1
|
Tiantian W, Yonghui W, Junbo L. Antibody-labeled gold nanoparticle based resonance Rayleigh scattering detection of S100B. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3074-3080. [PMID: 38683678 DOI: 10.1039/d4ay00335g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Traumatic brain injury (TBI) is a sudden brain injury due to an external force that causes a large number of deaths and permanent disabilities every year. S100B has been recognized as a potential objective quantitative biomarker for screening the prognosis of TBI and severe head injury. In this article, an anti-S100B monoclonal antibody was immobilized on cysteamine (Cy) functionalized gold nanoparticles (AuNPs) by EDC-NHS chemistry, which enabled S100B resonance Rayleigh scattering (RRS) detection based on antibody-labeled gold nanoparticles. The prepared conjugates were characterized by ultraviolet-visible spectroscopy (UV-vis), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS) and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Based on the specific binding of the antibody and antigen, the RRS intensities at 381 nm and 541 nm wavelengths were significantly enhanced, and thus a dual wavelength overlapping resonance Rayleigh scattering (DWO-RRS) method was established. The scattering intensity of the two overlapping peaks was proportional to the concentration of S100B in the range of 0.05-4.5 ng mL-1 with a detection limit of 0.002 ng mL-1. The proposed DWO-RRS method is time-saving, simple, sensitive, and can be used to determine the concentration of S100B in human serum with satisfactory results, which has a promising application in the early diagnosis of TBI.
Collapse
Affiliation(s)
- Wang Tiantian
- School of Basic Medicine, Shanxi University of Traditional Chinese Medicine, Jinzhong, Shanxi, 030619, China.
| | - Wang Yonghui
- School of Basic Medicine, Shanxi University of Traditional Chinese Medicine, Jinzhong, Shanxi, 030619, China.
| | - Li Junbo
- School of Pharmacy, Changzhi Medical College, Changzhi, 046000, China.
| |
Collapse
|
2
|
Zhang W, Zhang J, Wang Y, Wang S, Wu Y, Zhang W, Wu M, Wang L, Xu G, Deng F, Liu W, Liu Z, Chen L, Xiao K, Zhang L. In Vitro Detection of S100B and Severity Evaluation of Traumatic Brain Injury Based on Biomimetic Peptide-Modified Nanochannels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306809. [PMID: 38009781 DOI: 10.1002/smll.202306809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/26/2023] [Indexed: 11/29/2023]
Abstract
The diagnosis and evaluation of traumatic brain injury (TBI) are crucial steps toward the treatment and prognosis of patients. A common question remains as to whether it is possible to introduce an ideal device for signal detection and evaluation that can directly connect digital signals with TBI, thereby enabling prompt response of the evaluation signal and sensitive and specific functioning of the detection process. Herein, a method is presented utilizing polymetric porous membranes with TRTK-12 peptide-modified nanochannels for the detection of S100B (a TBI biomarker) and assessment of TBI severity. The method leverages the specific bonding force between TRTK-12 peptide and S100B protein, along with the nanoconfinement effect of nanochannels, to achieve high sensitivity (LOD: 0.002 ng mL-1) and specificity (∆I/I0: 44.7%), utilizing ionic current change as an indicator. The proposed method, which is both sensitive and specific, offers a simple yet responsive approach for real-time evaluation of TBI severity. This innovative technique provides valuable scientific insights into the advancement of future diagnostic and therapeutic integration devices.
Collapse
Affiliation(s)
- Wenyuan Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, 518000, P. R. China
- Department of Neurosurgery, Longgang Central Hospital of Shenzhen, Shenzhen, 518116, P. R. China
| | - Jianrui Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yijun Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Senyao Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yitian Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Wenchang Zhang
- Department of Neurosurgery, Longgang Central Hospital of Shenzhen, Shenzhen, 518116, P. R. China
| | - Minghui Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Li Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Guoheng Xu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Fuan Deng
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Wenchao Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Zhengwei Liu
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, 518000, P. R. China
- Department of Neurosurgery, Longgang Central Hospital of Shenzhen, Shenzhen, 518116, P. R. China
| | - Lu Chen
- School of Materials and Environmental Engineering, Shenzhen Polytechnic, Shenzhen, 518055, P. R. China
| | - Kai Xiao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Lu Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| |
Collapse
|
3
|
Lyons S, Baile Pomares P, Vidal L, McGarry K, Morrin A, Brougham DF. Surface Potential Modulation in Boronate-Functionalized Magnetic Nanoparticles Reveals Binding Interactions: Toward Magnetophoretic Capture/Quantitation of Sugars from Extracellular Matrix. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37235552 DOI: 10.1021/acs.langmuir.3c00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Phenylboronic acids (BAs) are important synthetic receptors that bind reversibly to cis-diols enabling their use in molecular sensing. When conjugated to magnetic iron oxide nanoparticles, BAs have potential for application in separations and enrichment. Realizing this will require a new understanding of their inherent binding modes and measurement of their binding capacity and their stability in/extractability from complex environments. In this work, 3-aminophenylboronic acid was functionalized to superparamagnetic iron oxide nanoparticles (MNPs, core diameter 8.9 nm) to provide stable aqueous suspensions of functionalized particles (BA-MNPs). The progress of sugar binding and its impact on BA-MNP colloidal stability were monitored through the pH-dependence of hydrodynamic size and zeta potential during incubation with a range of saccharides. This provided the first direct observation of boronate ionization pKa in grafted BA, which in the absence of sugar shifted to a slightly more basic pH than free BA. On exposure to sugar solutions under MNP-limiting conditions, pKa moved progressively to lower pH as maximum capacity was gradually attained. The pKa shift is shown to be greater for sugars with greater BA binding affinity, and on-particle sugar exchange effects were inferred. Colloidal dispersion of BA-MNPs after binding was shown for all sugars at all pHs studied, which enabled facile magnetic extraction of glucose from agarose and cultured extracellular matrix expanded in serum-free media. Bound glucose, quantified following magnetophoretic capture, was found to be proportional to the solution glucose content under glucose-limiting conditions expected for the application. The implications for the development of MNP-immobilized ligands for selective magnetic biomarker capture and quantitation from the extracellular environment are discussed.
Collapse
Affiliation(s)
- Stephen Lyons
- SFI Insight Centre for Data Analytics; National Centre for Sensor Research; School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Paola Baile Pomares
- Departamento de Química Analítica, Nutrición y Bromatología, Instituto Universitario de Materiales, Universidad de Alicante, PO Box 99, 03080 Alicante, Spain
| | - Lorena Vidal
- Departamento de Química Analítica, Nutrición y Bromatología, Instituto Universitario de Materiales, Universidad de Alicante, PO Box 99, 03080 Alicante, Spain
| | - Katie McGarry
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Aoife Morrin
- SFI Insight Centre for Data Analytics; National Centre for Sensor Research; School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Dermot F Brougham
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
4
|
Wang WB, Li JJ, Weng GJ, Zhu J, Guo YB, Zhao JW. An anisotropic nanobox based core-shell-satellite nanoassembly of multiple SERS enhancement with heterogeneous interface for stroke marker determination. J Colloid Interface Sci 2023; 647:81-92. [PMID: 37245272 DOI: 10.1016/j.jcis.2023.05.137] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/05/2023] [Accepted: 05/20/2023] [Indexed: 05/30/2023]
Abstract
Herein, A novel gold-silver alloy nanobox (AuAgNB)@SiO2-gold nanosphere (AuNP) nanoassembly based on core-shell-satellite structure is fabricated and applied to the surface-enhanced Raman scattering (SERS) detection of S100 calcium-binding protein B protein (S100B). It contains an anisotropic hollow porous AuAgNB core with rough surface, an ultrathin silica interlayer labeled with reporter molecules, and AuNP satellites. The nanoassemblies were systematically optimized by tuning the reporter molecules concentration, silica layer thickness, AuAgNB size, and the size and number of AuNP satellite size. Remarkably, AuNP satellites are adjacent to AuAgNB@SiO2, developing AuAg-SiO2-Au heterogeneous interface. With the strong plasmon coupling between AuAgNB and AuNP satellites, chemical enhancement from heterogeneous interface, and the tip "hot spots" of AuAgNB, the SERS activity of the nanoassemblies was multiply enhanced. Additionally, the stability of nanostructure and Raman signal was significantly improved by the silica interlayer and AuNP satellites. Eventually, the nanoassemblies were applied for S100B detection. It demonstrated satisfactory sensitivity and reproducibility with a wide detection range of 10 fg/mL-10 ng/mL and a limit of detection (LOD) of 1.7 fg/mL. This work based on the AuAgNB@SiO2-AuNP nanoassemblies with multiple SERS enhancements and favorable stability demonstrates the promising application in stroke diagnosis.
Collapse
Affiliation(s)
- Wei-Bin Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian-Jun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Guo-Jun Weng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yu-Bo Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jun-Wu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
5
|
Tomaiuolo R, Zibetti M, Di Resta C, Banfi G. Challenges of the Effectiveness of Traumatic Brain Injuries Biomarkers in the Sports-Related Context. J Clin Med 2023; 12:jcm12072563. [PMID: 37048647 PMCID: PMC10095236 DOI: 10.3390/jcm12072563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Traumatic brain injury affects 69 million people every year. One of the main limitations in managing TBI patients is the lack of univocal diagnostic criteria, including the absence of standardized assessment methods and guidelines. Computerized axial tomography is the first-choice examination, despite the limited prevalence of positivity; moreover, its performance is undesirable due to the risk of radiological exposure, prolonged stay in emergency departments, inefficient use of resources, high cost, and complexity. Furthermore, immediacy and accuracy in diagnosis and management of TBIs are critically unmet medical needs. Especially in the context of sports-associated TBI, there is a strong need for prognostic indicators to help diagnose and identify at-risk subjects to avoid their returning to play while the brain is still highly vulnerable. Fluid biomarkers may emerge as new prognostic indicators to develop more accurate prediction models, improving risk stratification and clinical decision making. This review describes the current understanding of the cellular sources, temporal profile, and potential utility of leading and emerging blood-based protein biomarkers of TBI; its focus is on biomarkers that could improve the management of mild TBI cases and can be measured readily and directly in the field, as in the case of sports-related contexts.
Collapse
Affiliation(s)
- Rossella Tomaiuolo
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Martina Zibetti
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Chiara Di Resta
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy
- Correspondence:
| | - Giuseppe Banfi
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy
- IRCCS Galeazzi-Sant’Ambrogio, 20157 Milan, Italy
| |
Collapse
|
6
|
Burgos-Flórez F, Rodríguez A, Cervera E, De Ávila M, Sanjuán M, Villalba PJ. Microfluidic Paper-Based Blood Plasma Separation Device as a Potential Tool for Timely Detection of Protein Biomarkers. MICROMACHINES 2022; 13:mi13050706. [PMID: 35630172 PMCID: PMC9142996 DOI: 10.3390/mi13050706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023]
Abstract
A current challenge regarding microfluidic paper-based analytical devices (µPAD) for blood plasma separation (BPS) and electrochemical immunodetection of protein biomarkers is how to achieve a µPAD that yields enough plasma to retain the biomarker for affinity biosensing in a functionalized electrode system. This paper describes the development of a BPS µPAD to detect and quantify the S100B biomarker from peripheral whole blood. The device uses NaCl functionalized VF2 filter paper as a sample collection pad, an MF1 filter paper for plasma retention, and an optimized microfluidic channel geometry. An inverted light microscope, scanning electron microscope (SEM), and image processing software were used for visualizing BPS efficiency. A design of experiments (DOE) assessed the device’s efficacy using an S100B ELISA Kit to measure clinically relevant S100B concentrations in plasma. The BPS device obtained 50 μL of plasma from 300 μL of whole blood after 3.5 min. The statistical correlation of S100B concentrations obtained using plasma from standard centrifugation and the BPS device was 0.98. The BPS device provides a simple manufacturing protocol, short fabrication time, and is capable of S100B detection using ELISA, making one step towards the integration of technologies aimed at low-cost POC testing of clinically relevant biomarkers.
Collapse
Affiliation(s)
- Francisco Burgos-Flórez
- Biotechnology Research Group, Universidad del Norte, Barranquilla 081007, Colombia; (A.R.); (E.C.); (M.D.Á.); (P.J.V.)
- Rational Use of Energy and Preservation of the Environment Group (UREMA), Universidad del Norte, Barranquilla 081007, Colombia;
- Health and Technological Innovation, Universidad Simón Bolívar, Facultad de Ingenierías, Barranquilla 080002, Colombia
- Correspondence:
| | - Alexander Rodríguez
- Biotechnology Research Group, Universidad del Norte, Barranquilla 081007, Colombia; (A.R.); (E.C.); (M.D.Á.); (P.J.V.)
| | - Eliana Cervera
- Biotechnology Research Group, Universidad del Norte, Barranquilla 081007, Colombia; (A.R.); (E.C.); (M.D.Á.); (P.J.V.)
| | - Marcio De Ávila
- Biotechnology Research Group, Universidad del Norte, Barranquilla 081007, Colombia; (A.R.); (E.C.); (M.D.Á.); (P.J.V.)
| | - Marco Sanjuán
- Rational Use of Energy and Preservation of the Environment Group (UREMA), Universidad del Norte, Barranquilla 081007, Colombia;
| | - Pedro J. Villalba
- Biotechnology Research Group, Universidad del Norte, Barranquilla 081007, Colombia; (A.R.); (E.C.); (M.D.Á.); (P.J.V.)
| |
Collapse
|
7
|
Jović M, Prim D, Saini E, Pfeifer ME. Towards a Point-of-Care (POC) Diagnostic Platform for the Multiplex Electrochemiluminescent (ECL) Sensing of Mild Traumatic Brain Injury (mTBI) Biomarkers. BIOSENSORS 2022; 12:172. [PMID: 35323442 PMCID: PMC8946848 DOI: 10.3390/bios12030172] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Globally, 70 million people are annually affected by TBI. A significant proportion of all TBI cases are actually mild TBI (concussion, 70-85%), which is considerably more difficult to diagnose due to the absence of apparent symptoms. Current clinical practice of diagnosing mTBI largely resides on the patients' history, clinical aspects, and CT and MRI neuroimaging observations. The latter methods are costly, time-consuming, and not amenable for decentralized or accident site measurements. As an alternative (and/or complementary), mTBI diagnostics can be performed by detection of mTBI biomarkers from patients' blood. Herein, we proposed two strategies for the detection of three mTBI-relevant biomarkers (GFAP, h-FABP, and S100β), in standard solutions and in human serum samples by using an electrochemiluminescence (ECL) immunoassay on (i) a commercial ECL platform in 96-well plate format, and (ii) a "POC-friendly" platform with disposable screen-printed carbon electrodes (SPCE) and a portable ECL reader. We further demonstrated a proof-of-concept for integrating three individually developed mTBI assays ("singleplex") into a three-plex ("multiplex") assay on a single SPCE using a spatially resolved ECL approach. The presented methodology demonstrates feasibility and a first step towards the development of a rapid POC multiplex diagnostic system for the detection of a mTBI biomarker panel on a single SPCE.
Collapse
Affiliation(s)
| | | | | | - Marc Emil Pfeifer
- Diagnostic Systems Research Group, Institute of Life Technologies, School of Engineering, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), 1950 Sion, Switzerland; (M.J.); (D.P.); (E.S.)
| |
Collapse
|
8
|
Shi J, Li X, Cavagnaro MJ, Cai J, Zhang C, Li N. A Versatile Pep-CPDs Nanoprobe for Rapid Detection of mTBI Biomarker in Clinical Instances and Safe Fluorescence Imaging In Vivo for Improved Weight-Drop Mouse Model. Front Bioeng Biotechnol 2022; 10:807486. [PMID: 35340839 PMCID: PMC8942774 DOI: 10.3389/fbioe.2022.807486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Mild traumatic brain injury (mTBI) is the most common form of traumatic brain injury; however, it is the most difficult to be accurately identified in the early stage because it lacks more reliable biomarkers and detection methods. This study proposes a highly efficient system to detect a molecular biomarker for the early diagnosis of mTBI. The system was prepared by a lower cytotoxic peptide-modified fluorescent nanoprobe based on carbon polymer dots (pep-CPDs) with outstanding imaging capabilities. In vitro and in vivo tests were explored to the efficiency of pep-CPDs, inferring the good performances of cellular fluorescence imaging and in vivo imaging of mice. Moreover, an application of the versatile pep-CPDs on detecting the mTBI biomarker S100-β detection in a novel improved weight-drop mTBI mouse model and human blood samples has been successfully established. Overall, all these results indicate that the pep-CPD system is sensitive, rapid, non-toxic, and reliable for mTBI diagnosis compared with traditional detection methods. It shows a great potential in clinical and translational research and practical applications.
Collapse
Affiliation(s)
- Jian Shi
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Hematology and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xingmei Li
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | | | - Jifeng Cai
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Changquan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Na Li
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Habli Z, Kobeissy F, Khraiche ML. Advances in point-of-care platforms for traumatic brain injury: recent developments in diagnostics. Rev Neurosci 2022; 33:327-345. [PMID: 35170265 DOI: 10.1515/revneuro-2021-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 01/17/2022] [Indexed: 11/15/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of mortality and morbidity, affecting 2 million people annually in the US alone, with direct and indirect costs of $76.3 billion per year. TBI is a progressive disease with no FDA-approved drug for treating patients. Early, accurate and rapid diagnosis can have significant implications for successful triaging and intervention. Unfortunately, current clinical tests for TBI rely on CT scans and MRIs, both of which are expensive, time-consuming, and not accessible to everyone. Recent evidence of biofluid-based biomarkers being released right after a TBI incident has ignited interest in developing point-of-care (POC) platforms for early and on-site TBI diagnosis. These efforts face many challenges to accurate, sensitive, and specific diagnosis and monitoring of TBI. This review includes a deep dive into the latest advances in chemical, mechanical, electrical, and optical sensing systems that hold promise for TBI-POC diagnostic testing platforms. It also focuses on the performance of these proposed biosensors compared to biofluid-based orthodox diagnostic techniques in terms of sensitivity, specificity, and limits of detection. Finally, it examines commercialized TBI-POCs present in the market, the challenges associated with them, and the future directions and prospects of these technologies and the field.
Collapse
Affiliation(s)
- Zeina Habli
- Neural Engineering and Nanobiosensors Group, Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Massoud L Khraiche
- Neural Engineering and Nanobiosensors Group, Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| |
Collapse
|
10
|
Zhang H, Qu H, Cui J, Duan L. A simple electrochemical immunosensor based on a chitosan/reduced graphene oxide nanocomposite for sensitive detection of biomarkers of malignant melanoma. RSC Adv 2022; 12:25844-25851. [PMID: 36199606 PMCID: PMC9465697 DOI: 10.1039/d2ra04208h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022] Open
Abstract
The sensitive and specific detection of tumor biomarkers is crucial for early diagnosis and treatment of malignant melanoma. Immunoassay with a simple sensing interface and high sensitivity is highly desirable. In this work, a simple electrochemical immunosensor based on a chitosan/reduced graphene oxide (CS–rGO) nanocomposite was developed for sensitive determination of an S-100B protein, a tumor marker of malignant melanoma. CS–rGO nanocomposite were prepared by chemical reduction of graphene oxide in the presence of chitosan and modified on glassy carbon electrode (GCE) to provide a biofriendly, conductive, and easily chemically modified matrix for further immobilization of antibodies. Anti-S-100B antibodies were grafted onto the chitosan molecules to fabricate the immunorecognition interface by a simple glutaraldehyde cross-linking method. Electrochemical determination of S-100B was achieved by measuring the decreased current signal of solution phase electrochemical probes, which originated from the increased steric hindrance and insulation caused by the formation of antigen–antibody complexes at the electrode interface. Due to the good conductivity, high surface area, excellent biocompatibility, and good film-forming ability of CS–rGO, the constructed immunosensor exhibited good stability, high selectivity and sensitivity, a wide dynamic range from 10 fg mL−1 to 1 ng mL−1 and a low limit of detection of 1.9 pg mL−1 (S/N = 3). Moreover, the sensor was also applicable for the sensitive detection of S-100B protein in real human serum samples. Simple electrochemical immunosensor is easily fabricated based on chitosan/reduce graphene oxide nanocomposite for sensitive determination of a tumor marker of malignant melanoma.![]()
Collapse
Affiliation(s)
- Huihua Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hui Qu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingbo Cui
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Linxia Duan
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
11
|
Krausz AD, Korley FK, Burns MA. The Current State of Traumatic Brain Injury Biomarker Measurement Methods. BIOSENSORS 2021; 11:319. [PMID: 34562909 PMCID: PMC8469272 DOI: 10.3390/bios11090319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/16/2022]
Abstract
Traumatic brain injury (TBI) is associated with high rates of morbidity and mortality partially due to the limited tools available for diagnosis and classification. Measuring panels of protein biomarkers released into the bloodstream after injury has been proposed to diagnose TBI, inform treatment decisions, and monitor the progression of the injury. Being able to measure these protein biomarkers at the point-of-care would enable assessment of TBIs from the point-of-injury to the patient's hospital bedside. In this review, we provide a detailed discussion of devices reported in the academic literature and available on the market that have been designed to measure TBI protein biomarkers in various biofluids and contexts. We also assess the challenges associated with TBI biomarker measurement devices and suggest future research directions to encourage translation of these devices to clinical use.
Collapse
Affiliation(s)
- Alyse D. Krausz
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA
| | - Frederick K. Korley
- Emergency Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Mark A. Burns
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA
- Chemical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Tian Y, Li X, Cai R, Yang K, Gao Z, Yuan Y, Yue T, Wang Z. Aptamer modified magnetic nanoparticles coupled with fluorescent quantum dots for efficient separation and detection of Alicyclobacillus acidoterrestris in fruit juices. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Rodríguez A, Burgos-Flórez F, Posada JD, Cervera E, Zucolotto V, Sanjuán H, Sanjuán M, Villalba PJ. Electrochemical Immunosensor for the Quantification of S100B at Clinically Relevant Levels Using a Cysteamine Modified Surface. SENSORS 2021; 21:s21061929. [PMID: 33801798 PMCID: PMC8001999 DOI: 10.3390/s21061929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 01/14/2023]
Abstract
Neuronal damage secondary to traumatic brain injury (TBI) is a rapidly evolving condition, which requires therapeutic decisions based on the timely identification of clinical deterioration. Changes in S100B biomarker levels are associated with TBI severity and patient outcome. The S100B quantification is often difficult since standard immunoassays are time-consuming, costly, and require extensive expertise. A zero-length cross-linking approach on a cysteamine self-assembled monolayer (SAM) was performed to immobilize anti-S100B monoclonal antibodies onto both planar (AuEs) and interdigitated (AuIDEs) gold electrodes via carbonyl-bond. Surface characterization was performed by atomic force microscopy (AFM) and specular-reflectance FTIR for each functionalization step. Biosensor response was studied using the change in charge-transfer resistance (Rct) from electrochemical impedance spectroscopy (EIS) in potassium ferrocyanide, with [S100B] ranging 10–1000 pg/mL. A single-frequency analysis for capacitances was also performed in AuIDEs. Full factorial designs were applied to assess biosensor sensitivity, specificity, and limit-of-detection (LOD). Higher Rct values were found with increased S100B concentration in both platforms. LODs were 18 pg/mL(AuES) and 6 pg/mL(AuIDEs). AuIDEs provide a simpler manufacturing protocol, with reduced fabrication time and possibly costs, simpler electrochemical response analysis, and could be used for single-frequency analysis for monitoring capacitance changes related to S100B levels.
Collapse
Affiliation(s)
- Alexander Rodríguez
- Biotechnology Research Group, Universidad del Norte, Barranquilla 081007, Colombia; (A.R.); (F.B.-F.); (E.C.); (H.S.)
| | - Francisco Burgos-Flórez
- Biotechnology Research Group, Universidad del Norte, Barranquilla 081007, Colombia; (A.R.); (F.B.-F.); (E.C.); (H.S.)
- Rational Use of Energy and Preservation of the Environment Group (UREMA), Universidad del Norte, Barranquilla 081007, Colombia;
| | - José D. Posada
- School of Medicine, Stanford University, Redwood City, CA 94063, USA;
| | - Eliana Cervera
- Biotechnology Research Group, Universidad del Norte, Barranquilla 081007, Colombia; (A.R.); (F.B.-F.); (E.C.); (H.S.)
| | - Valtencir Zucolotto
- Gnano—Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Carlos 13566-590, São Paulo, Brazil;
| | - Homero Sanjuán
- Biotechnology Research Group, Universidad del Norte, Barranquilla 081007, Colombia; (A.R.); (F.B.-F.); (E.C.); (H.S.)
| | - Marco Sanjuán
- Rational Use of Energy and Preservation of the Environment Group (UREMA), Universidad del Norte, Barranquilla 081007, Colombia;
| | - Pedro J. Villalba
- Biotechnology Research Group, Universidad del Norte, Barranquilla 081007, Colombia; (A.R.); (F.B.-F.); (E.C.); (H.S.)
- Correspondence:
| |
Collapse
|
14
|
Jarockyte G, Karabanovas V, Rotomskis R, Mobasheri A. Multiplexed Nanobiosensors: Current Trends in Early Diagnostics. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6890. [PMID: 33276535 PMCID: PMC7729484 DOI: 10.3390/s20236890] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
Abstract
The ever-growing demand for fast, cheap, and reliable diagnostic tools for personalised medicine is encouraging scientists to improve existing technology platforms and to create new methods for the detection and quantification of biomarkers of clinical significance. Simultaneous detection of multiple analytes allows more accurate assessment of changes in biomarker expression and offers the possibility of disease diagnosis at the earliest stages. The concept of multiplexing, where multiple analytes can be detected in a single sample, can be tackled using several types of nanomaterial-based biosensors. Quantum dots are widely used photoluminescent nanoparticles and represent one of the most frequent choices for different multiplex systems. However, nanoparticles that incorporate gold, silver, and rare earth metals with their unique optical properties are an emerging perspective in the multiplexing field. In this review, we summarise progress in various nanoparticle applications for multiplexed biomarkers.
Collapse
Affiliation(s)
- Greta Jarockyte
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania; (G.J.); (A.M.)
- Biomedical Physics Laboratory, National Cancer Institute, Baublio 3b, LT-08406 Vilnius, Lithuania;
| | - Vitalijus Karabanovas
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania; (G.J.); (A.M.)
- Biomedical Physics Laboratory, National Cancer Institute, Baublio 3b, LT-08406 Vilnius, Lithuania;
| | - Ricardas Rotomskis
- Biomedical Physics Laboratory, National Cancer Institute, Baublio 3b, LT-08406 Vilnius, Lithuania;
| | - Ali Mobasheri
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania; (G.J.); (A.M.)
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, FI-90014 Oulu, Finland
- Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| |
Collapse
|
15
|
Affiliation(s)
- Chunyan Li
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Kevin A Shah
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Raj K Narayan
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA. .,Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
16
|
Han L, Ding C, Guo Y, Wang Y, Ding Y. Sensitively detecting mTBI biomarker S100B by using peptide-modified ratiometric fluorescent C/AuNCs nanoprobe. Anal Bioanal Chem 2020; 412:3695-3702. [PMID: 32279166 DOI: 10.1007/s00216-020-02613-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/17/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023]
Abstract
Mild traumatic brain injury (mTBI) has become a tough nut in forensic science because of its minor damages but serious consequences. Utilizing biomarkers to diagnose mTBI has become a promising approach due to various shortcomings of traditional diagnostic methods. In this work, we developed a peptide-modified ratiometric fluorescent nanoprobe based on carbon dots (CDs) and gold nanoclusters (AuNCs) for the measurements of a pivotal biomarker S100B protein in the early diagnosis of mTBI. It has been found that florescence intensity of AuNCs at 580 nm was decreased as report signal while the florescence intensity of CDs was unchanged as reference signal in this sensing system when the surface modified peptide bind tightly with calcium-activated S100B. Under the optimized conditions, S100B concentration ranging from 0.03 to 1 μg/mL was successfully determined within 30 min, and the detection limit of 0.01 μg/mL was acquired through the standard rule (S/N = 3). Moreover, the detection of S100B in spiked blood samples were conducted with satisfactory recoveries. The as-prepared ratiometric fluorescent nanoprobe was proved to be a time-saving, convenient, and sensitive strategy, and it showed great prospects in the early diagnosis of mTBI in forensic practice.
Collapse
Affiliation(s)
- Leiming Han
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Chensen Ding
- Institute of Computational Engineering, University of Luxembourg, Maison du Nombre, 6 Avenue de la Fonte, 4364, Esch-sur-Alzette, Luxembourg
| | - Yadong Guo
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Yong Wang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Yanjun Ding
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
17
|
Roth S, Hadass O, Cohen M, Verbarg J, Wilsey J, Danielli A. Improving the Sensitivity of Fluorescence-Based Immunoassays by Photobleaching the Autofluorescence of Magnetic Beads. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1803751. [PMID: 30411493 DOI: 10.1002/smll.201803751] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/24/2018] [Indexed: 05/11/2023]
Abstract
In fluorescence-based assays, usually a target molecule is captured using a probe conjugated to a capture surface, and then detected using a second fluorescently labeled probe. One of the most common capture surfaces is a magnetic bead. However, magnetic beads exhibit strong autofluorescence, which often overlaps with the emission of the reporter fluorescent dyes and limits the analytical performance of the assay. Here, several widely used magnetic beads are photobleached and their autofluorescence is reduced to 1% of the initial value. Their autofluorescence properties, including their photobleaching decay rates and autofluorescence spectra pre- and post-photobleaching, and the stability of the photobleaching over a period of two months are analyzed. The photobleached beads are stable over time and their surface functionality is retained. In a high-sensitivity LX-200 system using photobleached magnetic beads, human interleukin-8 is detected with a threefold improvement in detection limit and signal-to-noise ratio over results achievable with nonbleached beads. Since many contemporary immunoassays rely on magnetic beads as capture surfaces, prebleaching the beads may significantly improve the analytical performance of these assays. Moreover, nonmagnetic beads with low autofluorescence are also successfully photobleached, suggesting that photobleaching can be applied to various capture surfaces used in fluorescence-based assays.
Collapse
Affiliation(s)
- Shira Roth
- Faculty of Engineering, Bar-Ilan University, Max and Anna Webb Street, Ramat Gan, 5290002, Israel
| | - Orr Hadass
- MagBiosense, Inc., 4320 Forest Park Ave., Suite 304, St. Louis, MO, 63108, USA
| | - Meir Cohen
- Faculty of Engineering, Bar-Ilan University, Max and Anna Webb Street, Ramat Gan, 5290002, Israel
| | - Jasenka Verbarg
- MagBiosense, Inc., 4320 Forest Park Ave., Suite 304, St. Louis, MO, 63108, USA
| | - Jennifer Wilsey
- MagBiosense, Inc., 4320 Forest Park Ave., Suite 304, St. Louis, MO, 63108, USA
| | - Amos Danielli
- Faculty of Engineering, Bar-Ilan University, Max and Anna Webb Street, Ramat Gan, 5290002, Israel
| |
Collapse
|
18
|
Chen L, Li X, Zou T, Wang T, Cui X, Chen Y, Zhang C, Zhao S. Ultrasensitive detection of H. pylori in human feces based on immunomagnetic bead capture and fluorescent quantum dots. Analyst 2019; 144:4086-4092. [DOI: 10.1039/c9an00193j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A novel fecal test was developed to detect H. pylori based on immunomagnetic beads (IMBs) with monoclonal antibodies sensitively recognizing and capturing the H. pylori, coupled with a polyclonal antibody-conjugating quantum dot probe.
Collapse
Affiliation(s)
- Lili Chen
- Department of Pharmaceutical Engineering
- School of Biomedical and Pharmace-utical Sciences
- Guangdong University of Technology
- Guangzhou 510006
- People's Republic of China
| | - Xiangguang Li
- Department of Pharmaceutical Engineering
- School of Biomedical and Pharmace-utical Sciences
- Guangdong University of Technology
- Guangzhou 510006
- People's Republic of China
| | - Tongda Zou
- Department of Pharmaceutical Engineering
- School of Biomedical and Pharmace-utical Sciences
- Guangdong University of Technology
- Guangzhou 510006
- People's Republic of China
| | - Tiantian Wang
- Department of Pharmaceutical Engineering
- School of Biomedical and Pharmace-utical Sciences
- Guangdong University of Technology
- Guangzhou 510006
- People's Republic of China
| | - Xiping Cui
- Department of Pharmaceutical Engineering
- School of Biomedical and Pharmace-utical Sciences
- Guangdong University of Technology
- Guangzhou 510006
- People's Republic of China
| | - Yingshan Chen
- Department of Pharmaceutical Engineering
- School of Biomedical and Pharmace-utical Sciences
- Guangdong University of Technology
- Guangzhou 510006
- People's Republic of China
| | - Chunguo Zhang
- Department of Pharmaceutical Engineering
- School of Biomedical and Pharmace-utical Sciences
- Guangdong University of Technology
- Guangzhou 510006
- People's Republic of China
| | - Suqing Zhao
- Department of Pharmaceutical Engineering
- School of Biomedical and Pharmace-utical Sciences
- Guangdong University of Technology
- Guangzhou 510006
- People's Republic of China
| |
Collapse
|
19
|
Liu X, Ying G, Liao X, Sun C, Wei F, Xing X, Shi L, Sun Y, Kong W, Zhou L. Cytometric Microbead Magnetic Suspension Array for High-Throughput Ultrasensitive Detection of Aflatoxin B 1. Anal Chem 2018; 91:1194-1202. [PMID: 30520622 DOI: 10.1021/acs.analchem.8b05278] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
High-throughput and low-cost detection of mycotoxins in complex matrices is becoming increasingly urgent but it is still challenging to perform ultrasensitive analyses. Here we report a green and practical cytometric microbead magnetic suspension array (CBMSA) strategy for rapid and economical detection of aflatoxin B1 (AFB1) in multiple batches of lotus seed samples. The protocol included (1) fabrication of suspension array chips by immobilizing biotin-modified bovine serum albumin-AFB1 (antigen) onto the surface of streptavidin-coated magnetic microbeads in a multiwell array, (2) indirect immunocompetition of antigen and target of AFB1 in lotus seed samples with the specific antibodies, (3) rapid magnetic separation regardless of complex pretreatment steps, and (4) ultrasensitive fluorescence detection of fluorescein isothiocyanate-labeled goat anti-mouse immunoglobulin G (FITC-IgG) probes. After systematic optimization of some crucial parameters, the developed CBMSA assay allowed for ultrasensitive detection of AFB1 with limit of detection as low as 7.8125 pg·kg-1. For high-throughput analysis, the CBMSA technique was capable of on-site co-instantaneous detection of 50-100 samples in one operation within 30 s, only needing a small amount (50 μL) of solution, which is much cheaper, greener, and more user-friendly than conventional techniques. Moreover, CBMSA with magnetic separation is free of multiple centrifugation and cleanup steps to avoid unpredictable loss of targets. Since various capture and fluorescent probes can be randomly constructed and bound onto the surface of magnetic microbeads to establish an ultrasensitive detection system, the CBMSA technique is very promising for more trace analytes in complex matrices and for broad point-of-need applications, such as drug screening and real-time high-throughput analysis.
Collapse
Affiliation(s)
- Xiaofei Liu
- Institute of Medicinal Plant Development , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100193 , China
| | - Guangyao Ying
- Institute of Medicinal Plant Development , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100193 , China.,College of Pharmacy , Jinzhou Medical University , Jinzhou 121001 , China
| | - Xiaofang Liao
- Institute of Medicinal Plant Development , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100193 , China
| | - Chaonan Sun
- Institute of Medicinal Plant Development , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100193 , China
| | - Fang Wei
- Institute of Medicinal Plant Development , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100193 , China.,College of Pharmacy , Jinzhou Medical University , Jinzhou 121001 , China
| | - Xiaoyan Xing
- Institute of Medicinal Plant Development , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100193 , China
| | - Linchun Shi
- Institute of Medicinal Plant Development , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100193 , China
| | - Yifan Sun
- Institute of Medical Information , Chinese Academy of Medical Sciences , Beijing 100020 , China
| | - Weijun Kong
- Institute of Medicinal Plant Development , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100193 , China
| | - Lidong Zhou
- Institute of Medicinal Plant Development , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100193 , China
| |
Collapse
|
20
|
Synthesis of multifunctional fluorescent magnetic nanoparticles for the detection of Alicyclobacillus spp. in apple juice. Food Res Int 2018; 114:104-113. [DOI: 10.1016/j.foodres.2018.07.065] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/28/2018] [Accepted: 07/31/2018] [Indexed: 11/24/2022]
|
21
|
Nanda SS, Kim MJ, Kim K, Papaefthymiou GC, Selvan ST, Yi DK. Recent advances in biocompatible semiconductor nanocrystals for immunobiological applications. Colloids Surf B Biointerfaces 2017; 159:644-654. [DOI: 10.1016/j.colsurfb.2017.08.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/15/2017] [Accepted: 08/17/2017] [Indexed: 12/30/2022]
|
22
|
Kim C, Searson PC. Detection of Plasmodium Lactate Dehydrogenase Antigen in Buffer Using Aptamer-Modified Magnetic Microparticles for Capture, Oligonucleotide-Modified Quantum Dots for Detection, and Oligonucleotide-Modified Gold Nanoparticles for Signal Amplification. Bioconjug Chem 2017; 28:2230-2234. [PMID: 28796475 DOI: 10.1021/acs.bioconjchem.7b00328] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To overcome the limitations associated with antibody-based sensors, we describe a proof-of-concept of an aptamer-based sandwich assay for detection of lactate dehydrogenase, an antigen associated with malaria. We show a detection limit of Plasmodium falciparum lactate dehydrogenase and Plasmodium vivax lactate dehydrogenase of 0.5 fmole in buffer, comparable to an antibody-based assay, using a magnetic particle-aptamer construct for capture and a quantum dot-aptamer construct for detection. We then demonstrate a detection limit of 10 amole (50-fold amplification) using oligonucleotide-functionalized gold nanoparticles to allow the conjugation of multiple quantum dots for each target antigen.
Collapse
Affiliation(s)
- Chloe Kim
- Department of Materials Science and Engineering, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States.,Institute for Nanobiotechnology at Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Peter C Searson
- Department of Materials Science and Engineering, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States.,Institute for Nanobiotechnology at Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
23
|
Lee H, Lee D, Park JH, Song SH, Jeong IG, Kim CS, Searson PC, Lee KH. High throughput differential identification of TMPRSS2-ERG fusion genes in prostate cancer patient urine. Biomaterials 2017; 135:23-29. [DOI: 10.1016/j.biomaterials.2017.04.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 12/18/2022]
|
24
|
Kim C, Hoffmann G, Searson PC. Integrated Magnetic Bead-Quantum Dot Immunoassay for Malaria Detection. ACS Sens 2017; 2:766-772. [PMID: 28723116 DOI: 10.1021/acssensors.7b00119] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Malaria persists as a disease of high morbidity and mortality due to improper diagnosis, overuse of drugs, rapidly evolving drug resistant parasites, and poor disease monitoring. The two common tests used in developing countries, microscopic examination of Glemsa slides and rapid diagnostic tests (RDTs), have limitations associated with variability in specificity and sensitivity, and qualitative outcome. Here we report on an immunoassay using magnetic beads for capture and quantum dots for detection of histidine-rich protein 2 (HRP2). Conventional immunoassays, such as ELISA, and molecular analysis tools, such as PCR, are difficult to implement in low resource settings. Therefore, to provide a proof-of-principle of translation of this assay to low resource settings, we demonstrate HRP2 detection in an automated droplet-based microfluidic device. Droplet-based platforms have the potential to allow translation of molecular detection assays to point-of-care use in low resource settings.
Collapse
Affiliation(s)
- Chloe Kim
- Department
of Materials Science and Engineering and Institute for Nanobiotechnology, Johns Hopkins University, 3400
North Charles Street, Baltimore, Maryland 21218, United States
| | - Gwendolyn Hoffmann
- Department
of Materials Science and Engineering and Institute for Nanobiotechnology, Johns Hopkins University, 3400
North Charles Street, Baltimore, Maryland 21218, United States
| | - Peter C. Searson
- Department
of Materials Science and Engineering and Institute for Nanobiotechnology, Johns Hopkins University, 3400
North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
25
|
Lee H, Kim C, Lee D, Park JH, Searson PC, Lee KH. Optical coding of fusion genes using multicolor quantum dots for prostate cancer diagnosis. Int J Nanomedicine 2017; 12:4397-4407. [PMID: 28652740 PMCID: PMC5476632 DOI: 10.2147/ijn.s138081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Recent studies have found that prostate cancer expresses abnormal genetic markers including multiple types of TMPRSS2-ERG fusion genes. The expression level of different TMPRSS2-ERG fusion genes is correlated to pathologic variables of aggressive prostate cancer and disease progression. State-of-the-art methods for detection of TMPRSS2-ERG fusion genes include reverse transcription polymerase chain reaction (RT-PCR) with a detection limit of 1 fmol at urinary condition. RT-PCR is time consuming, costly, and inapplicable for multiplexing. Ability to identify multiple fusion genes in a single sample has become important for diagnostic and clinical purposes. There is a need for a sensitive diagnostic test to detect multiple TMPRSS2-ERG fusion genes for an early diagnosis and prognosis of prostate cancer. Here, we propose to develop an assay for prostate cancer diagnosis using oligonucleotide-functionalized quantum dot and magnetic microparticle for optical detection of rearranged TMPRSS2-ERG fusion genes at a low concentration in urine. We found that our assay was able to identify three different types of fusion gene with a wide detection range and detection limit of 1 fmol (almost the same level of the RT-PCR result reported). Here, we show detection of multiple TMPRSS2-ERG fusion genes using color-coded oligonucleotides in cell lysate and urine.
Collapse
Affiliation(s)
- Hyojin Lee
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Chloe Kim
- Department of Materials Science and Engineering
| | - Dongjin Lee
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,Department of Biomedical Engineering, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jea Ho Park
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,Department of Materials Science and Engineering
| | | | - Kwan Hyi Lee
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,Department of Biomedical Engineering, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
26
|
Xu T, Zhang Q, Fan YH, Li RQ, Lu H, Zhao SM, Jiang TL. Quantitative and multiplexed detection for blood typing based on quantum dot-magnetic bead assay. Int J Nanomedicine 2017; 12:3347-3356. [PMID: 28490874 PMCID: PMC5413539 DOI: 10.2147/ijn.s133247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Accurate and reliable blood grouping is essential for safe blood transfusion. However, conventional methods are qualitative and use only single-antigen detection. We overcame these limitations by developing a simple, quantitative, and multiplexed detection method for blood grouping using quantum dots (QDs) and magnetic beads. Methods In the QD fluorescence assay (QFA), blood group A and B antigens were quantified using QD labeling and magnetic beads, and the blood groups were identified according to the R value (the value was calculated with the fluorescence intensity from dual QD labeling) of A and B antigens. The optimized performance of QFA was established by blood typing 791 clinical samples. Results Quantitative and multiplexed detection for blood group antigens can be completed within 35 min with more than 105 red blood cells. When conditions are optimized, the assay performance is satisfactory for weak samples. The coefficients of variation between and within days were less than 10% and the reproducibility was good. The ABO blood groups of 791 clinical samples were identified by QFA, and the accuracy obtained was 100% compared with the tube test. Receiver-operating characteristic curves revealed that the QFA has high sensitivity and specificity toward clinical samples, and the cutoff points of the R value of A and B antigens were 1.483 and 1.576, respectively. Conclusion In this study, we reported a novel quantitative and multiplexed method for the identification of ABO blood groups and presented an effective alternative for quantitative blood typing. This method can be used as an effective tool to improve blood typing and further guarantee clinical transfusion safety.
Collapse
Affiliation(s)
- Ting Xu
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Qiang Zhang
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Ya-Han Fan
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Ru-Qing Li
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Hua Lu
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Shu-Ming Zhao
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Tian-Lun Jiang
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| |
Collapse
|
27
|
Čadková M, Kovářová A, Dvořáková V, Bílková Z, Korecká L. Optimization of anodic stripping voltammetry conditions for efficient detection of quantum dots at micro flow-cell electrodes. MONATSHEFTE FUR CHEMIE 2017. [DOI: 10.1007/s00706-017-1922-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Wei T, Du D, Wang Z, Zhang W, Lin Y, Dai Z. Rapid and sensitive detection of microRNA via the capture of fluorescent dyes-loaded albumin nanoparticles around functionalized magnetic beads. Biosens Bioelectron 2017; 94:56-62. [PMID: 28257975 DOI: 10.1016/j.bios.2017.02.044] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/20/2017] [Accepted: 02/24/2017] [Indexed: 12/29/2022]
Abstract
MicroRNAs (miRNAs) play important roles in gene regulation and cancer development. Nowadays, it is still a challenge to detect low-abundance miRNAs. Here, we present a magnetic fluorescent miRNA sensing system for the rapid and sensitive detection of miRNAs from cell lysates and serum samples. In this system, albumin nanoparticles (Alb NPs) were prepared from inherent biocompatible bovine serum albumin (BSA). A large number of fluorescent dyes were loaded into Alb NPs to make Alb NPs serve as signal molecular nanocarriers for signal amplification. Benefited from the reactive functional groups-carboxyl groups of Alb NPs, p19 protein, a viral protein that can bind and sequester short RNA duplex effectively and selectively, was modified successfully to the surface of the fluorescent dyes-loaded Alb NPs, thus enabling the probe:target miRNA duplex recognition and binding. Followed by the introduction of gold nanoparticles coated magnetic microbeads (Au NPs-MBs), which were prepared through a novel and simple method, the system combined the merits of the rapid and efficient collection given by MBs with the good affinities to attach probe molecules endowed by the coated gold layer. A broad linear detection range of 10fM-10nM and a low detection limit of 9fM were obtained within 100min by detecting a model target miRNA-21. The feasibility of this method for rapid and sensitive quantification might advance the use of miRNAs as biomarkers in clinical praxis significantly.
Collapse
Affiliation(s)
- Tianxiang Wei
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China; School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA; School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Zhaoyin Wang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Weiwei Zhang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA.
| | - Zhihui Dai
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
29
|
Chamorro-Garcia A, Merkoçi A. Nanobiosensors in diagnostics. Nanobiomedicine (Rij) 2016; 3:1849543516663574. [PMID: 29942385 PMCID: PMC5998262 DOI: 10.1177/1849543516663574] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 07/20/2016] [Indexed: 01/09/2023] Open
Abstract
Medical diagnosis has been greatly improved thanks to the development of new techniques capable of performing very sensitive detection and quantifying certain parameters. These parameters can be correlated with the presence of specific molecules and their quantity. Unfortunately, these techniques are demanding, expensive, and often complicated. On the other side, progress in other fields of science and technology has contributed to the rapid growth of nanotechnology. Although being an emerging discipline, nanotechnology has raised huge interest and expectations. Most of the enthusiasm comes from new possibilities and properties of nanomaterials. Biosensors (simple, robust, sensitive, cost-effective) combined with nanomaterials, also called nanobiosensors, are serving as bridge between advanced detection/diagnostics and daily/routine tests. Here we review some of the latest applications of nanobiosensors in diagnostics field.
Collapse
Affiliation(s)
- Alejandro Chamorro-Garcia
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technolgy, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technolgy, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|