curcio
- Department of Pharmacy Health and Nutritional Science, University of Calabria 87036 Rende Italy +39 0984493208
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy Health and Nutritional Science, University of Calabria 87036 Rende Italy +39 0984493208
| | - Francesca Iemma
- Department of Pharmacy Health and Nutritional Science, University of Calabria 87036 Rende Italy +39 0984493208
| | - Orazio Vittorio
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales Sydney NSW Australia
- School of Biomedical Sciences, University of New South Wales Sydney NSW Australia
| | - Valerio Voliani
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia Piazza San Silvestro 12 - 56127 Pisa Italy
- Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa Viale Cembrano 4 - 16148 Genoa Italy
| | - Giuseppe Cirillo
- Department of Pharmacy Health and Nutritional Science, University of Calabria 87036 Rende Italy +39 0984493208
| |
Collapse
|
2
|
Sun W, Wang C, Tian C, Li X, Hu X, Liu S. Nanotechnology for brain tumor imaging and therapy based on π-conjugated materials: state-of-the-art advances and prospects. Front Chem 2023; 11:1301496. [PMID: 38025074 PMCID: PMC10663370 DOI: 10.3389/fchem.2023.1301496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
In contemporary biomedical research, the development of nanotechnology has brought forth numerous possibilities for brain tumor imaging and therapy. Among these, π-conjugated materials have garnered significant attention as a special class of nanomaterials in brain tumor-related studies. With their excellent optical and electronic properties, π-conjugated materials can be tailored in structure and nature to facilitate applications in multimodal imaging, nano-drug delivery, photothermal therapy, and other related fields. This review focuses on presenting the cutting-edge advances and application prospects of π-conjugated materials in brain tumor imaging and therapeutic nanotechnology.
Collapse
Affiliation(s)
- Wenshe Sun
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Congxiao Wang
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chuan Tian
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xueda Li
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaokun Hu
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shifeng Liu
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
3
|
Liang Y, Diroll BT, Wong KL, Harvey SM, Wasielewski M, Ong WL, Schaller RD, Malen JA. Differentiating Thermal Conductances at Semiconductor Nanocrystal/Ligand and Ligand/Solvent Interfaces in Colloidal Suspensions. NANO LETTERS 2023; 23:3687-3693. [PMID: 37093047 PMCID: PMC10176576 DOI: 10.1021/acs.nanolett.2c04627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Infrared-pump, electronic-probe (IPEP) spectroscopy is used to measure heat flow into and out of CdSe nanocrystals suspended in an organic solvent, where the surface ligands are initially excited with an infrared pump pulse. Subsequently, the heat is transferred from the excited ligands to the nanocrystals and in parallel to the solvent. Parallel heat transfer in opposite directions uniquely enables us to differentiate the thermal conductances at the nanocrystal/ligand and ligand/solvent interfaces. Using a novel solution to the heat diffusion equation, we fit the IPEP data to find that the nanocrystal/ligand conductances range from 88 to 135 MW m-2 K-1 and are approximately 1 order of magnitude higher than the ligand/solvent conductances, which range from 7 to 26 MW m-2 K-1. Transient nonequilibrium molecular dynamics (MD) simulations of nanocrystal suspensions agree with IPEP data and show that ligands bound to the nanocrystal by bidentate bonds have more than twice the per-ligand conductance as those bound by monodentate bonds.
Collapse
Affiliation(s)
- Yuxing Liang
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, United States
| | - Benjamin T Diroll
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S Cass Ave., Lemont, Illinois 60439, United States
| | - Kae-Lin Wong
- ZJU-UIUC Institute, College of Energy Engineering, Zhejiang University, 718 East Haizhou Road, Hangzhou 310058, People's Republic of China
| | - Samantha M Harvey
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States
| | - Michael Wasielewski
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States
| | - Wee-Liat Ong
- ZJU-UIUC Institute, College of Energy Engineering, Zhejiang University, 718 East Haizhou Road, Hangzhou 310058, People's Republic of China
| | - Richard D Schaller
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S Cass Ave., Lemont, Illinois 60439, United States
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States
| | - Jonathan A Malen
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
4
|
Skandalakis GP, Rivera DR, Rizea CD, Bouras A, Raj JGJ, Bozec D, Hadjipanayis CG. Hyperthermia treatment advances for brain tumors. Int J Hyperthermia 2020; 37:3-19. [PMID: 32672123 PMCID: PMC7756245 DOI: 10.1080/02656736.2020.1772512] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/15/2020] [Accepted: 05/16/2020] [Indexed: 02/06/2023] Open
Abstract
Hyperthermia therapy (HT) of cancer is a well-known treatment approach. With the advent of new technologies, HT approaches are now important for the treatment of brain tumors. We review current clinical applications of HT in neuro-oncology and ongoing preclinical research aiming to advance HT approaches to clinical practice. Laser interstitial thermal therapy (LITT) is currently the most widely utilized thermal ablation approach in clinical practice mainly for the treatment of recurrent or deep-seated tumors in the brain. Magnetic hyperthermia therapy (MHT), which relies on the use of magnetic nanoparticles (MNPs) and alternating magnetic fields (AMFs), is a new quite promising HT treatment approach for brain tumors. Initial MHT clinical studies in combination with fractionated radiation therapy (RT) in patients have been completed in Europe with encouraging results. Another combination treatment with HT that warrants further investigation is immunotherapy. HT approaches for brain tumors will continue to a play an important role in neuro-oncology.
Collapse
Affiliation(s)
- Georgios P. Skandalakis
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Daniel R. Rivera
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Caroline D. Rizea
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alexandros Bouras
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Joe Gerald Jesu Raj
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Dominique Bozec
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Constantinos G. Hadjipanayis
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
5
|
Lv R, Wang Y, Liu J, Feng M, Yang F, Jiang X, Tian J. When a Semiconductor Utilized as an NIR Laser-Responsive Photodynamic/Photothermal Theranostic Agent Integrates with Upconversion Nanoparticles. ACS Biomater Sci Eng 2019; 5:3100-3110. [DOI: 10.1021/acsbiomaterials.9b00438] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ruichan Lv
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Yanxing Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Jun Liu
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Miao Feng
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Fan Yang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Xue Jiang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Jie Tian
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
6
|
Liang Z, Yang Y, Jia F, Sai K, Ullah S, Fidelis C, Lin Z, Li F. Intrathecal Delivery of Folate Conjugated near-Infrared Quantum Dots for Targeted in Vivo Imaging of Gliomas in Mice Brains. ACS APPLIED BIO MATERIALS 2019; 2:1432-1439. [DOI: 10.1021/acsabm.8b00629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Yaqi Yang
- Department of Anatomy and Neurobiology, Guangdong Pharmaceutical University, Guangzhou 510080, China
| | | | - Ke Sai
- Department of Neurosurgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | | | | | | | | |
Collapse
|
7
|
Veeranarayanan S, Mohamed MS, Poulose AC, Rinya M, Sakamoto Y, Maekawa T, Kumar DS. Photodynamic therapy at ultra-low NIR laser power and X-Ray imaging using Cu 3BiS 3 nanocrystals. Theranostics 2018; 8:5231-5245. [PMID: 30555543 PMCID: PMC6276086 DOI: 10.7150/thno.25286] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 08/19/2018] [Indexed: 01/05/2023] Open
Abstract
Materials with efficient potential in imaging as well as therapy are gaining particular attention in current medical research. Photodynamic therapy (PDT) has been recently recognized as a promising treatment option for solid tumors. Still, most of the nanomaterial-based PDT modules either employ an additional photosensitizer or require high power laser sources. Also, they suffer from a lack of responsiveness in the near-infrared (NIR) region. Nanomaterials that could realize PDT independently (without any photosensitizer), at safe laser dose and in the deep tissue penetrative NIR region would definitely be better solid tumor treatment options. Methods: Herein, Cu- and Bi-based bimetal chalcogenide (Cu3BiS3), with absorption in the NIR region was developed. High-performance PDT of cancer and high-contrast x-ray imaging of tumor were performed in vivo. Biocompatibility of the NCs was also assessed in vivo. Results: The highlight of the results was the realization of ultra-low dose NIR laser-mediated PDT, which has not been achieved before, leading to complete tumor regression. This could be a breakthrough in providing a pain- and scar-less treatment option, especially for solid tumors and malignant/benign subcutaneous masses. Though the NCs are active in the photo-thermal therapy (PTT) regime as well, focus is given to the exciting aspect of extremely low power-induced PDT observed here. Conclusion: Their extended in vivo biodistribution with commendable hemo- and histo-compatibilities, along with imaging and multi-therapeutic capabilities, project these Cu3BiS3 NCs as promising, prospective theranostic candidates.
Collapse
Affiliation(s)
| | - M. Sheikh Mohamed
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, 350-8585, Japan
- Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, 350-8585, Japan
| | | | - Masuko Rinya
- JEOL Ltd. Otemachi Nomura Bldg.13F, 2-1-1, Otemachi, Chiyoda, Tokyo, 100-0004, Japan
| | - Yasushi Sakamoto
- Biomedical Research Centre, Division of Analytical Science, Saitama Medical University, Saitama 350-0495, Japan
| | - Toru Maekawa
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, 350-8585, Japan
- Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, 350-8585, Japan
| | - D. Sakthi Kumar
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, 350-8585, Japan
- Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, 350-8585, Japan
| |
Collapse
|
8
|
Arconada-Alvarez SJ, Lemaster JE, Wang J, Jokerst JV. The development and characterization of a novel yet simple 3D printed tool to facilitate phantom imaging of photoacoustic contrast agents. PHOTOACOUSTICS 2017; 5:17-24. [PMID: 28239554 PMCID: PMC5314822 DOI: 10.1016/j.pacs.2017.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/17/2017] [Accepted: 02/07/2017] [Indexed: 05/02/2023]
Abstract
We report a new approach to preparing phantoms using 3D printing. This device supports plastic tubing containing the contrast agent and is immersed in a solution with absorption or scattering properties that mimic tissue. Up to 12 tubing samples could be placed in the device with sample-to-sample spacing as low as 0.3 mm and at a constant distance from the transducer (±0.16 mm), which is critical in validating photoacoustic contrast agents. We also studied different types of tubing and found that tubing with a larger outside diameter has more inherent signal. Both 40% India Ink and lipids in the immersion media modulated the signal. Finally, we created a depth phantom and found that signal decayed following a linear relationship (R2 = 0.997) with respect to distance from the focal point. We include computer-assisted drafting code the community can use to print this phantom or customized versions of this phantom.
Collapse
|
9
|
Zhang J, Li J, Kawazoe N, Chen G. Composite scaffolds of gelatin and gold nanoparticles with tunable size and shape for photothermal cancer therapy. J Mater Chem B 2016; 5:245-253. [PMID: 32263543 DOI: 10.1039/c6tb02872a] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photothermal therapy (PTT) has been extensively investigated as a promising strategy for cancer therapy. For successful application of this technique, various nanomaterials have been explored as photothermal conversion agents. Gold nanoparticles (AuNPs), especially Au nanorods and Au nanostars, have received much attention for photothermal therapy because of their facile preparation and high photothermal conversion efficiency. Due to the limited accumulation and easy diffusion of free nanoparticles, incorporation of nanoparticles into scaffolds for direct implantation has been demonstrated as an attractive way for cancer therapy applications. In this study, composite porous scaffolds of gelatin and AuNPs were prepared by introducing Au nanorods and Au nanostars with average sizes of around 35.0, 65.0 and 115.0 nm in gelatin scaffolds. The composite scaffolds were used for the localized PTT application of cancer cells. Gel/AuNP composite scaffolds supported cell adhesion and showed good biocompatibility. Temperature in the composite scaffolds increased quickly upon NIR laser irradiation. Photothermal efficiency and cancer cell killing efficiency were dependent on the shape, size and amount of AuNPs in the composite scaffolds. The composite scaffolds prepared with 65.0 nm Au nanorods showed the highest photothermal efficiency and cell killing efficiency. The results indicated the importance of the shape and size modulation of AuNPs for photothermal therapy applications.
Collapse
Affiliation(s)
- Jing Zhang
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | | | | | | |
Collapse
|
10
|
Poulose AC, Veeranarayanan S, Mohamed MS, Aburto RR, Mitcham T, Bouchard RR, Ajayan PM, Sakamoto Y, Maekawa T, Kumar DS. Multifunctional Cu 2-xTe Nanocubes Mediated Combination Therapy for Multi-Drug Resistant MDA MB 453. Sci Rep 2016; 6:35961. [PMID: 27775048 PMCID: PMC5075932 DOI: 10.1038/srep35961] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/29/2016] [Indexed: 02/02/2023] Open
Abstract
Hypermethylated cancer populations are hard to treat due to their enhanced chemo-resistance, characterized by aberrant methylated DNA subunits. Herein, we report on invoking response from such a cancer lineage to chemotherapy utilizing multifunctional copper telluride (Cu2-XTe) nanocubes (NCs) as photothermal and photodynamic agents, leading to significant anticancer activity. The NCs additionally possessed photoacoustic and X-ray contrast imaging abilities that could serve in image-guided therapeutic studies.
Collapse
Affiliation(s)
- Aby Cheruvathoor Poulose
- Bio Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, 350-8585, Japan
| | - Srivani Veeranarayanan
- Bio Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, 350-8585, Japan
| | - M. Sheikh Mohamed
- Bio Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, 350-8585, Japan
| | - Rebeca Romero Aburto
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Trevor Mitcham
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Richard R. Bouchard
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Pulickel M. Ajayan
- Department of Material Science and Nano Engineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Yasushi Sakamoto
- Biomedical Research Centre, Division of Analytical Science, Saitama Medical University, Saitama, 350-0495, Japan
| | - Toru Maekawa
- Bio Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, 350-8585, Japan
| | - D. Sakthi Kumar
- Bio Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, 350-8585, Japan
| |
Collapse
|
11
|
Bissadi G, Weberskirch R. Formation of polyoxazoline-silica nanoparticles via the surface-initiated cationic polymerization of 2-methyl-2-oxazoline. Polym Chem 2016. [DOI: 10.1039/c6py01034b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The fabrication of silica hybrid nanoparticles by a surface-initiated cationic ring-opening polymerization of poly(2-methyl-2-oxazoline)s has been described.
Collapse
Affiliation(s)
- G. Bissadi
- Faculty of Chemistry and Chemical Biology
- TU Dortmund
- Dortmund
- Germany
| | - R. Weberskirch
- Faculty of Chemistry and Chemical Biology
- TU Dortmund
- Dortmund
- Germany
| |
Collapse
|