1
|
Farooq K, Murtaza M, Yang Z, Waseem A, Zhu Y, Xia Y. MXene boosted MOF-derived cobalt sulfide/carbon nanocomposites as efficient bifunctional electrocatalysts for OER and HER. NANOSCALE ADVANCES 2024; 6:3169-3180. [PMID: 38868827 PMCID: PMC11166099 DOI: 10.1039/d4na00290c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/25/2024] [Indexed: 06/14/2024]
Abstract
The development of effective bifunctional electrocatalysts that can realize water splitting to produce oxygen and hydrogen through oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is still a great challenge to be addressed. Herein, we report a simple and versatile approach to fabricate bifunctional OER and HER electrocatalysts derived from ZIF67/MXene hybrids via sulfurization of the precursors in hydrogen sulfide gas atmosphere at high temperatures. The as-prepared CoS@C/MXene nanocomposites were characterized using a series of technologies including X-ray diffraction, gas sorption, scanning electronic microscopy, transmission electronic microscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy. The synthesized CoS@C/MXene composites are electrocatalytically active in both HER and OER, and the CSMX-800 composite displayed the highest electrocatalytic performance towards OER and HER among all the produced samples. CSMX-800 exhibited overpotentials of 257 mV at 10 mA cm-2 for OER and 270 mV at 10 mA cm-2 for HER. Moreover, it also possesses small Tafel slope values of 93 mV dec-1 and 103 mV dec-1 for OER and HER, respectively. The enhanced electrocatalytic performance of the MXene-containing composites is due to their high surface area, enhanced conductivity, and faster charge transfer. This work demonstrated that CoS@C/MXene based electrocatalyst has great potential in electrochemical water splitting for hydrogen production, thus reducing carbon emissions and protecting the environment.
Collapse
Affiliation(s)
- Komal Farooq
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
- Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter Exeter EX4 4QF UK
| | - Maida Murtaza
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Zhuxian Yang
- Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter Exeter EX4 4QF UK
| | - Amir Waseem
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Yanqiu Zhu
- Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter Exeter EX4 4QF UK
| | - Yongde Xia
- Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter Exeter EX4 4QF UK
| |
Collapse
|
2
|
Sheng L, Tan H, Zhu L, Liu K, Meng A, Li Z. In situ anchored ternary hierarchical hybrid nickel@cobaltous sulfide on poly(3,4-ethylenedioxythiophene)-reduced graphene oxide for highly efficient non-enzymatic glucose sensing. Mikrochim Acta 2024; 191:267. [PMID: 38627300 DOI: 10.1007/s00604-024-06317-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/14/2024] [Indexed: 04/19/2024]
Abstract
A ternary hierarchical hybrid Ni@CoxSy/poly(3,4-ethylenedioxythiophene)-reduced graphene oxide (Ni@CoxSy/PEDOT-rGO) is rationally designed and in situ facilely synthesized as electrocatalyst to construct a binder-free sensing platform for non-enzymatic glucose monitoring through traditional electrodeposition procedure. The as-prepared Ni@CoxSy/PEDOT-rGO presents unique hierarchical structure and multiple valence states as well as strong and robust adhesion between Ni@CoxSy/PEDOT-rGO and GCE. Profiting from the aforementioned merits, the sensing platform constructed under optimal conditions achieved a wide detection range (0.2 μM ~ 2.0 mM) with high sensitivity (1546.32 μA cm-2 mM-1), a rapid response time (5 s), an ultralow detection limit (0.094 μM), superior anti-interference performance, excellent reproducibility and considerable stability. Furthermore, the sensor demonstrates an acceptable accuracy and appreciable recoveries ranging from 90.0 to 102.0% with less than 3.98% RSD in human blood serum samples, indicating the prospect of the sensor for the real samples analysis. It will provide a strategy to rationally design and fabricate ternary hierarchical hybrid as nanozyme for glucose assay.
Collapse
Affiliation(s)
- Liying Sheng
- College of Chemical Engineering, State Key Laboratory Base of Eco-Chemical Engineering, Qingdao University of Science and Technology, Shandong Province, Qingdao, 266042, China
| | - Hongtao Tan
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Shandong Province, Qingdao, 266042, China
| | - Licheng Zhu
- College of Chemical Engineering, State Key Laboratory Base of Eco-Chemical Engineering, Qingdao University of Science and Technology, Shandong Province, Qingdao, 266042, China
| | - Kexin Liu
- College of Chemical Engineering, State Key Laboratory Base of Eco-Chemical Engineering, Qingdao University of Science and Technology, Shandong Province, Qingdao, 266042, China
| | - Alan Meng
- College of Chemistry and Molecular Engineering, Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-Chemical Engineering, Qingdao University of Science and Technology, Shandong Province, Qingdao, 266042, China.
| | - Zhenjiang Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Shandong Province, Qingdao, 266042, China.
| |
Collapse
|
3
|
Khan MS, Noor T, Pervaiz E, Iqbal N, Zaman N. Fabrication of MoS 2/rGO hybrids as electrocatalyst for water splitting applications. RSC Adv 2024; 14:12742-12753. [PMID: 38645523 PMCID: PMC11027038 DOI: 10.1039/d4ra00697f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/11/2024] [Indexed: 04/23/2024] Open
Abstract
Environmental degradation and energy constraint are important risks to long-term sustainability in the modern world. Water splitting is a vital approach for environmentally friendly and sustainable energy storage, providing a clean way to produce hydrogen without pollutants. Preparing a catalyst that is active, bifunctional, and durable for water splitting is a difficult task. We addressed the difficulty by creating a bifunctional heterogeneous catalyst, MoS2/rGO, with an ideal weight percentage of 5 wt% by a hydrothermal process. The optimized sample showed exceptional electrocatalytic activity, requiring an overpotential of 242 mV and 120 mV to achieve a current density of 10 mA cm-2 in the Hydrogen Evolution Reaction (HER) and Oxygen Evolution Reaction (OER). Furthermore, our synthesized catalyst was validated for its exceptional water-splitting capacity, with the optimized sample showing low Tafel slope values of 59 mV dec-1 for HER and 171 mV dec-1 for OER. The significant OER and HER activity seen in the 5 wt% MoS2/rGO hybrid, compared to other hybrids, is due to the many catalytic active sites that aid in charge and electron transport, as well as the synergistic interaction between MoS2 and rGO.
Collapse
Affiliation(s)
- Muhammad Shahzeb Khan
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan +92 51 90855121
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan +92 51 90855121
| | - Erum Pervaiz
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan +92 51 90855121
| | - Naseem Iqbal
- U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan
| | - Neelam Zaman
- U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan
| |
Collapse
|
4
|
Liang P, Zhu G, Huang CL, Li YY, Sun H, Yuan B, Wu SC, Li J, Wang F, Hwang BJ, Dai H. Rechargeable Li/Cl 2 Battery Down to -80 °C. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307192. [PMID: 37804146 DOI: 10.1002/adma.202307192] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/26/2023] [Indexed: 10/09/2023]
Abstract
Low temperature rechargeable batteries are important to life in cold climates, polar/deep-sea expeditions, and space explorations. Here, this work reports 3.5-4 V rechargeable lithium/chlorine (Li/Cl2 ) batteries operating down to -80 °C, employing Li metal negative electrode, a novel carbon dioxide (CO2 ) activated porous carbon (KJCO2 ) as the positive electrode, and a high ionic conductivity (≈5-20 mS cm-1 from -80 °C to room-temperature) electrolyte comprised of aluminum chloride (AlCl3 ), lithium chloride (LiCl), and lithium bis(fluorosulfonyl)imide (LiFSI) in low-melting-point (-104.5 °C) thionyl chloride (SOCl2 ). Between room-temperature and -80 °C, the Li/Cl2 battery delivers up to ≈29 100-4500 mAh g-1 first discharge capacity (based on carbon mass) and a 1200-5000 mAh g-1 reversible capacity over up to 130 charge-discharge cycles. Mass spectrometry and X-ray photoelectron spectroscopy probe Cl2 trapped in the porous carbon upon LiCl electro-oxidation during charging. At -80 °C, Cl2 /SCl2 /S2 Cl2 generated by electro-oxidation in the charging step are trapped in porous KJCO2 carbon, allowing for reversible reduction to afford a high discharge voltage plateau near ≈4 V with up to ≈1000 mAh g-1 capacity for SCl2 /S2 Cl2 reduction and up to ≈4000 mAh g-1 capacity at ≈3.1 V plateau for Cl2 reduction.
Collapse
Affiliation(s)
- Peng Liang
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, 94305, USA
| | - Guanzhou Zhu
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, 94305, USA
| | - Cheng-Liang Huang
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, 62102, Taiwan
| | - Yuan-Yao Li
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, 62102, Taiwan
| | - Hao Sun
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bin Yuan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shu-Chi Wu
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, 94305, USA
| | - Jiachen Li
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, 94305, USA
| | - Feifei Wang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, Hong Kong
| | - Bing-Joe Hwang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106, Taiwan
| | - Hongjie Dai
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, 94305, USA
- Department of Chemistry, The University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
5
|
Jiang Y, Fu H, Liang Z, Zhang Q, Du Y. Rare earth oxide based electrocatalysts: synthesis, properties and applications. Chem Soc Rev 2024; 53:714-763. [PMID: 38105711 DOI: 10.1039/d3cs00708a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
As an important strategic resource, rare earths (REs) constitute 17 elements in the periodic table, namely 15 lanthanides (Ln) (La-Lu, atomic numbers from 57 to 71), scandium (Sc, atomic number 21) and yttrium (Y, atomic number 39). In the field of catalysis, the localization and incomplete filling of 4f electrons endow REs with unique physical and chemical properties, including rich electronic energy level structures, variable coordination numbers, etc., making them have great potential in electrocatalysis. Among various RE catalytic materials, rare earth oxide (REO)-based electrocatalysts exhibit excellent performances in electrocatalytic reactions due to their simple preparation process and strong structural variability. At the same time, the electronic orbital structure of REs exhibits excellent electron transfer ability, which can reduce the band gap and energy barrier values of rate-determining steps, further accelerating the electron transfer in the electrocatalytic reaction process; however, there is a lack of systematic review of recent advances in REO-based electrocatalysis. This review systematically summarizes the synthesis, properties and applications of REO-based nanocatalysts and discusses their applications in electrocatalysis in detail. It includes the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), hydrogen oxidation reaction (HOR), oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO2RR), methanol oxidation reaction (MOR), nitrogen reduction reaction (NRR) and other electrocatalytic reactions and further discusses the catalytic mechanism of REs in the above reactions. This review provides a timely and comprehensive summary of the current progress in the application of RE-based nanomaterials in electrocatalytic reactions and provides reasonable prospects for future electrocatalytic applications of REO-based materials.
Collapse
Affiliation(s)
- Yong Jiang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| | - Hao Fu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhong Liang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| | - Qian Zhang
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an, 710048, China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
6
|
Kawashima K, Márquez RA, Smith LA, Vaidyula RR, Carrasco-Jaim OA, Wang Z, Son YJ, Cao CL, Mullins CB. A Review of Transition Metal Boride, Carbide, Pnictide, and Chalcogenide Water Oxidation Electrocatalysts. Chem Rev 2023. [PMID: 37967475 DOI: 10.1021/acs.chemrev.3c00005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Transition metal borides, carbides, pnictides, and chalcogenides (X-ides) have emerged as a class of materials for the oxygen evolution reaction (OER). Because of their high earth abundance, electrical conductivity, and OER performance, these electrocatalysts have the potential to enable the practical application of green energy conversion and storage. Under OER potentials, X-ide electrocatalysts demonstrate various degrees of oxidation resistance due to their differences in chemical composition, crystal structure, and morphology. Depending on their resistance to oxidation, these catalysts will fall into one of three post-OER electrocatalyst categories: fully oxidized oxide/(oxy)hydroxide material, partially oxidized core@shell structure, and unoxidized material. In the past ten years (from 2013 to 2022), over 890 peer-reviewed research papers have focused on X-ide OER electrocatalysts. Previous review papers have provided limited conclusions and have omitted the significance of "catalytically active sites/species/phases" in X-ide OER electrocatalysts. In this review, a comprehensive summary of (i) experimental parameters (e.g., substrates, electrocatalyst loading amounts, geometric overpotentials, Tafel slopes, etc.) and (ii) electrochemical stability tests and post-analyses in X-ide OER electrocatalyst publications from 2013 to 2022 is provided. Both mono and polyanion X-ides are discussed and classified with respect to their material transformation during the OER. Special analytical techniques employed to study X-ide reconstruction are also evaluated. Additionally, future challenges and questions yet to be answered are provided in each section. This review aims to provide researchers with a toolkit to approach X-ide OER electrocatalyst research and to showcase necessary avenues for future investigation.
Collapse
Affiliation(s)
- Kenta Kawashima
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Raúl A Márquez
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Lettie A Smith
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rinish Reddy Vaidyula
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Omar A Carrasco-Jaim
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ziqing Wang
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yoon Jun Son
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chi L Cao
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - C Buddie Mullins
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Center for Electrochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- H2@UT, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
7
|
Tang W, Mai J, Liu L, Yu N, Fu L, Chen Y, Liu Y, Wu Y, van Ree T. Recent advances of bifunctional catalysts for zinc air batteries with stability considerations: from selecting materials to reconstruction. NANOSCALE ADVANCES 2023; 5:4368-4401. [PMID: 37638171 PMCID: PMC10448312 DOI: 10.1039/d3na00074e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023]
Abstract
With the growing depletion of traditional fossil energy resources and ongoing enhanced awareness of environmental protection, research on electrochemical energy storage techniques like zinc-air batteries is receiving close attention. A significant amount of work on bifunctional catalysts is devoted to improving OER and ORR reaction performance to pave the way for the commercialization of new batteries. Although most traditional energy storage systems perform very well, their durability in practical applications is receiving less attention, with issues such as carbon corrosion, reconstruction during the OER process, and degradation, which can seriously impact long-term use. To be able to design bifunctional materials in a bottom-up approach, a summary of different kinds of carbon materials and transition metal-based materials will be of assistance in selecting a suitable and highly active catalyst from the extensive existing non-precious materials database. Also, the modulation of current carbon materials, aimed at increasing defects and vacancies in carbon and electron distribution in metal-N-C is introduced to attain improved ORR performance of porous materials with fast mass and air transfer. Finally, the reconstruction of catalysts is introduced. The review concludes with comprehensive recommendations for obtaining high-performance and highly-durable catalysts.
Collapse
Affiliation(s)
- Wanqi Tang
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
- College of Chemical Engineering, Nanjing Tech University Nanjing 210009 China
| | - Jiarong Mai
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Lili Liu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Nengfei Yu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Lijun Fu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Yuhui Chen
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Yankai Liu
- Hunan Bolt Power New Energy Co., Ltd Dianjiangjun Industrial Park, Louxing District Loudi 417000 Hunan China
| | - Yuping Wu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
- Hunan Bolt Power New Energy Co., Ltd Dianjiangjun Industrial Park, Louxing District Loudi 417000 Hunan China
- School of Energy and Environment, Southeast University Nanjing 210096 China
| | - Teunis van Ree
- Department of Chemistry, University of Venda Thohoyandou 0950 South Africa
| |
Collapse
|
8
|
Huang K, Hui Y, Yang Z, Waqas M, Fan F, Wang L, Liu X, Huang Q, Huang D, Chen DH, Fan Y, Chen W. N, S co-doped carbon film wrapped Co nanoparticles for boosting oxygen reduction reaction. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
9
|
Dias GDS, Costa JM, Almeida Neto AFD. Transition metal chalcogenides carbon-based as bifunctional cathode electrocatalysts for rechargeable zinc-air battery: An updated review. Adv Colloid Interface Sci 2023; 315:102891. [PMID: 37058836 DOI: 10.1016/j.cis.2023.102891] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
The rechargeable alkaline aqueous zinc-air batteries (ZABs) are prospective candidates to supply the energy demand for their high theoretical energy density, inherent safety, and environmental friendliness. However, their practical application is mainly restricted by the unsatisfactory efficiency of the air electrode, leading to an intense search for high-efficient oxygen electrocatalysts. In recent years, the composites of carbon materials and transition metal chalcogenides (TMC/C) have emerged as promising alternatives because of the unique properties of these single compounds and the synergistic effect between them. In this sense, this review presented the electrochemical properties of these composites and their effects on the ZAB performance. The operational fundamentals of the ZABs were described. After elucidating the role of the carbon matrix in the hybrid material, the latest developments in the ZAB performance of the monometallic structure and spinel of TMC/C were detailed. In addition, we report topics on doping and heterostructure due to the large number of studies involving these specific defects. Finally, a critical conclusion and a brief overview sought to contribute to the advancement of TMC/C in the ZABs.
Collapse
Affiliation(s)
- Giancarlo de Souza Dias
- Laboratory of Electrochemical Processes and Anticorrosion, Department of Product and Process Design, School of Chemical Engineering, University of Campinas (UNICAMP), Albert Einstein Av., 500, 13083-852 Campinas, São Paulo, Brazil
| | - Josiel Martins Costa
- School of Food Engineering (FEA), University of Campinas (UNICAMP), Monteiro Lobato St., 80, 13083-862 Campinas, São Paulo, Brazil.
| | - Ambrósio Florêncio de Almeida Neto
- Laboratory of Electrochemical Processes and Anticorrosion, Department of Product and Process Design, School of Chemical Engineering, University of Campinas (UNICAMP), Albert Einstein Av., 500, 13083-852 Campinas, São Paulo, Brazil
| |
Collapse
|
10
|
Interfacial Electron Redistribution of FeCo2S4/N-S-rGO Boosting Bifunctional Oxygen Electrocatalysis Performance. Catalysts 2022. [DOI: 10.3390/catal12091002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Developing bifunctional catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is essential for the development of zinc–air batteries (ZABs), but several challenges remain in terms of bifunctional activity. FeCo2S4/N-S-rGO was prepared by in situ homogeneous growth of bimetallic sulfide FeCo2S4 on N, S-doped reduced graphene oxide. FeCo2S4/N-S-rGO exhibits a half-wave potential of 0.89 V for ORR and an overpotential of 0.26 V at 10 mA cm−2 for OER, showing significantly bifunctional activity superior to Pt/C (0.85 V) and RuO2 (0.41 V). Moreover, the FeCo2S4/N-S-rGO assembled ZAB shows a superior specific capacity and a power density of 259.13 mW cm−2. It is demonstrated that the interfacial electron redistribution between FeCo2S4 nanoparticles and heteroatom-doped rGO matrix can efficiently improve the electrochemical performance of the catalyst. The results provide new insights into the preparation of high-capability composite catalysts combining transition metal sulfides with carbon materials for applications in ZABs.
Collapse
|
11
|
Su JA, Huang CC, Huang CL, Lin YT, Li YY. Activated Microporous Carbon Spheres for Electric Double-Layer Capacitor. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Huang Z, Yang Z, Jia Q, Wang N, Zhu Y, Xia Y. Bimetallic Co-Mo sulfide/carbon composites derived from polyoxometalate encapsulated polydopamine-decorated ZIF nanocubes for efficient hydrogen and oxygen evolution. NANOSCALE 2022; 14:4726-4739. [PMID: 35266942 DOI: 10.1039/d1nr07913a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The increased call for carbon neutrality by 2050 makes it compelling to develop emission-free alternative energy sources. Green hydrogen produced from water electrolyzers using renewable electricity is of great importance, and the development of efficient transition-metal-based materials for hydrogen production by electrolysis is highly desirable. In this report, a new approach to produce defect-rich and ultra-fine bimetallic Co-Mo sulfides/carbon composites from polyoxometalates@ZIF-67@polydopamine nanocubes via carbonization/sulfurization, which are highly active for hydrogen and oxygen evolution reactions (HER and OER), have been successfully developed. The coating of polydopamine (PDA) on the surface of the acid-sensitive ZIF-67 cubes can prevent the over-dissociation of ZIF-67 caused by the encapsulated phosphomolybdic acid (PMA) etching through PDA chelating with the PMA molecules. Meanwhile, the partially dissociated Co2+ from ZIF-67 can be captured by the coated PDA via chelation, resulting in more evenly dispersed active sites throughout the heterogeneous composite after pyrolysis. The optimized bimetallic composite CoMoS-600 exhibits a prominent improvement in HER (with an overpotential of -0.235 V vs. RHE at a current density of 10 mA cm-2) and OER performance (with an overpotential of 0.350 V vs. RHE at a current density of 10 mA cm-2), due to the synergistic effect of ultra-fine defect-rich Co-Mo-S nanoparticle active sites and N,S-codoped porous carbons in the composites. Moreover, this synthesis approach can be readily expanded to other acidic polyoxometalates to produce HER and OER active bimetallic Co-W sulfide/carbon composites by replacing PMA with phosphotungstic acid. This new synthesis strategy to modify acid-sensitive ZIFs with selected compounds offers an alternative approach to develop novel transition metal sulfide/carbon composites for various applications.
Collapse
Affiliation(s)
- Zheng Huang
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK.
| | - Zhuxian Yang
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK.
| | - Quanli Jia
- Henan Key Laboratory of High Temperature Functional Ceramics, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Nannan Wang
- GIFT (Guangxi Institute for Fullerene Technology), Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environment and Materials, Guangxi University, Guangxi, 530004, China
| | - Yanqiu Zhu
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK.
| | - Yongde Xia
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK.
| |
Collapse
|
13
|
Jadhav HS, Bandal HA, Ramakrishna S, Kim H. Critical Review, Recent Updates on Zeolitic Imidazolate Framework-67 (ZIF-67) and Its Derivatives for Electrochemical Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107072. [PMID: 34846082 DOI: 10.1002/adma.202107072] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Design and construction of low-cost electrocatalysts with high catalytic activity and long-term stability is a challenging task in the field of catalysis. Metal-organic frameworks (MOF) are promising candidates as precursor materials in the development of highly efficient electrocatalysts for energy conversion and storage applications. This review starts with a summary of basic concepts and key evaluation parameters involved in the electrochemical water-splitting reaction. Then, different synthesis approaches reported for the cobalt-based Zeolitic imidazolate framework (ZIF-67) and its derivatives are critically reviewed. Additionally, several strategies employed to enhance the electrocatalytic activity and stability of ZIF-67-based electrocatalysts are discussed in detail. The present review provides a succinct insight into the ZIF-67 and its derivatives (oxides, hydroxides, sulfides, selenides, phosphide, nitrides, telluride, heteroatom/metal-doped carbon, noble metal-supported ZIF-67 derivatives) reported for oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and overall water splitting applications. Finally, this review concludes with the associated challenges and the perspectives on developing the best economic, durable electrocatalytic materials.
Collapse
Affiliation(s)
- Harsharaj S Jadhav
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Harshad A Bandal
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| | - Hern Kim
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| |
Collapse
|
14
|
Li D, Zhao L, Xia Q, Liu L, Fang W, Liu Y, Zhou Z, Long Y, Han X, Zhang Y, Wang J, Wu Y, Liu H. CoS 2 Nanoparticles Anchored on MoS 2 Nanorods As a Superior Bifunctional Electrocatalyst Boosting Li 2 O 2 Heteroepitaxial Growth for Rechargeable Li-O 2 Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105752. [PMID: 34897989 DOI: 10.1002/smll.202105752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/11/2021] [Indexed: 06/14/2023]
Abstract
Developing an excellent bifunctional catalyst is essential for the commercial application of Li-O2 batteries. Heterostructures exhibit great application potential in the field of energy catalysis because of the accelerated charge transfer and increased active sites on their surfaces. In this work, CoS2 nanoparticles decorated on MoS2 nanorods are constructed and act as a superior cathode catalyst for Li-O2 batteries. Coupling MoS2 and CoS2 can not only synergistically enhance their electrical conductivity and electrochemical activity, but also promote the heteroepitaxial growth of discharge products on the heterojunction interfaces, thus delivering high discharge capacity, stable cycle performance, and good rate capability.
Collapse
Affiliation(s)
- Deyuan Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Lanling Zhao
- School of Physics, Shandong University, Jinan, 250100, China
| | - Qing Xia
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Lili Liu
- School of Energy Science and Engineering, Nanjing Tech University, Jiangsu Province, Nanjing, 211816, China
| | - Weiwei Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry, University (NFU), Nanjing, 210037, China
| | - Yao Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Zhaorui Zhou
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Yuxin Long
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Xue Han
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Yiming Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Jun Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Yuping Wu
- School of Energy Science and Engineering, Nanjing Tech University, Jiangsu Province, Nanjing, 211816, China
| | - Huakun Liu
- University of Wollongong, Institute for Superconducting and Electronic Materials (ISEM), Wollongong, NSW, 2522, Australia
| |
Collapse
|
15
|
Wang T, Ola O, Dapaah MF, Lu Y, Niu Q, Cheng L, Wang N, Zhu Y. Preparation and Characterization of Multi-Doped Porous Carbon Nanofibers from Carbonization in Different Atmospheres and Their Oxygen Electrocatalytic Properties Research. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:832. [PMID: 35269320 PMCID: PMC8912686 DOI: 10.3390/nano12050832] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 12/24/2022]
Abstract
Recently, electrocatalysts for oxygen reduction reaction (ORR) as well as oxygen evolution reaction (OER) hinged on electrospun nanofiber composites have attracted wide research attention. Transition metal elements and heteroatomic doping are important methods used to enhance their catalytic performances. Lately, the construction of electrocatalysts based on metal-organic framework (MOF) electrospun nanofibers has become a research hotspot. In this work, nickel-cobalt zeolitic imidazolate frameworks with different molar ratios (NixCoy-ZIFs) were synthesized in an aqueous solution, followed by NixCoy-ZIFs/polyacrylonitrile (PAN) electrospun nanofiber precursors, which were prepared by a simple electrospinning method. Bimetal (Ni-Co) porous carbon nanofiber catalysts doped with nitrogen, oxygen, and sulfur elements were obtained at high-temperature carbonization treatment in different atmospheres (argon (Ar), Air, and hydrogen sulfide (H2S)), respectively. The morphological properties, structures, and composition were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Moreover, the specific surface area of materials and their pore size distribution was characterized by Brunauer-Emmett-Teller (BET). Linear sweep voltammetry curves investigated catalyst performances towards oxygen reduction and evolution reactions. Importantly, Ni1Co2-ZIFs/PAN-Ar yielded the best ORR activity, whereas Ni1Co1-ZIFs/PAN-Air exhibited the best OER performance. This work provides significant guidance for the preparation and characterization of multi-doped porous carbon nanofibers carbonized in different atmospheres.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; (T.W.); (Y.L.)
| | - Oluwafunmilola Ola
- Advanced Materials Research Group, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Malcom Frimpong Dapaah
- Institute of Environmental Health and Ecological Security, School of the Environment and SafetyEngineering, Jiangsu University, Zhenjiang 212013, China; (M.F.D.); (L.C.)
| | - Yuhao Lu
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; (T.W.); (Y.L.)
| | - Qijian Niu
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; (T.W.); (Y.L.)
| | - Liang Cheng
- Institute of Environmental Health and Ecological Security, School of the Environment and SafetyEngineering, Jiangsu University, Zhenjiang 212013, China; (M.F.D.); (L.C.)
| | - Nannan Wang
- Guangxi Institute for Fullerene Technology, Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources Environment and Materials, University of Guangxi, Nanning 530000, China;
| | - Yanqiu Zhu
- Guangxi Institute for Fullerene Technology, Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources Environment and Materials, University of Guangxi, Nanning 530000, China;
| |
Collapse
|
16
|
Ying Z, Lv Y, Song H, Ma Y, Chen R, Janyasupab M, Feng L, Zhang Y. 1T-Phase molybdenum sulfide/cobalt oxide nanopillars hybrid nanostructure coupled with nitrogen-doped carbon thin-film as high efficiency electrocatalyst for oxygen evolution. J Colloid Interface Sci 2022; 608:3040-3048. [PMID: 34815080 DOI: 10.1016/j.jcis.2021.11.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 11/29/2022]
Abstract
High efficient and durable catalysts are always needed to lower the kinetic barriers as well as prolong the service life associated with oxygen evolution reaction (OER). Herein, a sequential synthetic strategy is considered to prepare a hierarchical nanostructure, in which each component can be configured to achieve their full potential so that endows the resulting nanocatalyst a good overall performance. In order to realize this, well-organized cobalt oxide (Co3O4) nanopillars are firstly grown onto ultrathin 1T-molybdenum sulfide (1T-MoS2) to obtain high surface area electrocatalyst, providing electron transfer pathways and structural stability. After that, zeolitic imidazolate framework-67 (ZIF-67) derived carbonization film is further in situ deposited on the surface of nanopillars to generate plentiful active sites, thereby accelerating OER kinetics. Based on the combination of different components, the electron transfer capability, catalytic activity and durability are optimized and fully implemented. The obtained nanocatalyst (defined as 1T-MoS2/Co3O4/CN) exhibits the superior OER catalytic ability with the overpotential of 202 mV and Tafel slope of 57 mV·dec-1 at 10 mA·cm-2 in 0.1 M KOH, and good durability with a minor chronoamperometric decay of 9.15 % after 60,000 s of polarization.
Collapse
Affiliation(s)
- Zi Ying
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Yu Lv
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Haixiang Song
- Henan International Joint Research Laboratory of Nanocomposite Sensing Materials, Anyang Institute of Technology, Anyang 455000, China
| | - Yujie Ma
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Riming Chen
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Metini Janyasupab
- Department of Electronics Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Lingyan Feng
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Yuan Zhang
- Materials Genome Institute, Shanghai University, Shanghai 200444, China; State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
| |
Collapse
|
17
|
Metal-Supported Biochar Catalysts for Sustainable Biorefinery, Electrocatalysis and Energy Storage Applications: A Review. Catalysts 2022. [DOI: 10.3390/catal12020207] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Biochar (BCH) is a carbon-based bio-material produced from thermochemical conversion of biomass. Several activation or functionalization methods are usually used to improve physicochemical and functional properties of BCHs. In the context of green and sustainable future development, activated and functionalized biochars with abundant surface functional groups and large surface area can act as effective catalysts or catalyst supports for chemical transformation of a range of bioproducts in biorefineries. Above the well-known BCH applications, their use as adsorbents to remove pollutants are the mostly discussed, although their potential as catalysts or catalyst supports for advanced (electro)catalytic processes has not been comprehensively explored. In this review, the production/activation/functionalization of metal-supported biochar (M-BCH) are scrutinized, giving special emphasis to the metal-functionalized biochar-based (electro)catalysts as promising catalysts for bioenergy and bioproducts production. Their performance in the fields of biorefinery processes, and energy storage and conversion as electrode materials for oxygen and hydrogen evolutions, oxygen reduction, and supercapacitors, are also reviewed and discussed.
Collapse
|
18
|
Graphene-reinforced metal-organic frameworks derived cobalt sulfide/carbon nanocomposites as efficient multifunctional electrocatalysts. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2085-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractDeveloping cost-effective electrocatalysts for oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is vital in energy conversion and storage applications. Herein, we report a simple method for the synthesis of graphene-reinforced CoS/C nanocomposites and the evaluation of their electrocatalytic performance for typical electrocatalytic reactions. Nanocomposites of CoS embedded in N, S co-doped porous carbon and graphene (CoS@C/Graphene) were generated via simultaneous sulfurization and carbonization of one-pot synthesized graphite oxide-ZIF-67 precursors. The obtained CoS@C/Graphene nanocomposites were characterized by X-ray diffraction, Raman spectroscopy, thermogravimetric analysis-mass spectroscopy, scanning electronic microscopy, transmission electronic microscopy, X-ray photoelectron spectroscopy and gas sorption. It is found that CoS nanoparticles homogenously dispersed in the in situ formed N, S co-doped porous carbon/graphene matrix. The CoS@C/10Graphene composite not only shows excellent electrocatalytic activity toward ORR with high onset potential of 0.89 V, four-electron pathway and superior durability of maintaining 98% of current after continuously running for around 5 h, but also exhibits good performance for OER and HER, due to the improved electrical conductivity, increased catalytic active sites and connectivity between the electrocatalytic active CoS and the carbon matrix. This work offers a new approach for the development of novel multifunctional nanocomposites for the next generation of energy conversion and storage applications.
Collapse
|
19
|
Li XP, Huang C, Han WK, Ouyang T, Liu ZQ. Transition metal-based electrocatalysts for overall water splitting. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.01.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Carbon-Based Composites as Electrocatalysts for Oxygen Evolution Reaction in Alkaline Media. MATERIALS 2021; 14:ma14174984. [PMID: 34501072 PMCID: PMC8434594 DOI: 10.3390/ma14174984] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022]
Abstract
This review paper presents the most recent research progress on carbon-based composite electrocatalysts for the oxygen evolution reaction (OER), which are of interest for application in low temperature water electrolyzers for hydrogen production. The reviewed materials are primarily investigated as active and stable replacements aimed at lowering the cost of the metal electrocatalysts in liquid alkaline electrolyzers as well as potential electrocatalysts for an emerging technology like alkaline exchange membrane (AEM) electrolyzers. Low temperature electrolyzer technologies are first briefly introduced and the challenges thereof are presented. The non-carbon electrocatalysts are briefly overviewed, with an emphasis on the modes of action of different active phases. The main part of the review focuses on the role of carbon–metal compound active phase interfaces with an emphasis on the synergistic and additive effects. The procedures of carbon oxidative pretreatment and an overview of metal-free carbon catalysts for OER are presented. Then, the successful synthesis protocols of composite materials are presented with a discussion on the specific catalytic activity of carbon composites with metal hydroxides/oxyhydroxides/oxides, chalcogenides, nitrides and phosphides. Finally, a summary and outlook on carbon-based composites for low temperature water electrolysis are presented.
Collapse
|
21
|
Kiani M, Tian XQ, Zhang W. Non-precious metal electrocatalysts design for oxygen reduction reaction in polymer electrolyte membrane fuel cells: Recent advances, challenges and future perspectives. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213954] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Tran NM, Kim S, Yoo H. Gold nanodot assembly within a cobalt chalcogenide nanoshell: Promotion of electrocatalytic activity. J Colloid Interface Sci 2021; 605:274-285. [PMID: 34329979 DOI: 10.1016/j.jcis.2021.07.075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 12/28/2022]
Abstract
The assembly of functional nanoparticles within materials with unique architectures can improve the interfacial surfaces, defects, and active sites, which are key factors for the designing novel nanocatalysts. Nano metal-organic framework (NMOF) can be employed to fabricate nanodots-confined nanohybrids for use in electrocatalytic processes. Herein, we report a controlled synthesis of gold nanodot assembly within cobalt chalcogenide nanoshell (dots-in-shell Au/CoxSy nanohybrids). A cobalt-based NMOF (the cobalt-based zeolite imidazole framework, ZIF-67) is used as a versatile sacrificial template to yield dots-in-shell Au/CoxSy nanohybrids. Due to the synergistic effect of the well-dispersed Au nanodots and the thin CoxSy nanoshell, the obtained dots-in-shell Au/CoxSy nanohybrids exhibit enhanced performance for the oxygen evolution reaction (OER) with low overpotential values at a current density of 10 mA cm-2 and a small Tafel slope (343 mV and 62 mV dec-1, respectively).
Collapse
Affiliation(s)
- Ngoc Minh Tran
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Suncheol Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Hyojong Yoo
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea.
| |
Collapse
|
23
|
Mathankumar M, Karthick K, Nanda Kumar AK, Kundu S, Balasubramanian S. In Situ Decorated Ni Metallic Layer with CoS 2-Layered Thin Films via a Layer-by-Layer Strategy Using Pulsed Laser Deposition for Enhanced Electrocatalytic OER. Inorg Chem 2021; 60:8946-8957. [PMID: 34106695 DOI: 10.1021/acs.inorgchem.1c00839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The catalytic activity of 3d-transition-metal-based electrocatalysts has exhibited considerable enhancements in electrocatalytic water splitting via pioneering modulations in the active sites. To overcome the energy loss because of the mechanic steps involved in a complex oxygen evolution reaction (OER), the electrode surface with only a few layers would be an advantage over multilayers for the ease of the electrolyte interaction and gas evolution. Here, for the first time, thin films of CoS2 are prepared on a carbon cloth via a pulsed laser deposition (PLD) technique via layer-by-layer deposition of Ni that tend to give Ni-CoS2 thin films. Based on varying the ablation of metallic Ni followed by CoS2 as a layer-by-layer assembly using PLD, three catalysts, namely, Ni5-CoS2, Ni10-CoS2, and Ni15-CoS2, were prepared. In OER, to achieve a benchmarking current density of 10 mA cm-2 in 1 M KOH, Ni10-CoS2 required a lesser overpotential of 304 mV, whereas others, namely, Ni5-CoS2, Ni15-CoS2, and CoS2, required overpotentials of 328, 336, and 373 mV, respectively, to attain the same current density. The charge transfer kinetics associated with all of the catalysts were analyzed, and the corresponding Tafel slope values for Ni5-CoS2 and Ni10-CoS2 were 75 and 98 mV/dec, respectively, ensuring the facile transfer of electrons at the interface. The assistance of metallic Ni sites also ensured stability for long-term applications. These findings will give a way for other earth-abundant catalysts for the increased electrocatalytic activity toward energy needs in future.
Collapse
Affiliation(s)
- Mahendran Mathankumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Kannimuthu Karthick
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | | | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Subramanian Balasubramanian
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|
24
|
Lim D, Min K, Hwang M, Ham HC, Kim GJ, Baeck SH. Hollow hierarchical zinc cobalt sulfides derived from bimetallic-organic-framework as a non-precious electrocatalyst for oxygen reduction reaction. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Lee JH, Jang JH, Kim J, Yoo SJ. Bimetallic ZIFs derived nitrogen-doped hollow carbon with carbon nanotube bridges as a superior oxygen reduction reaction electrocatalyst. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Zhang X, Jin M, Zhao Y, Bai Z, Wu C, Zhu Z, Wu H, Zhou J, Li J, Pan X, Xie E. Improved lithium-ion battery performance by introducing oxygen-containing functional groups by plasma treatment. NANOTECHNOLOGY 2021; 32:275401. [PMID: 33784657 DOI: 10.1088/1361-6528/abf37d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Metal sulfides are often used as cathode materials for lithium-ion batteries (LIBs) owing to their high theoretical specific capacity; however, excessively fast capacity decay during charging/discharging and rapid shedding during cycling limits their practical application in batteries. In this study, we proposed a strategy using plasma treatment combined with the solvothermal method to prepare cobalt sulfide (Co1-xS)-carbon nanofibers (CNFs) composite. The plasma treatment could introduce oxygen-containing polar groups and defects, which could improve the hydrophilicity of the CNFs for the growth of the Co1-xS, thereby increasing the specific capacity of the composite electrode. The results show that the composite electrode present a high discharge specific capacity (839 mAh g-1at a current density of 100 mA g-1) and good cycle stability (the capacity retention rate almost 100% at 2000 mA g-1after 500 cycles), attributing to the high conductivity of the CNFs. This study proves the application of plasma treatment and simple vulcanization method in high-performance LIBs.
Collapse
Affiliation(s)
- Xudong Zhang
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Mengjing Jin
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yirong Zhao
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhaowen Bai
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Caixia Wu
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ziran Zhu
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Hongchang Wu
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jinyuan Zhou
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jian Li
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xiaojun Pan
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Erqing Xie
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
27
|
Hao Y, Kang Y, Mi Y, Wang W, Lei Z. Highly ordered micro-meso-macroporous Co-N-doped carbon polyhedrons from bimetal-organic frameworks for rechargeable Zn-air batteries. J Colloid Interface Sci 2021; 598:83-92. [PMID: 33892444 DOI: 10.1016/j.jcis.2021.03.142] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023]
Abstract
Rational design of non-precious metal catalysts for efficient oxygen reduction and oxygen evolution reactions (ORR/OER) is important for rechargeable metal-air batteries. Building highly ordered porous structures while maintaining their overall crystalline orderliness is highly desirable, but remains an arduous challenge. Here, we have synthesized bimetallic metal-organic frameworks (MOFs) on highly ordered three-dimensional (3D) polystyrene templates by controlling the nucleation process. The ordered macropores with 190 nm diameters were uniformly distributed on the as-prepared ZnCo zeolitic imidazolate framework (ZnCo-ZIF). Afterwards, 3D ordered micro-meso-macroporous Co-N-doped carbon polyhedrons (3DOM Co-NCPs) was developed by calcination. With the synergy of the highly dispersed CoNC catalytic sites and the distinct porous structure, the synthesized 3DOM Co-NCPs exhibit impressive bifunctional activity. Additionally, the 3DOM Co-NCPs-900 for Zn-air battery exhibits extraordinary power density, high energy density, and acceptable stability. This approach offers a useful strategy for the fabrication of highly efficient electrocatalysts with 3D ordered porous.
Collapse
Affiliation(s)
- Yaxin Hao
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Gansu Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Yumao Kang
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Gansu Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Yajun Mi
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Gansu Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Wei Wang
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| | - Ziqiang Lei
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Gansu Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China.
| |
Collapse
|
28
|
Liu N, Huang L, Rong J, Xue Z, Ou Z, Qiu F, Fang Y. Synthesis, characterization and electrocatalytic properties of bimetallic sulfides CoS/MnS/N-C for oxygen reduction in alkaline media. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s108842462150036x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Synthesis, characterization and oxygen reduction reaction (ORR) catalytic properties of bimetallic sulfides CoS/MnS/N-C catalyst was discussed. The catalyst was derived from a typical Co based zeolitic imidazolate framework (ZIF-67) and manganese aminoporphyrin. 5,15-Bis(4-aminophenyl)-10,20-bis(4-bromophenyl) porphyrin manganese oxoacetate loaded with ZIF-67 forms a porphyrin loaded ZIF-67. This product was then calcined at 800ˆ∘C and vulcanized with thioacetamide to obtain the bimetallic sulfide product CoS/MnS/N-C. The structure of CoS/MnS/N-C was further characterized by XRD, XPS, FESEM and HRTEM spectra which indicated a novel porous and hollow sphere structure. The electrocatalytic properties of the bimetallic material as well as its parent porphyrin and ZIF-67 were also compared in alkaline condition (0.1 M KOH) with a rotating disk electrode. The prepared catalyst CoS/MnS/N-C exhibits a higher catalytic performance than its precursors (PorMnOAc, ZIF-67 and PorMnOAc loaded ZIF-67) with almost four electron transfers under this condition.
Collapse
Affiliation(s)
- Ningchao Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Laihai Huang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Jian Rong
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Zhaoli Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Zhongping Ou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yuanyuan Fang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
29
|
Wang Y, Zhang S, Meng X, Wang T, Feng Y, Zhang W, He YS, Huang Y, Yang N, Ma ZF. Surface Tuning to Promote the Electrocatalysis for Oxygen Evolution Reaction: From Metal-Free to Cobalt-Based Carbon Electrocatalysts. ACS APPLIED MATERIALS & INTERFACES 2021; 13:503-513. [PMID: 33372775 DOI: 10.1021/acsami.0c17599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Heterogeneous electrocatalytic reactions only occur at the interface between the electrocatalyst and reactant. Therefore, the active sites are only necessary to be distributed on the surface of the electrocatalyst. Based on this motivation, here, we demonstrate a systematic study on surface tuning for a carbon-based electrocatalyst from metal-free (with the heteroatoms N and S, NS/C) to metal-containing surfaces (with Co, N, and S, CoNS/C). The CoNS/C electrocatalyst was obtained by pyrolyzing the Co precoordinated and p-toluenesulfonate-doped polypyrrole (PPy). It was found that the coordination of Co on the PPy ring tuned the final carbon electrocatalyst into a catalyst with a CoNx moiety-rich surface. In addition, the as-synthesized CoNS/C was determined to have a very high loading of cobalt up to 2.02 wt %. The pyrolysis of the cobalt-containing precursor tends to proceed toward a characteristic of a higher sp2 carbon content, a higher surface area, and more nitrogen as well as active nitrogen sites than its metal-free counterpart. The most distinguished feature for such a catalyst is that the truly most active component is only distributed on the surface, in contrast with that of the conventional metal-N-based catalyst present throughout the bulky structure. Especially, the electrocatalytic activity toward oxygen evolution reaction (OER) has been investigated experimentally and theoretically. The results showed that the OER performance of the carbon-based electrocatalyst was remarkably boosted after the introduction of Co with an overpotential decrease from 678 to 345 mV at 10 mA cm-2. Furthermore, CoNS/C displayed an excellent durability upon a long-term measurement. The apparent activation energy measurements revealed that the metal-rich surface contributed to overcome the energy barrier for OER. In addition, density functional theory calculations have been conducted to explain the correlated OER mechanism. This study is expected to provide an effective strategy for the design and the synthesis of highly active metal-nitrogen-type electrocatalysts with a high metal loading for various electrocatalytic reactions.
Collapse
Affiliation(s)
- Yanan Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China
| | - Shuguang Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China
| | - Xiuxia Meng
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China
| | - Ting Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China
| | - Yu Feng
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China
| | - Weimin Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China
| | - Yu-Shi He
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yucheng Huang
- College of Chemistry and Material Science, Anhui Normal University, Wuhu 241000, People's Republic of China
| | - Naitao Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China
| | - Zi-Feng Ma
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
30
|
Zhao CX, Liu JN, Wang J, Ren D, Li BQ, Zhang Q. Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts. Chem Soc Rev 2021; 50:7745-7778. [DOI: 10.1039/d1cs00135c] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bifunctional oxygen reduction and evolution constitute the core processes for sustainable energy storage. The advances on noble-metal-free bifunctional oxygen electrocatalysts are reviewed.
Collapse
Affiliation(s)
- Chang-Xin Zhao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering
- Tsinghua University
- Beijing
- China
| | - Jia-Ning Liu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering
- Tsinghua University
- Beijing
- China
| | - Juan Wang
- Advanced Research Institute of Multidisciplinary Science
- Beijing Institute of Technology
- Beijing 100081
- China
- School of Materials Science and Engineering
| | - Ding Ren
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering
- Tsinghua University
- Beijing
- China
| | - Bo-Quan Li
- Advanced Research Institute of Multidisciplinary Science
- Beijing Institute of Technology
- Beijing 100081
- China
- School of Materials Science and Engineering
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering
- Tsinghua University
- Beijing
- China
| |
Collapse
|
31
|
Cobalt sulfide embedded carbon nanofibers as a self-supporting template to improve lithium ion battery performances. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137351] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
32
|
Zhou W, Li Y, Zheng L, Liu J, Tang R, Shi K, Zhang Y. Three-dimensional MOF-derived Co and N co-doped porous carbon bifunctional catalyst for the Zn–air battery. CrystEngComm 2021. [DOI: 10.1039/d1ce00761k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Considering their actual commercial large-scale applications, research on non-precious metal catalysts has garnered much interest.
Collapse
Affiliation(s)
- Wenhan Zhou
- School of Mechanics and Photoelectric Physics
- Anhui University of Science and Technology
- Huainan 232001
- P. R. China
| | - Yang Li
- School of Mechanics and Photoelectric Physics
- Anhui University of Science and Technology
- Huainan 232001
- P. R. China
| | - Lingcheng Zheng
- School of Mechanics and Photoelectric Physics
- Anhui University of Science and Technology
- Huainan 232001
- P. R. China
| | - Jun Liu
- School of Mechanics and Photoelectric Physics
- Anhui University of Science and Technology
- Huainan 232001
- P. R. China
| | - Ranran Tang
- School of Mechanics and Photoelectric Physics
- Anhui University of Science and Technology
- Huainan 232001
- P. R. China
| | - Kejian Shi
- School of Mechanics and Photoelectric Physics
- Anhui University of Science and Technology
- Huainan 232001
- P. R. China
| | - Yanyan Zhang
- School of Mechanics and Photoelectric Physics
- Anhui University of Science and Technology
- Huainan 232001
- P. R. China
| |
Collapse
|
33
|
Huang WY, Jheng LC, Hsieh TH, Ho KS, Wang YZ, Gao YJ, Tseng PH. Calcined Co(II)-Triethylenetetramine, Co(II)- Polyaniline-Thiourea as the Cathode Catalyst of Proton Exchanged Membrane Fuel Cell. Polymers (Basel) 2020; 12:polym12123070. [PMID: 33371521 PMCID: PMC7767545 DOI: 10.3390/polym12123070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 02/04/2023] Open
Abstract
Triethylenetetramine (TETA) and thiourea complexed Cobalt(II) (Co(II)) ions are used as cathode catalysts for proton exchanged membrane fuel cells (PEMFCs) under the protection of polyaniline (PANI) which can become a conducting medium after calcination. Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) spectra clearly reveal the presence of typical carbon nitride and sulfide bonds of the calcined Nitrogen (N)- or Sulfur (S)-doped co-catalysts. Clear (002) and (100) planes of carbon-related X-ray diffraction patterns are found for co-catalysts after calcination, related to the formation of a conducting medium after the calcination of PANI. An increasing intensity ratio of the D to G band of the Raman spectra reveal the doping of N and S elements. More porous surfaces of co-catalysts are found in scanning electronic microscopy (SEM) micropictures when prepared in the presence of both TETA and thiourea (CoNxSyC). Linear sweep voltammetry (LSV) curves show the highest reducing current to be 4 mAcm−2 at 1600 rpm for CoNxSyC, indicating the necessity for both N- and S-doping. The membrane electrode assemblies (MEA) prepared with the cathode made of CoNxSyC produces the highest maximum power density, close to 180 mW cm−2.
Collapse
Affiliation(s)
- Wen-Yao Huang
- Department of Photonics, National Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung 80424, Taiwan;
| | - Li-Cheng Jheng
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, 415, Chien-Kuo Road, Kaohsiung 80782, Taiwan; (L.-C.J.); (T.-H.H.); (Y.-J.G.); (P.-H.T.)
| | - Tar-Hwa Hsieh
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, 415, Chien-Kuo Road, Kaohsiung 80782, Taiwan; (L.-C.J.); (T.-H.H.); (Y.-J.G.); (P.-H.T.)
| | - Ko-Shan Ho
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, 415, Chien-Kuo Road, Kaohsiung 80782, Taiwan; (L.-C.J.); (T.-H.H.); (Y.-J.G.); (P.-H.T.)
- Correspondence: (K.-S.H.); (Y.-Z.W.)
| | - Yen-Zen Wang
- Department of Chemical and Materials Engineering, National Yun-Lin University of Science and Technology, Yun-Lin 64002, Taiwan
- Correspondence: (K.-S.H.); (Y.-Z.W.)
| | - Yi-Jhun Gao
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, 415, Chien-Kuo Road, Kaohsiung 80782, Taiwan; (L.-C.J.); (T.-H.H.); (Y.-J.G.); (P.-H.T.)
| | - Po-Hao Tseng
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, 415, Chien-Kuo Road, Kaohsiung 80782, Taiwan; (L.-C.J.); (T.-H.H.); (Y.-J.G.); (P.-H.T.)
| |
Collapse
|
34
|
Qi Y, Yuan S, Cui L, Wang Z, He X, Zhang W, Asefa T. (Fe,Co)/N‐Doped Multi‐Walled Carbon Nanotubes as Efficient Bifunctional Electrocatalysts for Rechargeable Zinc‐Air Batteries. ChemCatChem 2020. [DOI: 10.1002/cctc.202001131] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yugang Qi
- School of Chemistry and Environmental Engineering Changchun University of Science and Technology 7089 Weixing Road Changchun Jilin 130022 P.R. China
| | - Shan Yuan
- School of Chemistry and Environmental Engineering Changchun University of Science and Technology 7089 Weixing Road Changchun Jilin 130022 P.R. China
| | - Lili Cui
- School of Chemistry and Environmental Engineering Changchun University of Science and Technology 7089 Weixing Road Changchun Jilin 130022 P.R. China
| | - Zizhun Wang
- School of Materials Science & Engineering and Electron Microscopy Center Jilin University 2699 Qianjin Street Changchun Jilin 130012 P.R. China
| | - Xingquan He
- School of Chemistry and Environmental Engineering Changchun University of Science and Technology 7089 Weixing Road Changchun Jilin 130022 P.R. China
| | - Wei Zhang
- School of Materials Science & Engineering and Electron Microscopy Center Jilin University 2699 Qianjin Street Changchun Jilin 130012 P.R. China
| | - Tewodros Asefa
- Department of Chemistry and Chemical Biology & Department of Chemical and Biochemical Engineering Rutgers, The State University of New Jersey 610 Taylor Road Piscataway NJ 08854 USA
| |
Collapse
|
35
|
Jia X, Cui J, Fang H, Wang L, Li X, Song Y, Zhang L, Guo H. Co/Co9S8/nitrogen-doping hollow carbon spheres nanocomposite as an efficient and durable electrocatalyst for oxygen reduction reaction. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
36
|
Guo D, Wang J, Zhang L, Chen X, Wan Z, Xi B. Strategic Atomic Layer Deposition and Electrospinning of Cobalt Sulfide/Nitride Composite as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002432. [PMID: 32700457 DOI: 10.1002/smll.202002432] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Reported herein is comprehensive study of a highly active and stable cobalt catalyst for overall water splitting. This composite SFCNF/Co1- x S@CoN, consisting of S-doped flexible carbon nanofiber (SFCNF) matrix, Co1- x S nanoparticles, and CoN coatings, is prepared by integration of electrospinning and atomic layer deposition (ALD) technique. Representative results include the following: 1) ultrathin CoN layer is deposited by ALD on the surface of flexible substrate without any sacrifice of SFCNF and Co1- x S; 2) the composite exhibits strong electrocatalytic activity in both acidic and basic solutions. The overpotentials of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are 20 and 180 mV, respectively, at a current density of 10 mA cm-2 in basic medium. A small Tafel slope of 54.4 mV dec-1 is observed in 0.5 m H2 SO4 electrolyte; 3) tested as overall water splitting electrode, the composite records a current density of 10 mA cm-2 at a relative low cell voltage of 1.58 V and long-term stability for 20 h at a current density of up to 50 mA cm-2 . The superior performance for overall water splitting is probably attributed to the synergistic effect of Co1- x S and ALD CoN. Specifically, implementation of ALD can be extended to innovate nanostructured materials for overall water splitting and even other renewable energy aspects.
Collapse
Affiliation(s)
- Daying Guo
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jiahui Wang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Lei Zhang
- Department of Mechanical and Materials Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada
| | - Xi'an Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Zhixin Wan
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Bin Xi
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
37
|
Adamson W, Jia C, Li Y, Zhao C. Cobalt oxide micro flowers derived from hydrothermal synthesised cobalt sulphide pre-catalyst for enhanced water oxidation. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Yin X, Yang L, Gao Q. Core-shell nanostructured electrocatalysts for water splitting. NANOSCALE 2020; 12:15944-15969. [PMID: 32761000 DOI: 10.1039/d0nr03719b] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
As the cornerstone of the hydrogen economy, water electrolysis consisting of the hydrogen and oxygen evolution reactions (HER and OER) greatly needs cost-efficient electrocatalysts that can decrease the dynamic overpotential and save on energy consumption. Over past years, observable progress has been made by constructing core-shell structures free from or with few noble-metals. They afford particular merits, e.g., a highly-exposed active surface, modulated electronic configurations, strain effects, interfacial synergy, or reinforced stability, to promote the kinetics and electrocatalytic performance of the HER, OER and overall water splitting. So far, a large variety of inorganics (carbon and transition-metal related components) have been introduced into core-shell electrocatalysts. Herein, representative efforts and progress are summarized with a clear classification of core and shell components, to access comprehensive insights into electrochemical processes that proceed on surfaces or interfaces. Finally, a perspective on the future development of core-shell electrocatalysts is offered. The overall aim is to shed some light on the exploration of emerging materials for energy conversion and storage.
Collapse
Affiliation(s)
- Xing Yin
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China.
| | | | | |
Collapse
|
39
|
Liu H, Pei W, Lai WH, Yan Z, Yang H, Lei Y, Wang YX, Gu Q, Zhou S, Chou S, Liu HK, Dou SX. Electrocatalyzing S Cathodes via Multisulfiphilic Sites for Superior Room-Temperature Sodium-Sulfur Batteries. ACS NANO 2020; 14:7259-7268. [PMID: 32433868 DOI: 10.1021/acsnano.0c02488] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Room-temperature sodium-sulfur (RT-Na/S) batteries hold great promise for sustainable and cost-effective applications. Nevertheless, it remains a great challenge to achieve high capacity and cycling stability due to the low activity of sulfur and the sluggish conversion kinetics between polysulfide intermediates and sodium sulfide. Herein, an electrocatalyzing S cathode is fabricated, which consists of porous core-shell structure and multisulfiphilic sites. The flexible carbon structure effectively buffers volume changes during cycling and provides enclosed spaces to store S8 with exceptional conductivity. Significantly, the multisulfiphilic sites (ZnS and CoS2) enhance catalysis toward multistep S conversion, which effectively suppresses long-chain polysulfides dissolution and improves the kinetics of short-chain polysulfides. Thus, the obtained S cathodes achieve an enhanced cycling performance (570 mAh g-1 at 0.2 A g-1 over 1000 cycles), decent rate capability (250 mAh g-1 at 1.0 A g-1 over 2000 cycles), and high energy density of 384 Wh kg-1 toward practical applications.
Collapse
Affiliation(s)
- Hanwen Liu
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, New South Wales 2500, Australia
| | - Wei Pei
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024, China
| | - Wei-Hong Lai
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, New South Wales 2500, Australia
| | - Zichao Yan
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, New South Wales 2500, Australia
| | - Huiling Yang
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, New South Wales 2500, Australia
| | - Yaojie Lei
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, New South Wales 2500, Australia
| | - Yun-Xiao Wang
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, New South Wales 2500, Australia
| | - Qinfen Gu
- Australian Synchrotron 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Si Zhou
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, New South Wales 2500, Australia
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024, China
| | - Shulei Chou
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, New South Wales 2500, Australia
| | - Hua Kun Liu
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, New South Wales 2500, Australia
| | - Shi Xue Dou
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, New South Wales 2500, Australia
| |
Collapse
|
40
|
Jin E, Yang Y, Cui L. Confining Iron Carbide Growth in Porous Carbon to Improve the Electrocatalytic Performance for Oxygen Reduction Reaction. Electrocatalysis (N Y) 2020. [DOI: 10.1007/s12678-020-00596-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
41
|
N, S-codoped CNTs supported Co 4S 3 nanoparticles prepared by using CdS nanorods as sulfur sources and hard templates: An efficient catalyst for reversible oxygen electrocatalysis. J Colloid Interface Sci 2020; 560:186-197. [PMID: 31670016 DOI: 10.1016/j.jcis.2019.10.069] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023]
Abstract
Non-precious efficient bifunctional catalysts towards oxygen reduction/evolution reactions (ORR/OER) are highly desired to enable the widespread application of rechargeable Zn-air batteries (r-ZABs). Herein, Prussian blue analogues (PBA) anchored on CdS nanorods (CdS NRs) pre-coated with polydopamine (PDA) are utilized as precursors to prepare ultrafine Co4S3 nanoparticles supported on N, S-codoped CNTs (Co4S3@N,S-CNT), where CdS NRs are served as sulfur sources and hard templates. After pyrolysis, the resulting Co4S3@N,S-CNT-800 shows a high specific surface area of 142.4 m2 g-1, together with merely 0.780 V difference between the OER potential at 10 mA cm-2 and the ORR potential at 3 mA cm-2. The Co4S3@N,S-CNT-800 based air cathode displays a higher discharge capacity of 787 mAh gZn-1 at 10 mA cm-2, a higher output power density of 154 mW cm-2, better working stability, as well as a lower charge-discharge voltage gap than the Pt/C + RuO2 based air electrode at various working current density. The remarkable oxygen reversible catalytic activities are mainly attributed to the presence of a thin layer of mesoporous carbon on partial sections of the open-end N,S-CNTs, which not only shortens the mass diffusion length but also prevents N,S-CNTs from excessively bundling to maximize the exposure of Co4S3 nanocrystallites and graphitized carbon skeletons with N or S heteroatoms.
Collapse
|
42
|
Wu X, Tang C, Cheng Y, Min X, Jiang SP, Wang S. Bifunctional Catalysts for Reversible Oxygen Evolution Reaction and Oxygen Reduction Reaction. Chemistry 2020; 26:3906-3929. [PMID: 32057147 DOI: 10.1002/chem.201905346] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/01/2020] [Indexed: 11/09/2022]
Abstract
Metal-air batteries (MABs) and reversible fuel cells (RFCs) rely on the bifunctional oxygen catalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Finding efficient bifunctional oxygen catalysts is the ultimate goal and it has attracted a great deal of attention. The dilemma is that a good ORR catalyst is not necessarily efficient for OER, and vice versa. Thus, the development of a new type of bifunctional oxygen catalysts should ensure that the catalysts exhibit high activity for both OER and ORR. Composites with multicomponents for active centers supported on highly conductive matrices could be able to meet the challenges and offering new opportunities. In this Review, the evolution of bifunctional catalysts is summarized and discussed aiming to deliver high-performance bifunctional catalysts with low overpotentials.
Collapse
Affiliation(s)
- Xing Wu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China.,National Engineering Technology Research Center for Control and Treatment of Heavy-metal Pollution, Changsha, 410083, P. R. China
| | - Chongjian Tang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China.,National Engineering Technology Research Center for Control and Treatment of Heavy-metal Pollution, Changsha, 410083, P. R. China
| | - Yi Cheng
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China.,National Engineering Technology Research Center for Control and Treatment of Heavy-metal Pollution, Changsha, 410083, P. R. China
| | - Xiaobo Min
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China.,National Engineering Technology Research Center for Control and Treatment of Heavy-metal Pollution, Changsha, 410083, P. R. China
| | - San Ping Jiang
- Fuels and Energy Technology Institute & Western Australia School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA, 6102, Australia
| | - Shuangyin Wang
- Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
43
|
Huang Z, Yang Z, Hussain MZ, Chen B, Jia Q, Zhu Y, Xia Y. Polyoxometallates@zeolitic-imidazolate-framework derived bimetallic tungsten-cobalt sulfide/porous carbon nanocomposites as efficient bifunctional electrocatalysts for hydrogen and oxygen evolution. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135335] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
44
|
He W, Ren G, Li Y, Jia D, Li S, Cheng J, Liu C, Hao Q, Zhang J, Liu H. Amorphous nickel–iron hydroxide films on nickel sulfide nanoparticles for the oxygen evolution reaction. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02345c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of earth-abundant and low-cost electrocatalysts with high performance toward the oxygen evolution reaction (OER) plays a key role in water splitting.
Collapse
Affiliation(s)
- Wenjun He
- School of Materials Science and Engineering
- Hebei University of Technology
- Tianjin 300130
- P. R. China
| | - Gang Ren
- School of Materials Science and Engineering
- Hebei University of Technology
- Tianjin 300130
- P. R. China
| | - Ying Li
- School of Materials Science and Engineering
- Hebei University of Technology
- Tianjin 300130
- P. R. China
| | - Dongbo Jia
- School of Materials Science and Engineering
- Hebei University of Technology
- Tianjin 300130
- P. R. China
| | - Shiyun Li
- School of Materials Science and Engineering
- Hebei University of Technology
- Tianjin 300130
- P. R. China
| | - Jianing Cheng
- School of Materials Science and Engineering
- Hebei University of Technology
- Tianjin 300130
- P. R. China
| | - Caichi Liu
- School of Materials Science and Engineering
- Hebei University of Technology
- Tianjin 300130
- P. R. China
| | - Qiuyan Hao
- School of Materials Science and Engineering
- Hebei University of Technology
- Tianjin 300130
- P. R. China
| | - Jun Zhang
- School of Materials Science and Engineering
- Hebei University of Technology
- Tianjin 300130
- P. R. China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials
| | - Hui Liu
- School of Materials Science and Engineering
- Hebei University of Technology
- Tianjin 300130
- P. R. China
| |
Collapse
|
45
|
Yang J, Niu Y, Huang J, Liu L, Qian X. N-doped C/CoSe2@Co–FeSe2 yolk-shell nano polyhedron as superior counter electrode catalyst for high-efficiency Pt-free dye-sensitized solar cell. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135333] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
46
|
Chen Z, Li G, Liu Y, Shi P, Li F. Novel Co1-xS/C-3 supported on N-doped ketjen black as an efficient electrocatalyst for oxygen reduction reaction in alkaline media. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2019.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
47
|
Lu XF, Xia BY, Zang S, Lou XW(D. Metal–Organic Frameworks Based Electrocatalysts for the Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910309] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Xue Feng Lu
- School of Chemical and Biomedical EngineeringNanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Bao Yu Xia
- School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P. R. China
| | - Shuang‐Quan Zang
- College of Chemistry and Molecular EngineeringZhengzhou University Henan 450001 P. R. China
| | - Xiong Wen (David) Lou
- School of Chemical and Biomedical EngineeringNanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| |
Collapse
|
48
|
Lu XF, Xia BY, Zang S, Lou XW(D. Metal–Organic Frameworks Based Electrocatalysts for the Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2019; 59:4634-4650. [DOI: 10.1002/anie.201910309] [Citation(s) in RCA: 288] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Xue Feng Lu
- School of Chemical and Biomedical EngineeringNanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Bao Yu Xia
- School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P. R. China
| | - Shuang‐Quan Zang
- College of Chemistry and Molecular EngineeringZhengzhou University Henan 450001 P. R. China
| | - Xiong Wen (David) Lou
- School of Chemical and Biomedical EngineeringNanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| |
Collapse
|
49
|
Zhang Y, Cao N, Li M, Szunerits S, Addad A, Roussel P, Boukherroub R. Self-template synthesis of ZnS/Ni3S2 as advanced electrode material for hybrid supercapacitors. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.135065] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
50
|
Gu S, Bai Z, Majumder S, Huang B, Chen G. In situ grown α-Cos/Co heterostructures on nitrogen doped carbon polyhedra enabling the trapping and reaction-intensification of polysulfides towards high performance lithium sulfur batteries. NANOSCALE 2019; 11:20579-20588. [PMID: 31637397 DOI: 10.1039/c9nr07249g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lithium sulfur (Li-S) batteries are considered as one of the most promising next generation energy storage systems, whereas their intrinsic drawbacks impeded their practical implementation. Herein, a nitrogen doped porous carbon polyhedron coupled with a well distributed α-CoS/Co heterostructure mediator was designed and prepared as the sulfur cathode host for lithium sulfur batteries. The α-CoS/Co heterostructure on a nitrogen doped carbon polyhedron (NCP) not only provides a strong adsorption interaction towards soluble polysulfides, but more importantly, also promotes the fast conversion of polysulfides to insoluble products, chemically suppressing the shuttling of polysulfides through the simultaneous advantages of α-CoS and Co. As a result, the α-CoS/Co-NCP-S cathode exhibits high sulfur utilization with a 1611.4 mA h g-1 first discharge capacity and a well satisfactory redox cycling stability with a low capacity fade rate of 0.042% per cycle at 0.5 C for over 800 cycles. Moreover, the hybrid cathode delivers 860.2 mA h g-1 specific capacity for a high sulfur loading of 4.8 mg cm-2 with remarkable cycling performance.
Collapse
Affiliation(s)
- Shaonan Gu
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Zhaowen Bai
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China. and Environmental Engineering Program, School of Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Soumyadip Majumder
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Baoling Huang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Guohua Chen
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| |
Collapse
|