1
|
Liu Z, Chen Z, Yang S, Jia H, Wei J. Dual-Mode Multicolor Display Based on Structural and Fluorescent Color CdS Photonic Crystal Hydrogel. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12767-12777. [PMID: 38845086 DOI: 10.1021/acs.langmuir.4c01383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
In this study, we prepared a multicolor structural-fluorescent CdS-PEGDA photonic crystal hydrogel (SFC-CPH) with a dual display mode, which has two different optical states: structural color mode and fluorescent color mode. SFC-CPH displays structural color mode under visible light and fluorescent color mode under ultraviolet light. Initially, monodisperse CdS colloidal particles were synthesized via a hydrothermal method, leading to the self-assembly of a photonic crystal template. The high refractive index of CdS contributes to the photonic crystals' low-angle dependence and vivid structural colors. Then, a variety of fluorescent molecules were doped into poly(ethylene glycol) diacrylate (PEGDA) hydrogel and combined with photonic crystals with distinct structural colors to prepare three distinct colors of SFC-CPH. We also investigated the optical characteristics and surface properties of these photonic crystal hydrogels. Based on these dual-mode display characteristics, we designed several dual-mode display patterns and a method for information encoding. The unique property of this photonic crystal hydrogel material suggests its substantial potential for applications in information storage, security, and encoding, offering innovative avenues in the realm of information display.
Collapse
Affiliation(s)
- Zihan Liu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zihao Chen
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shuangye Yang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Hong Jia
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jie Wei
- Beijing Engineering Research Center for the Synthesis and Applications of Waterborne Polymers, Beijing 100029, P. R. China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
2
|
Ma Y, Chen Q, Li W, Su H, Li S, Zhu Y, Zhou J, Feng Z, Liu Z, Mao S, Qiu Y, Wang H, Zhu Z. Spinal cord conduits for spinal cord injury regeneration. ENGINEERED REGENERATION 2023. [DOI: 10.1016/j.engreg.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
3
|
Wei X, Shang Y, Zhu Y, Gu Z, Zhang D. Encoding microcarriers for biomedicine. SMART MEDICINE 2023; 2:e20220009. [PMID: 39188559 PMCID: PMC11235794 DOI: 10.1002/smmd.20220009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/22/2022] [Indexed: 08/28/2024]
Abstract
High throughput biological analysis has become an important topic in modern biomedical research and clinical diagnosis. The flow encoding scheme based on the encoding microcarriers provides a feasible strategy for the multiplexed biological analysis. Different encoding characteristics invest the microcarriers with different encoding mechanisms. Biosensor analysis, drug screening, cell culture, and the construction and evaluation of bionic organ chips can be realized by decoding the microcarriers and quantifying the detection signal intensity. In this review, the encoding strategy of microcarriers was divided into the optical and non-optical encoding approaches according to their encoding elements, and the research progress of the microcarrier encoding strategy was elaborated. Finally, we summarized the biomedical applications and predicted their future prospects.
Collapse
Affiliation(s)
- Xiaowei Wei
- Laboratory Medicine CenterThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Department of Clinical LaboratoryInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Yixuan Shang
- Department of Clinical LaboratoryInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Yefei Zhu
- Laboratory Medicine CenterThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Zhuxiao Gu
- Department of Clinical LaboratoryInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Dagan Zhang
- Department of Clinical LaboratoryInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| |
Collapse
|
4
|
Wang C, Wang J, Zhang Z, Wang Q, Shang L. DNA-Polyelectrolyte Composite Responsive Microparticles for Versatile Chemotherapeutics Cleaning. RESEARCH (WASHINGTON, D.C.) 2023; 6:0083. [PMID: 36939415 PMCID: PMC10017331 DOI: 10.34133/research.0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023]
Abstract
Drug therapy is among the most widely used methods in disease treatment. However, there remains a trade-off problem between drug dosage and toxicity. Blood purification by adsorption of excessive drugs during clinical treatment could be a solution for enhancing therapeutic efficacy while maintaining normal body function. Here, inspired by the intrinsic action mechanism of chemotherapeutic agents in targeting DNA in the cell nucleus, we present DNA-polyelectrolyte composite responsive microparticles for chemotherapeutics cleaning. The presence of DNA in the microparticles enabled the adsorption of multiple common chemotherapy drugs. Moreover, the microparticles are endowed with a porous structure and a photothermal-responsive ability, both of which contribute to improved adsorption by enhancing the contact of the microparticles with the drug solution. On the basis of that, the microparticles are integrated into a herringbone-structured microfluidic chip. The fluid mixing capacity and the enhanced drug cleaning efficiency of the microfluidic platform are validated on-chip. These results indicate the value of the DNA-polyelectrolyte composite responsive microparticles for drug capture and blood purification. We believe the microparticle-integrated microfluidic platform could provide a solution for settling the dosage-toxicity trade-off problems in chemotherapy.
Collapse
|
5
|
Wang H, Zhang H, Xie Z, Chen K, Ma M, Huang Y, Li M, Cai Z, Wang P, Shen H. Injectable hydrogels for spinal cord injury repair. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
6
|
Mao X, Wang M, Jin S, Rao J, Deng R, Zhu J. Monodispersed polymer particles with tunable surface structures: Droplet
microfluidic‐assisted
fabrication and biomedical applications. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xi Mao
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST) Wuhan China
| | - Mian Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST) Wuhan China
| | - Shaohong Jin
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST) Wuhan China
| | - Jingyi Rao
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST) Wuhan China
| | - Renhua Deng
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST) Wuhan China
| | - Jintao Zhu
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST) Wuhan China
| |
Collapse
|
7
|
Li G, Qu X, Hao L, Li Q, Chen S. A microfluidics‐dispensing‐printing strategy for Janus photonic crystal microspheres towards smart patterned displays. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Guo‐Xing Li
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University Nanjing China
| | - Xiao‐Wei Qu
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University Nanjing China
| | - Lu‐Wei Hao
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University Nanjing China
| | - Qing Li
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University Nanjing China
| | - Su Chen
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University Nanjing China
| |
Collapse
|
8
|
Cai Z, Li Z, Ravaine S, He M, Song Y, Yin Y, Zheng H, Teng J, Zhang A. From colloidal particles to photonic crystals: advances in self-assembly and their emerging applications. Chem Soc Rev 2021; 50:5898-5951. [PMID: 34027954 DOI: 10.1039/d0cs00706d] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the last three decades, photonic crystals (PhCs) have attracted intense interests thanks to their broad potential applications in optics and photonics. Generally, these structures can be fabricated via either "top-down" lithographic or "bottom-up" self-assembly approaches. The self-assembly approaches have attracted particular attention due to their low cost, simple fabrication processes, relative convenience of scaling up, and the ease of creating complex structures with nanometer precision. The self-assembled colloidal crystals (CCs), which are good candidates for PhCs, have offered unprecedented opportunities for photonics, optics, optoelectronics, sensing, energy harvesting, environmental remediation, pigments, and many other applications. The creation of high-quality CCs and their mass fabrication over large areas are the critical limiting factors for real-world applications. This paper reviews the state-of-the-art techniques in the self-assembly of colloidal particles for the fabrication of large-area high-quality CCs and CCs with unique symmetries. The first part of this review summarizes the types of defects commonly encountered in the fabrication process and their effects on the optical properties of the resultant CCs. Next, the mechanisms of the formation of cracks/defects are discussed, and a range of versatile fabrication methods to create large-area crack/defect-free two-dimensional and three-dimensional CCs are described. Meanwhile, we also shed light on both the advantages and limitations of these advanced approaches developed to fabricate high-quality CCs. The self-assembly routes and achievements in the fabrication of CCs with the ability to open a complete photonic bandgap, such as cubic diamond and pyrochlore structure CCs, are discussed as well. Then emerging applications of large-area high-quality CCs and unique photonic structures enabled by the advanced self-assembly methods are illustrated. At the end of this review, we outlook the future approaches in the fabrication of perfect CCs and highlight their novel real-world applications.
Collapse
Affiliation(s)
- Zhongyu Cai
- Research Institute for Frontier Science, Beijing Advanced Innovation Center for Biomedical Engineering, School of Space and Environment, Beihang University, Beijing 100191, China. and Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117576, Singapore and Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Zhiwei Li
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Serge Ravaine
- CNRS, Univ. Bordeaux, CRPP, UMR 5031, F-33600 Pessac, France
| | - Mingxin He
- Department of Physics, Center for Soft Matter Research, New York University, New York, NY 10003, USA
| | - Yanlin Song
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Hanbin Zheng
- CNRS, Univ. Bordeaux, CRPP, UMR 5031, F-33600 Pessac, France
| | - Jinghua Teng
- Institute of Materials Research and Engineering, Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore.
| | - Ao Zhang
- Research Institute for Frontier Science, Beijing Advanced Innovation Center for Biomedical Engineering, School of Space and Environment, Beihang University, Beijing 100191, China.
| |
Collapse
|
9
|
Liu P, Mu Z, Ji M, Liu X, Gu H, Peng Y, Yang J, Xie Z, Zheng F. Robust Carbonated Structural Color Barcodes with Ultralow Ontology Fluorescence as Biomimic Culture Platform. RESEARCH 2021; 2021:9851609. [PMID: 34036265 PMCID: PMC8118130 DOI: 10.34133/2021/9851609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/13/2021] [Indexed: 11/06/2022]
Abstract
Photonic crystal (PC) barcodes are a new type of spectrum-encoding microcarriers used in multiplex high-throughput bioassays, such as broad analysis of biomarkers for clinical diagnosis, gene expression, and cell culture. Unfortunately, most of these existing PC barcodes suffered from undesired features, including difficult spectrum-signal acquisition, weak mechanical strength, and high ontology fluorescence, which limited their development to real applications. To address these limitations, we report a new type of structural color-encoded PC barcodes. The barcodes are fabricated by the assembly of monodisperse polydopamine- (PDA-) coated silica (PDA@SiO2) nanoparticles using a droplet-based microfluidic technique and followed by pyrolysis of PDA@SiO2 (C@SiO2) barcodes. Because of the templated carbonization of adhesive PDA, the prepared C@SiO2 PC beads were endowed with simultaneous easy-to-identify structural color, high mechanical strength, and ultralow ontology fluorescence. We demonstrated that the structural colored C@SiO2 barcodes not only maintained a high structural stability and good biocompatibility during the coculturing with fibroblasts and tumor cells capture but also achieved an enhanced fluorescent-reading signal-to-noise ratio in the fluorescence-reading detection. These features make the C@SiO2 PC barcodes versatile for expansive application in fluorescence-reading-based multibioassays.
Collapse
Affiliation(s)
- Panmiao Liu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China 450052
| | - Zhongde Mu
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Muhuo Ji
- Department of Anesthesiology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaojiang Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China 210096
| | - Hanwen Gu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China 450052
| | - Yi Peng
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Jianjun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China 450052
| | - Zhuoying Xie
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China 210096
| | - Fuyin Zheng
- Key Laboratory for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
10
|
|
11
|
Shang L, Wang Y, Cai L, Shu Y, Zhao Y. Structural color barcodes for biodiagnostics. VIEW 2020. [DOI: 10.1002/viw2.8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Luoran Shang
- Zhongshan∼Xuhui Hospital, Institutes of Biomedical SciencesFudan University Shanghai China
- ENT Institute and Otorhinolaryngology Department of the Affiliated Eye and ENT HospitalState Key Laboratory of Medical NeurobiologyFudan University Shanghai China
- The Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical SciencesFudan University Shanghai China
- NHC Key Laboratory of Hearing MedicineFudan University Shanghai China
| | - Yuetong Wang
- Department of Clinical LaboratoryThe Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast University Nanjing China
| | - Lijun Cai
- Department of Clinical LaboratoryThe Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast University Nanjing China
| | - Yilai Shu
- ENT Institute and Otorhinolaryngology Department of the Affiliated Eye and ENT HospitalState Key Laboratory of Medical NeurobiologyFudan University Shanghai China
- NHC Key Laboratory of Hearing MedicineFudan University Shanghai China
| | - Yuanjin Zhao
- Department of Clinical LaboratoryThe Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast University Nanjing China
| |
Collapse
|
12
|
Xiong R, Luan J, Kang S, Ye C, Singamaneni S, Tsukruk VV. Biopolymeric photonic structures: design, fabrication, and emerging applications. Chem Soc Rev 2020; 49:983-1031. [PMID: 31960001 DOI: 10.1039/c8cs01007b] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Biological photonic structures can precisely control light propagation, scattering, and emission via hierarchical structures and diverse chemistry, enabling biophotonic applications for transparency, camouflaging, protection, mimicking and signaling. Corresponding natural polymers are promising building blocks for constructing synthetic multifunctional photonic structures owing to their renewability, biocompatibility, mechanical robustness, ambient processing conditions, and diverse surface chemistry. In this review, we provide a summary of the light phenomena in biophotonic structures found in nature, the selection of corresponding biopolymers for synthetic photonic structures, the fabrication strategies for flexible photonics, and corresponding emerging photonic-related applications. We introduce various photonic structures, including multi-layered, opal, and chiral structures, as well as photonic networks in contrast to traditionally considered light absorption and structural photonics. Next, we summarize the bottom-up and top-down fabrication approaches and physical properties of organized biopolymers and highlight the advantages of biopolymers as building blocks for realizing unique bioenabled photonic structures. Furthermore, we consider the integration of synthetic optically active nanocomponents into organized hierarchical biopolymer frameworks for added optical functionalities, such as enhanced iridescence and chiral photoluminescence. Finally, we present an outlook on current trends in biophotonic materials design and fabrication, including current issues, critical needs, as well as promising emerging photonic applications.
Collapse
Affiliation(s)
- Rui Xiong
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Liu L, Xiang N, Ni Z. Droplet‐based microreactor for the production of micro/nano‐materials. Electrophoresis 2019; 41:833-851. [DOI: 10.1002/elps.201900380] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/13/2019] [Accepted: 11/25/2019] [Indexed: 01/27/2023]
Affiliation(s)
- Linbo Liu
- School of Mechanical Engineeringand Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical InstrumentsSoutheast University Nanjing P. R. China
| | - Nan Xiang
- School of Mechanical Engineeringand Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical InstrumentsSoutheast University Nanjing P. R. China
| | - Zhonghua Ni
- School of Mechanical Engineeringand Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical InstrumentsSoutheast University Nanjing P. R. China
| |
Collapse
|
14
|
Wang L, Wang J. Self-assembly of colloids based on microfluidics. NANOSCALE 2019; 11:16708-16722. [PMID: 31469374 DOI: 10.1039/c9nr06817a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Self-assembly of colloids provides a powerful way for the construction of complex multi-scale materials. Microfluidic techniques possess great potential to precisely control the assembly of micro- and nano-scale building blocks via the rational design of various microfluidic environments. In this review, we first discuss the self-assembly of colloids without templates by using the laminar microfluidic technique. The self-assembly of colloids based on a droplet as a template was subsequently summarized and discussed via droplet microfluidic technique. Moreover, the evaporation-driven self-assembly of colloids in microfluidic channels has been discussed and analysed. Finally, the representative applications in this field have been pointed out. The aim of this review is to summarize the state-of-art on the self-assembly of colloids based on various microfluidic techniques, exhibit their representative applications, and point out the current challenges in this field, hoping to inspire and guide future work.
Collapse
Affiliation(s)
- Lei Wang
- MIIT Key laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry & Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | | |
Collapse
|
15
|
Xia Y, Na X, Wu J, Ma G. The Horizon of the Emulsion Particulate Strategy: Engineering Hollow Particles for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1801159. [PMID: 30260511 DOI: 10.1002/adma.201801159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/06/2018] [Indexed: 05/13/2023]
Abstract
With their hierarchical structures and the substantial surface areas, hollow particles have gained immense research interest in biomedical applications. For scalable fabrications, emulsion-based approaches have emerged as facile and versatile strategies. Here, the recent achievements in this field are unfolded via an "emulsion particulate strategy," which addresses the inherent relationship between the process control and the bioactive structures. As such, the interior architectures are manipulated by harnessing the intermediate state during the emulsion revolution (intrinsic strategy), whereas the external structures are dictated by tailoring the building blocks and solidification procedures of the Pickering emulsion (extrinsic strategy). Through integration of the intrinsic and extrinsic emulsion particulate strategy, multifunctional hollow particles demonstrate marked momentum for label-free multiplex detections, stimuli-responsive therapies, and stem cell therapies.
Collapse
Affiliation(s)
- Yufei Xia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiangming Na
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jie Wu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing, 211816, P. R. China
| |
Collapse
|
16
|
Ma X, Zhao Z, Wang H, Liu Y, Xu Y, Zhang J, Chen B, Li L, Zhao Y. P-Glycoprotein Antibody Decorated Porous Hydrogel Particles for Capture and Release of Drug-Resistant Tumor Cells. Adv Healthc Mater 2019; 8:e1900136. [PMID: 30985092 DOI: 10.1002/adhm.201900136] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/29/2019] [Indexed: 12/31/2022]
Abstract
Multidrug resistance is one of the leading causes of chemotherapy failure in cancer patients. Early detection and capture of drug-resistant tumor cells can facilitate the monitoring of the therapy process and improve the prognosis of patients. In this study, novel P-glycoprotein (P-gp) antibody modified porous hydrogel particles are proposed for drug-resistant tumor cells capture. The hydrogel particles employ a highly biocompatible hydrogel, methacrylate gelatin (GelMA), as the carrier and replicate from the silica colloidal crystal beads. By the modification of P-gp antibody probes on their surfaces, the hydrogel particles are endowed with the ability to capture drug-resistant tumor cells, which overexpress specific components of P-gp on their membranes. Additionally, the acquired ordered porous nanostructure of the particles can provide not only more surface area for antibody immobilization but also a nanopatterned platform for highly efficient target cell capture. The above advantages make the porous hydrogel particles ideal for efficient capture and detection of the drug-resistant tumor cells, which can be expected to facilitate the point-of-care pharmacotherapy and promisingly improve the patient outcomes.
Collapse
Affiliation(s)
- Xiaoyan Ma
- Department of Hematology and OncologyZhongda HospitalSchool of MedicineSoutheast University Nanjing 210009 China
| | - Ze Zhao
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast University Nanjing 210096 China
| | - Huan Wang
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast University Nanjing 210096 China
| | - Yuxiao Liu
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast University Nanjing 210096 China
| | - Yueshuang Xu
- Department of Hematology and OncologyZhongda HospitalSchool of MedicineSoutheast University Nanjing 210009 China
| | - Jing Zhang
- Department of Hematology and OncologyZhongda HospitalSchool of MedicineSoutheast University Nanjing 210009 China
| | - Baoan Chen
- Department of Hematology and OncologyZhongda HospitalSchool of MedicineSoutheast University Nanjing 210009 China
| | - Ling Li
- Department of EndocrinologyZhongda HospitalSchool of MedicineSoutheast University Nanjing 210009 China
| | - Yuanjin Zhao
- Department of Hematology and OncologyZhongda HospitalSchool of MedicineSoutheast University Nanjing 210009 China
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast University Nanjing 210096 China
| |
Collapse
|
17
|
Zhu P, Fu W, Wei S, Liu X, Wang C, Lu Y, Shang Y, Wu X, Wu Y, Zhu S. A high-throughput and ultrasensitive identification methodology for unauthorized GMP component based on suspension array and logical calculator. Sci Rep 2019; 9:7311. [PMID: 31086245 PMCID: PMC6513989 DOI: 10.1038/s41598-019-43863-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/24/2019] [Indexed: 01/08/2023] Open
Abstract
To solve the problem of the unauthorized GMP components within import and export goods, the LI-US (Logic Identification of unauthorized GMP content by Universal-primer Suspension-array) system, which takes advantage of suspension array and logic calculator, was developed in the present study. Seventeen signal input channels have been optimized and validated in our research to ensure the multiplex practicality of the LI-US system. Three LI-US logic gates, including a YES gate, an OR gate and an AND gate, were designed as different detection strategies for GMP identification. The feasibility and specificity of the LI-US system were validated in the present study. Combining the optimization and evaluation of the signal input procedure, the sensitivity of this LI-US system reached 0.05% of the GMP mass concentration. The practicability evaluation of LI-US demonstrated its application within different substrates and varieties. In conclusion, the LI-US system was developed with extremely high specificity, sensitivity and practicability among different substrates and varieties, which could meet the demands of unauthorized GMP contents for both import and export goods.
Collapse
Affiliation(s)
- Pengyu Zhu
- Chinese Academy of Inspection and Quarantine, Beijing, 100029, China
| | - Wei Fu
- Chinese Academy of Inspection and Quarantine, Beijing, 100029, China
| | - Shuang Wei
- Guangdong Entry-Exit Inspection and Quarantine Bureau, Guangdong, 510000, China
| | - Xiao Liu
- Chinese Academy of Inspection and Quarantine, Beijing, 100029, China
| | - Chenguang Wang
- Chinese Academy of Inspection and Quarantine, Beijing, 100029, China
| | - Yun Lu
- Chinese Academy of Inspection and Quarantine, Beijing, 100029, China
| | - Ying Shang
- Yunnan Insititute of Food Safety, Kunmming University of Science and technology, Yunnan, 650500, China
| | - Xiyang Wu
- Department of Food Science and Engineering, Jinan University, Guangzhou, 510000, China
| | - Yuping Wu
- Chinese Academy of Inspection and Quarantine, Beijing, 100029, China.
| | - Shuifang Zhu
- Chinese Academy of Inspection and Quarantine, Beijing, 100029, China.
| |
Collapse
|
18
|
Shen X, Wu P, Schäfer CG, Guo J, Wang C. Ultrafast assembly of nanoparticles to form smart polymeric photonic crystal films: a new platform for quick detection of solution compositions. NANOSCALE 2019; 11:1253-1261. [PMID: 30603749 DOI: 10.1039/c8nr08544g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Photonic crystals (PCs) are an important subset of photonic materials with specific optical properties, which can be utilized for structural color printing, anti-counterfeiting technologies, chemical sensors and so on. However, the fabrication of scalable, high-quality and uniform photonic crystal films at room temperature still remains a big challenge. Herein, a fast, energy efficient and scalable process is reported for the first time. A high-quality polymeric photonic crystal film can be fabricated from the uniform core/shell particle slurry within several seconds by a calendering process. The obtained crystalline structure can be rapidly captured by photo-curing, and the resultant PC films show extremely strong iridescent tunable structural colors. Because the as-designed PC film matrix is sensitive to solutions with different solubility parameters, a prototype demo sensor is firstly set up for quick detection of the composition of the alcohol/H2O mixture as a model of white spirits, which has the feature of reversible and linear quantitative sensing performance. In addition, the as-prepared PC film is further developed as an inexpensive test strip showing quick detection of ethanol/octane mixtures (possessing different solubility parameters) as a model of ethanol gasoline. This facile, scalable and energy efficient fabrication procedure is exceedingly promising for high-throughput production, showing great potential for industrialization of PC sensors and detectors. The combination of uniform particles and a dispersion medium can be potentially designed for different stimuli responsive systems, which is beneficial for applications ranging from sensing, anti-counterfeiting, to some special optical devices.
Collapse
Affiliation(s)
- Xiuqing Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, 220 Handan Road, Shanghai 200433, China.
| | | | | | | | | |
Collapse
|
19
|
Zhao W, Quan M, Cao Z, Zhang Y, Wen J, Pan D, Dong Z, Yang Z, Wang D, Cao H, He W. Visual multi-triggered sensor based on inverse opal hydrogel. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.06.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Liu P, Sheng T, Xie Z, Chen J, Gu Z. Robust, Highly Visible, and Facile Bioconjugation Colloidal Crystal Beads for Bioassay. ACS APPLIED MATERIALS & INTERFACES 2018; 10:29378-29384. [PMID: 30094987 DOI: 10.1021/acsami.8b11472] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
High mechanical strength, highly visible, and admirable grafting molecular ability is the key challenge for colloidal photonic crystal (CPC) barcode beads in multiplex analysis fields. To achieve this goal, we proposed self-adhesion particles, polydopamine-coated SiO2 nanoparticles (PDA@SiO2), to construct CPC barcode beads by droplet-based microfluidic approach. Because of the adhesion, broad absorption of light, and "active" functional groups of PDA, the beads are endowed with high robustness, visibility, and excellent biomolecule immobilization. Ultrasonic treatment and compression experiments demonstrated that PDA@SiO2 CPC barcode beads have a high mechanical strength. Color analysis illustrated that PDA@SiO2 CPC beads exhibited a high visibility in color. The verification of fluorescent-tagged biomolecule conjugation together with the antigen detection stated that PDA@SiO2 CPC beads are capable of immobilizing biomolecule by covalent binding. With a sandwich format, the beads were applied to analyze the tumor makers including alpha fetal protein, carcinoembryonic antigen, and prostate specific antigen from practical clinical serum. The proposed suspension arrays using PDA@SiO2 CPC beads as a barcode showed acceptable accuracy and detection reproducibility.
Collapse
|
21
|
Guo R, Sun XT, Zhang Y, Wang DN, Yang CG, Xu ZR. Three-dimensional poly(lactic-co-glycolic acid)/silica colloidal crystal microparticles for sustained drug release and visualized monitoring. J Colloid Interface Sci 2018; 530:465-472. [PMID: 29990782 DOI: 10.1016/j.jcis.2018.05.102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/27/2018] [Accepted: 05/29/2018] [Indexed: 12/14/2022]
Abstract
In this paper, a three-dimensional (3D) poly(lactic-co-glycolic acid) (PLGA)/silica colloidal crystal drug delivery system with sustained drug release and visualized release monitoring was developed. This system had employed silica colloidal crystal microparticles as template skeleton, PLGA as drug carrier and dexamethasone (DEX) as therapeutic agent. The fabrication of the microparticle-based system included droplet formation based-on microfluidics, silica nanoparticle self-assembly and layer-by-layer deposition of PLGA containing DEX. In 370 μm droplets, the silica colloidal nanoparticles could self-assemble orderly into microparticles with a diameter of 187 μm, featuring red structure color. During the deposition of PLGA with the drug into the voids of the template microparticles, the reflection peak red-shifted and weakened until the voids were completely filled. Owing to the gradual degradation of PLGA, the release of DEX was triggered and sustained for 4 weeks with a cumulative release of 94.9%, while the structure color of the microparticles recovered during the release process. The color change could be recognized by the naked eyes, which would benefit the non-invasive monitoring of the drug release. The in vitro cytotoxicity and long-term inhibiting proliferation were investigated on retinal pigment epithelial cells. The inhibition effect of DEX released from the microparticles showed concentration-dependence from 40 to 200 μg mL-1 and time-dependence within 7 days. As a sustained drug delivery system with self-reporting drug release, the particles have potential applications in treatment of intraocular diseases.
Collapse
Affiliation(s)
- Rui Guo
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, China
| | - Xiao-Ting Sun
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, China
| | - Ying Zhang
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, China
| | - Dan-Ni Wang
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, China
| | - Chun-Guang Yang
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, China.
| | - Zhang-Run Xu
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
22
|
Kong X, Guo Y, Ling Y, Chen B. Establishment of a Multivariate Analysis Based on Photonic Crystal Hydrogel Bead Arrays and Its Application for Detecting Platelet-specific Antibodies. ANAL LETT 2018. [DOI: 10.1080/00032719.2017.1371728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Xin Kong
- Department of Hematology, The Third Affiliated Hospital of Soochow University, The First People’s Hospital of Changzhou, Changzhou, Jiangsu, China
- Department of Hematology, the First Affiliated Hospital of Soochow University, Soochow, Jiangsu, China
| | - Yanting Guo
- Department of Hematology, The Third Affiliated Hospital of Soochow University, The First People’s Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Yun Ling
- Department of Hematology, The Third Affiliated Hospital of Soochow University, The First People’s Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Baoan Chen
- Department of Hematology, Zhongda Hospital, Medical School, South University, Nanjing, China
| |
Collapse
|
23
|
Li CY, Cao D, Qi CB, Kang YF, Song CY, Xu DD, Zheng B, Pang DW, Tang HW. Combining Holographic Optical Tweezers with Upconversion Luminescence Encoding: Imaging-Based Stable Suspension Array for Sensitive Responding of Dual Cancer Biomarkers. Anal Chem 2018; 90:2639-2647. [DOI: 10.1021/acs.analchem.7b04299] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Cheng-Yu Li
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Di Cao
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Chu-Bo Qi
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
- Hubei Cancer Hospital, Wuhan 430079, People’s Republic of China
| | - Ya-Feng Kang
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Chong-Yang Song
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Dang-Dang Xu
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Bei Zheng
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Dai-Wen Pang
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Hong-Wu Tang
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| |
Collapse
|
24
|
Xu Y, Wang H, Luan C, Liu Y, Chen B, Zhao Y. Aptamer-based hydrogel barcodes for the capture and detection of multiple types of pathogenic bacteria. Biosens Bioelectron 2017; 100:404-410. [PMID: 28957705 DOI: 10.1016/j.bios.2017.09.032] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/12/2017] [Accepted: 09/18/2017] [Indexed: 11/16/2022]
Abstract
Rapid and sensitive diagnosing hematological infections based on the separation and detection of pathogenic bacteria in the patient's blood is a significant challenge. To address this, we herein present a new barcodes technology that can simultaneously capture and detect multiple types of pathogenic bacteria from a complex sample. The barcodes are poly (ethylene glycol) (PEG) hydrogel inverse opal particles with characteristic reflection peak codes that remain stable during bacteria capture on their surfaces. As the spherical surface of the particles has ordered porous nanostructure, the barcodes can provide not only more surface area for probe immobilization and reaction, but also a nanopatterned platform for highly efficient bioreactions. In addition, the PEG hydrogel scaffold could decrease the non-specificity adsorption by its anti-adhesive effect, and the decorated aptamer probes in the scaffolds could increase the sensitivity, reliability, and specificity of the bacteria capture and detection. Moreover, the tagged magnetic nanoparticles in the PEG scaffold could impart the barcodes with controllable movement under magnetic fields, which can be used to significantly increase the reaction speed and simplify the processing of the bioassays. Based on the describe barcodes, it was demonstrated that the bacteria could be captured and identified even at low bacterial concentrations (100 CFU mL-1) within 2.5h, which is effectively shortened in comparison with the "gold standard" in clinic. These features make the barcodes ideal for capturing and detecting multiple bacteria from clinical samples for hematological infection diagnostics.
Collapse
Affiliation(s)
- Yueshuang Xu
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Huan Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Chengxin Luan
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yuxiao Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Yuanjin Zhao
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China; State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
25
|
He Q, Li D, He Y, Guan T, Zhang Y, Shen Z, Chen X, Liu S, Lu B, Ji Y. Optical demodulation system for digitally encoded suspension array in fluoroimmunoassay. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-7. [PMID: 28936825 DOI: 10.1117/1.jbo.22.9.097003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
A laser-induced breakdown spectroscopy and fluorescence spectroscopy-coupled optical system is reported to demodulate digitally encoded suspension array in fluoroimmunoassay. It takes advantage of the plasma emissions of assembled elemental materials to digitally decode the suspension array, providing a more stable and accurate recognition to target biomolecules. By separating the decoding procedure of suspension array and adsorption quantity calculation of biomolecules into two independent channels, the cross talk between decoding and label signals in traditional methods had been successfully avoided, which promoted the accuracy of both processes and realized more sensitive quantitative detection of target biomolecules. We carried a multiplexed detection of several types of anti-IgG to verify the quantitative analysis performance of the system. A limit of detection of 1.48×10-10 M was achieved, demonstrating the detection sensitivity of the optical demodulation system.
Collapse
Affiliation(s)
- Qinghua He
- Tsinghua University, Department of Physics, Beijing, China
- Tsinghua University, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of, China
| | - Dongmei Li
- Tsinghua University, Department of Physics, Beijing, China
- Tsinghua University, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of, China
| | - Yonghong He
- Tsinghua University, Department of Physics, Beijing, China
- Tsinghua University, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of, China
| | - Tian Guan
- Tsinghua University, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of, China
| | - Yilong Zhang
- Tsinghua University, Department of Physics, Beijing, China
- Tsinghua University, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of, China
| | - Zhiyuan Shen
- Tsinghua University, Department of Physics, Beijing, China
- Tsinghua University, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of, China
| | - Xuejing Chen
- Tsinghua University, Department of Physics, Beijing, China
- Tsinghua University, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of, China
| | - Siyu Liu
- Tsinghua University, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of, China
| | - Bangrong Lu
- South China Normal University, School of Physics and Telecommunication Engineering, Guangzhou, China
| | - Yanhong Ji
- South China Normal University, School of Physics and Telecommunication Engineering, Guangzhou, China
| |
Collapse
|
26
|
Zhang YS, Zhu C, Xia Y. Inverse Opal Scaffolds and Their Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:10.1002/adma.201701115. [PMID: 28649794 PMCID: PMC5581229 DOI: 10.1002/adma.201701115] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 03/23/2017] [Indexed: 05/04/2023]
Abstract
Three-dimensional porous scaffolds play a pivotal role in tissue engineering and regenerative medicine by functioning as biomimetic substrates to manipulate cellular behaviors. While many techniques have been developed to fabricate porous scaffolds, most of them rely on stochastic processes that typically result in scaffolds with pores uncontrolled in terms of size, structure, and interconnectivity, greatly limiting their use in tissue regeneration. Inverse opal scaffolds, in contrast, possess uniform pores inheriting from the template comprised of a closely packed lattice of monodispersed microspheres. The key parameters of such scaffolds, including architecture, pore structure, porosity, and interconnectivity, can all be made uniform across the same sample and among different samples. In conjunction with a tight control over pore sizes, inverse opal scaffolds have found widespread use in biomedical applications. In this review, we provide a detailed discussion on this new class of advanced materials. After a brief introduction to their history and fabrication, we highlight the unique advantages of inverse opal scaffolds over their non-uniform counterparts. We then showcase their broad applications in tissue engineering and regenerative medicine, followed by a summary and perspective on future directions.
Collapse
Affiliation(s)
- Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Chunlei Zhu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- School of Chemistry and Biochemistry, School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
27
|
Abstract
Droplet microfluidics generates and manipulates discrete droplets through immiscible multiphase flows inside microchannels. Due to its remarkable advantages, droplet microfluidics bears significant value in an extremely wide range of area. In this review, we provide a comprehensive and in-depth insight into droplet microfluidics, covering fundamental research from microfluidic chip fabrication and droplet generation to the applications of droplets in bio(chemical) analysis and materials generation. The purpose of this review is to convey the fundamentals of droplet microfluidics, a critical analysis on its current status and challenges, and opinions on its future development. We believe this review will promote communications among biology, chemistry, physics, and materials science.
Collapse
Affiliation(s)
- Luoran Shang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Yao Cheng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| |
Collapse
|
28
|
Patterned surfaces for biological applications: A new platform using two dimensional structures as biomaterials. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2016.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
29
|
Men D, Liu D, Li Y. Visualized optical sensors based on two/three-dimensional photonic crystals for biochemicals. Sci Bull (Beijing) 2016. [DOI: 10.1007/s11434-016-1134-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|