1
|
Pasyukov DV, Shevchenko MA, Minyaev ME, Chernyshev VM, Ananikov VP. 4-Halomethyl-Substituted Imidazolium Salts: A Versatile Platform for the Synthesis of Functionalized NHC Precursors. Chem Asian J 2024; 19:e202400866. [PMID: 39288314 DOI: 10.1002/asia.202400866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/19/2024]
Abstract
N,N'-Diarylimidazolium salts containing haloalkyl functional groups that are reactive with various nucleophiles are considered to be promising reagents for the preparation of functionalized N-heterocyclic carbene (NHC) ligands, which are in demand in catalysis, materials science, and biomedical research. Recently, 4-chloromethyl-functionalized N,N'-diarylimidazolium salts became readily available via the condensation of N,N'-diaryl-2-methyl-1,4-diaza-1,3-butadienes with ethyl orthoformate and Me3SiCl, but these compounds were found to have insufficient reactivity in reactions with many nucleophiles. These chloromethyl salts were studied as precursors in the synthesis of bromo- and iodomethyl-functionalized imidazolium salts by halide anion exchange. The 4-ICH2-functionalized products were found to be unstable, whereas a series of novel 4-bromomethyl functionalized N,N'-diarylimidazolium salts were obtained in good yields. These bromomethyl-functionalized imidazolium salts were found to be significantly more reactive towards various N, O and S nucleophiles than the chloromethyl counterparts and enabled the preparation of previously inaccessible heteroatom-functionalized imidazolium salts, some of which were successfully used as NHC proligands in the preparation of Pd/NHC and Au/NHC complexes.
Collapse
Affiliation(s)
- Dmitry V Pasyukov
- Platov South-Russian State Polytechnic University (NPI), Technology Department, Prosveschenya 132, Novocherkassk, 346428, Russia
| | - Maxim A Shevchenko
- Platov South-Russian State Polytechnic University (NPI), Technology Department, Prosveschenya 132, Novocherkassk, 346428, Russia
| | - Mikhail E Minyaev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Victor M Chernyshev
- Platov South-Russian State Polytechnic University (NPI), Technology Department, Prosveschenya 132, Novocherkassk, 346428, Russia
- Skolkovo Institute of Science and Technology, Center for Energy Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russia
| | - Valentine P Ananikov
- Platov South-Russian State Polytechnic University (NPI), Technology Department, Prosveschenya 132, Novocherkassk, 346428, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| |
Collapse
|
2
|
Ingram AA, Wang D, Schwaneberg U, Okuda J. Grubbs-Hoveyda catalysts conjugated to a β-barrel protein: Effect of halide substitution on aqueous olefin metathesis activity. J Inorg Biochem 2024; 258:112616. [PMID: 38833874 DOI: 10.1016/j.jinorgbio.2024.112616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/06/2024]
Abstract
The effect of halide substitution in Grubbs-Hoveyda II catalysts (GHII catalysts) embedded in the engineered β-barrel protein nitrobindin (NB4exp) on metathesis activity in aqueous media was studied. Maleimide tagged dibromido and diiodido derivates of the GHII catalyst were synthesized and covalently conjugated to NB4exp. The biohybrid catalysts were characterized spectroscopically confirming the structural integrity. When the two chloride substituents at ruthenium center were exchanged against bromide and iodide, the diiodo derivative was found to show significantly higher catalytic activity in ring-closing metathesis of α,ω-diolefins, whereas the dibromido derivative was less efficient when compared with the parent dichlorido catalyst. Using the diiodido catalyst, high turnover numbers of up to 75 were observed for ring-closing metathesis (RCM) yielding unsaturated six- and seven-membered N-heterocycles.
Collapse
Affiliation(s)
- Aaron A Ingram
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Dong Wang
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany; Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Jun Okuda
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.
| |
Collapse
|
3
|
Son S, Song WJ. Programming interchangeable and reversible heterooligomeric protein self-assembly using a bifunctional ligand. Chem Sci 2024; 15:2975-2983. [PMID: 38404387 PMCID: PMC10882485 DOI: 10.1039/d3sc05448a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/10/2024] [Indexed: 02/27/2024] Open
Abstract
Protein design for self-assembly allows us to explore the emergence of protein-protein interfaces through various chemical interactions. Heterooligomers, unlike homooligomers, inherently offer a comprehensive range of structural and functional variations. Besides, the macromolecular repertoire and their applications would significantly expand if protein components could be easily interchangeable. This study demonstrates that a rationally designed bifunctional linker containing an enzyme inhibitor and maleimide can guide the formation of diverse protein heterooligomers in an easily applicable and exchangeable manner without extensive sequence optimizations. As proof of concept, we selected four structurally and functionally unrelated proteins, carbonic anhydrase, aldolase, acetyltransferase, and encapsulin, as building block proteins. The combinations of two proteins with the bifunctional linker yielded four two-component heterooligomers with discrete sizes, shapes, and enzyme activities. Besides, the overall size and formation kinetics of the heterooligomers alter upon adding metal chelators, acidic buffer components, and reducing agents, showing the reversibility and tunability in the protein self-assembly. Given that the functional groups of both the linker and protein components are readily interchangeable, our work broadens the scope of protein-assembled architectures and their potential applications as functional biomaterials.
Collapse
Affiliation(s)
- Soyeun Son
- Department of Chemistry, College of Natural Sciences, Seoul National University Seoul 08826 Republic of Korea
| | - Woon Ju Song
- Department of Chemistry, College of Natural Sciences, Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
4
|
Wang D, Ingram AA, Okumura A, Spaniol TP, Schwaneberg U, Okuda J. Benzylic C(sp 3 )-H Bond Oxidation with Ketone Selectivity by a Cobalt(IV)-Oxo Embedded in a β-Barrel Protein. Chemistry 2024; 30:e202303066. [PMID: 37818668 DOI: 10.1002/chem.202303066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/12/2023]
Abstract
Artificial metalloenzymes have emerged as biohybrid catalysts that allow to combine the reactivity of a metal catalyst with the flexibility of protein scaffolds. This work reports the artificial metalloenzymes based on the β-barrel protein nitrobindin NB4, in which a cofactor [CoII X(Me3 TACD-Mal)]+ X- (X=Cl, Br; Me3 TACD=N,N' ,N''-trimethyl-1,4,7,10-tetraazacyclododecane, Mal=CH2 CH2 CH2 NC4 H2 O2 ) was covalently anchored via a Michael addition reaction. These biohybrid catalysts showed higher efficiency than the free cobalt complexes for the oxidation of benzylic C(sp3 )-H bonds in aqueous media. Using commercially available oxone (2KHSO5 ⋅ KHSO4 ⋅ K2 SO4 ) as oxidant, a total turnover number of up to 220 and 97 % ketone selectivity were achieved for tetralin. As catalytically active intermediate, a mononuclear terminal cobalt(IV)-oxo species [Co(IV)=O]2+ was generated by reacting the cobalt(II) cofactor with oxone in aqueous solution and characterized by ESI-TOF MS.
Collapse
Affiliation(s)
- Dong Wang
- Institute of Inorganic Chemistry, RWTH Aachen University, 52074, Aachen, Germany
| | - Aaron A Ingram
- Institute of Inorganic Chemistry, RWTH Aachen University, 52074, Aachen, Germany
| | - Akira Okumura
- Institute of Inorganic Chemistry, RWTH Aachen University, 52074, Aachen, Germany
| | - Thomas P Spaniol
- Institute of Inorganic Chemistry, RWTH Aachen University, 52074, Aachen, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, 52074, Aachen, Germany
| | - Jun Okuda
- Institute of Inorganic Chemistry, RWTH Aachen University, 52074, Aachen, Germany
| |
Collapse
|
5
|
Wang Y, Mesdom P, Purkait K, Saubaméa B, Burckel P, Arnoux P, Frochot C, Cariou K, Rossel T, Gasser G. Ru(ii)/Os(ii)-based carbonic anhydrase inhibitors as photodynamic therapy photosensitizers for the treatment of hypoxic tumours. Chem Sci 2023; 14:11749-11760. [PMID: 37920359 PMCID: PMC10619633 DOI: 10.1039/d3sc03932c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/21/2023] [Indexed: 11/04/2023] Open
Abstract
Photodynamic therapy (PDT) is a medical technique for the treatment of cancer. It is based on the use of non-toxic molecules, called photosensitizers (PSs), that become toxic when irradiated with light and produce reactive oxygen specious (ROS) such as singlet oxygen (1O2). This light-induced toxicity is rather selective since the physician only targets a specific area of the body, leading to minimal side effects. Yet, a strategy to improve further the selectivity of this medical technique is to confine the delivery of the PS to cancer cells only instead of spreading it randomly throughout the body prior to light irradiation. To address this problem, we present here novel sulfonamide-based monopodal and dipodal ruthenium and osmium polypyridyl complexes capable of targeting carbonic anhydrases (CAs) that are a major target in cancer therapy. CAs are overexpressed in the membrane or cytoplasm of various cancer cells. We therefore anticipated that the accumulation of our complexes in or outside the cell prior to irradiation would improve the selectivity of the PDT treatment. We show that our complexes have a high affinity for CAs, accumulate in cancer cells overexpressing CA cells and importantly kill cancer cells under both normoxic and hypoxic conditions upon irradiation at 540 nm. More importantly, Os(ii) compounds still exhibit some phototoxicity under 740 nm irradiation under normoxic conditions. To our knowledge, this is the first description of ruthenium/osmium-based PDT PSs that are CA inhibitors for the selective treatment of cancers.
Collapse
Affiliation(s)
- Youchao Wang
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, PSL University 75005 Paris France +33185784151 https://www.gassergroup.com
| | - Pierre Mesdom
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, PSL University 75005 Paris France +33185784151 https://www.gassergroup.com
| | - Kallol Purkait
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, PSL University 75005 Paris France +33185784151 https://www.gassergroup.com
| | - Bruno Saubaméa
- Cellular and Molecular Imaging Facility, US25 Inserm, UAR3612 CNRS, Faculté de Pharmacie de Paris, Université Paris Cité F-75006 Paris France
| | - Pierre Burckel
- Institut de Physique du Globe de Paris, Biogéochimie à; l'Anthropocène des Eléments et Contaminants Emergents 75005 Paris France
| | | | | | - Kevin Cariou
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, PSL University 75005 Paris France +33185784151 https://www.gassergroup.com
| | - Thibaud Rossel
- Institute of Chemistry, University of Neuchâtel Avenue de Bellevaux 51 2000 Neuchâtel Switzerland
| | - Gilles Gasser
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, PSL University 75005 Paris France +33185784151 https://www.gassergroup.com
| |
Collapse
|
6
|
Hanreich S, Bonandi E, Drienovská I. Design of Artificial Enzymes: Insights into Protein Scaffolds. Chembiochem 2023; 24:e202200566. [PMID: 36418221 DOI: 10.1002/cbic.202200566] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
The design of artificial enzymes has emerged as a promising tool for the generation of potent biocatalysts able to promote new-to-nature reactions with improved catalytic performances, providing a powerful platform for wide-ranging applications and a better understanding of protein functions and structures. The selection of an appropriate protein scaffold plays a key role in the design process. This review aims to give a general overview of the most common protein scaffolds that can be exploited for the generation of artificial enzymes. Several examples are discussed and categorized according to the strategy used for the design of the artificial biocatalyst, namely the functionalization of natural enzymes, the creation of a new catalytic site in a protein scaffold bearing a wide hydrophobic pocket and de novo protein design. The review is concluded by a comparison of these different methods and by our perspective on the topic.
Collapse
Affiliation(s)
- Stefanie Hanreich
- Department of Chemistry and Pharmaceutical Sciences Vrije Universiteit, Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam (The, Netherlands
| | - Elisa Bonandi
- Department of Chemistry and Pharmaceutical Sciences Vrije Universiteit, Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam (The, Netherlands
| | - Ivana Drienovská
- Department of Chemistry and Pharmaceutical Sciences Vrije Universiteit, Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam (The, Netherlands
| |
Collapse
|
7
|
Marsden SR, Wijma HJ, Mohr MKF, Justo I, Hagedoorn P, Laustsen J, Jeffries CM, Svergun D, Mestrom L, McMillan DGG, Bento I, Hanefeld U. Substrate Induced Movement of the Metal Cofactor between Active and Resting State. Angew Chem Int Ed Engl 2022; 61:e202213338. [PMID: 36214476 PMCID: PMC10099721 DOI: 10.1002/anie.202213338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Indexed: 11/11/2022]
Abstract
Regulation of enzyme activity is vital for living organisms. In metalloenzymes, far-reaching rearrangements of the protein scaffold are generally required to tune the metal cofactor's properties by allosteric regulation. Here structural analysis of hydroxyketoacid aldolase from Sphingomonas wittichii RW1 (SwHKA) revealed a dynamic movement of the metal cofactor between two coordination spheres without protein scaffold rearrangements. In its resting state configuration (M2+ R ), the metal constitutes an integral part of the dimer interface within the overall hexameric assembly, but sterical constraints do not allow for substrate binding. Conversely, a second coordination sphere constitutes the catalytically active state (M2+ A ) at 2.4 Å distance. Bidentate coordination of a ketoacid substrate to M2+ A affords the overall lowest energy complex, which drives the transition from M2+ R to M2+ A . While not described earlier, this type of regulation may be widespread and largely overlooked due to low occupancy of some of its states in protein crystal structures.
Collapse
Affiliation(s)
- Stefan R. Marsden
- Biokatalyse, Afdeling Biotechnologie Technische Universiteit Delft van der Maasweg 9 2629HZ Delft The Netherlands
| | - Hein J. Wijma
- Groningen Biomolecular Sciences and Biotechnology Institute Faculty of Science and Engineering University of Groningen Nijenborg 4 9747AG Groningen The Netherlands
| | - Michael K. F. Mohr
- Biokatalyse, Afdeling Biotechnologie Technische Universiteit Delft van der Maasweg 9 2629HZ Delft The Netherlands
| | - Inês Justo
- EMBL Hamburg Notkestrasse 85 22607 Hamburg Germany
| | - Peter‐Leon Hagedoorn
- Biokatalyse, Afdeling Biotechnologie Technische Universiteit Delft van der Maasweg 9 2629HZ Delft The Netherlands
| | | | | | | | - Luuk Mestrom
- Biokatalyse, Afdeling Biotechnologie Technische Universiteit Delft van der Maasweg 9 2629HZ Delft The Netherlands
| | - Duncan G. G. McMillan
- Biokatalyse, Afdeling Biotechnologie Technische Universiteit Delft van der Maasweg 9 2629HZ Delft The Netherlands
| | - Isabel Bento
- EMBL Hamburg Notkestrasse 85 22607 Hamburg Germany
| | - Ulf Hanefeld
- Biokatalyse, Afdeling Biotechnologie Technische Universiteit Delft van der Maasweg 9 2629HZ Delft The Netherlands
| |
Collapse
|
8
|
Liu Y, Lai KL, Vong K. Transition Metal Scaffolds Used To Bring New‐to‐Nature Reactions into Biological Systems. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yifei Liu
- Department of Chemistry The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| | - Ka Lun Lai
- Department of Chemistry The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| | - Kenward Vong
- Department of Chemistry The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| |
Collapse
|
9
|
Stein A, Chen D, Igareta NV, Cotelle Y, Rebelein JG, Ward TR. A Dual Anchoring Strategy for the Directed Evolution of Improved Artificial Transfer Hydrogenases Based on Carbonic Anhydrase. ACS CENTRAL SCIENCE 2021; 7:1874-1884. [PMID: 34849402 PMCID: PMC8620556 DOI: 10.1021/acscentsci.1c00825] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Artificial metalloenzymes result from anchoring a metal cofactor within a host protein. Such hybrid catalysts combine the selectivity and specificity of enzymes with the versatility of (abiotic) transition metals to catalyze new-to-nature reactions in an evolvable scaffold. With the aim of improving the localization of an arylsulfonamide-bearing iridium-pianostool catalyst within human carbonic anhydrase II (hCAII) for the enantioselective reduction of prochiral imines, we introduced a covalent linkage between the host and the guest. Herein, we show that a judiciously positioned cysteine residue reacts with a p-nitropicolinamide ligand bound to iridium to afford an additional sulfonamide covalent linkage. Three rounds of directed evolution, performed on the dually anchored cofactor, led to improved activity and selectivity for the enantioselective reduction of harmaline (up to 97% ee (R) and >350 turnovers on a preparative scale). To evaluate the substrate scope, the best hits of each generation were tested with eight substrates. X-ray analysis, carried out at various stages of the evolutionary trajectory, was used to scrutinize (i) the nature of the covalent linkage between the cofactor and the host as well as (ii) the remodeling of the substrate-binding pocket.
Collapse
Affiliation(s)
- Alina Stein
- Department
of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
- National
Center of Competence in Research “Molecular Systems Engineering”, 4058 Basel, Switzerland
| | - Dongping Chen
- Department
of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
- National
Center of Competence in Research “Molecular Systems Engineering”, 4058 Basel, Switzerland
| | - Nico V. Igareta
- Department
of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
- National
Center of Competence in Research “Molecular Systems Engineering”, 4058 Basel, Switzerland
| | - Yoann Cotelle
- Aix-Marseille
Université, CNRS, Centrale Marseille, iSm2, 13284 Marseille, France
| | - Johannes G. Rebelein
- Max
Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, D-35043 Marburg, Germany
| | - Thomas R. Ward
- Department
of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
- National
Center of Competence in Research “Molecular Systems Engineering”, 4058 Basel, Switzerland
| |
Collapse
|
10
|
|
11
|
Fischer S, Ward TR, Liang AD. Engineering a Metathesis-Catalyzing Artificial Metalloenzyme Based on HaloTag. ACS Catal 2021; 11:6343-6347. [PMID: 34055452 PMCID: PMC8154321 DOI: 10.1021/acscatal.1c01470] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2021] [Indexed: 12/21/2022]
Abstract
Artificial metalloenzymes (ArMs) are created by embedding a synthetic metal catalyst into a protein scaffold. ArMs have the potential to merge the catalytic advantages of natural enzymes with the reaction scope of synthetic catalysts. The choice of the protein scaffold is of utmost importance to tune the activity of the ArM. Herein, we show the repurposing of HaloTag, a self-labeling protein widely used in chemical biology, to create an ArM scaffold for metathesis. This monomeric protein scaffold allows for covalent attachment of metathesis cofactors, and the resulting ArMs are capable of catalyzing ring-closing metathesis. Both chemical and genetic engineering were explored to determine the evolvability of the resulting ArM. Additionally, exploration of the substrate scope revealed a reaction with promising turnover numbers (>48) and conversion rates (>96%).
Collapse
Affiliation(s)
- Sandro Fischer
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BRP 1096, Rosental CH-4058 Basel, Switzerland
| | - Thomas R. Ward
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BRP 1096, Rosental CH-4058 Basel, Switzerland
| | - Alexandria D. Liang
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BRP 1096, Rosental CH-4058 Basel, Switzerland
| |
Collapse
|
12
|
Thiel A, Sauer DF, Markel U, Mertens MAS, Polen T, Schwaneberg U, Okuda J. An artificial ruthenium-containing β-barrel protein for alkene-alkyne coupling reaction. Org Biomol Chem 2021; 19:2912-2916. [PMID: 33735355 DOI: 10.1039/d1ob00279a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A modified Cp*Ru complex, equipped with a maleimide group, was covalently attached to a cysteine of an engineered variant of Ferric hydroxamate uptake protein component: A (FhuA). This synthetic metalloprotein catalyzed the intermolecular alkene-alkyne coupling of 3-butenol with 5-hexynenitrile. When compared with the protein-free Cp*Ru catalyst, the biohybrid catalyst produced the linear product with higher regioselectivity.
Collapse
Affiliation(s)
- Andreas Thiel
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.
| | | | | | | | | | | | | |
Collapse
|
13
|
Functionalization of Ruthenium Olefin-Metathesis Catalysts for Interdisciplinary Studies in Chemistry and Biology. Catalysts 2021. [DOI: 10.3390/catal11030359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hoveyda–Grubbs-type complexes, ruthenium catalysts for olefin metathesis, have gained increased interest as a research target in the interdisciplinary research fields of chemistry and biology because of their high functional group selectivity in olefin metathesis reactions and stabilities in aqueous media. This review article introduces the application of designed Hoveyda–Grubbs-type complexes for bio-relevant studies including the construction of hybrid olefin metathesis biocatalysts and the development of in-vivo olefin metathesis reactions. As a noticeable issue in the employment of Hoveyda–Grubbs-type complexes in aqueous media, the influence of water on the catalytic activities of the complexes and strategies to overcome the problems resulting from the water effects are also discussed. In connection to the structural effects of protein structures on the reactivities of Hoveyda–Grubbs-type complexes included in the protein, the regulation of metathesis activities through second-coordination sphere effect is presented, demonstrating that the reactivities of Hoveyda–Grubbs-type complexes are controllable by the structural modification of the complexes at outer-sphere parts. Finally, as a new-type reaction based on the ruthenium-olefin specific interaction, a recent finding on the ruthenium complex transfer reaction between Hoveyda–Grubbs-type complexes and biomolecules is introduced.
Collapse
|
14
|
Vong K, Nasibullin I, Tanaka K. Exploring and Adapting the Molecular Selectivity of Artificial Metalloenzymes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200316] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kenward Vong
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- GlycoTargeting Research Laboratory, RIKEN Baton Zone Program, Wako, Saitama 351-0198, Japan
| | - Igor Nasibullin
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, Russia
| | - Katsunori Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, Russia
- GlycoTargeting Research Laboratory, RIKEN Baton Zone Program, Wako, Saitama 351-0198, Japan
| |
Collapse
|
15
|
Wei W, Jia G. Metal-Carbon Bonds of Heavier Group 7 and 8 Metals (Tc, Re, Ru, Os): Mononuclear Tc/Re/Ru/Os Complexes With Metal-Carbon Bonds. COMPREHENSIVE COORDINATION CHEMISTRY III 2021:123-439. [DOI: 10.1016/b978-0-08-102688-5.00049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
16
|
Sauer DF, Wittwer M, Markel U, Minges A, Spiertz M, Schiffels J, Davari MD, Groth G, Okuda J, Schwaneberg U. Chemogenetic engineering of nitrobindin toward an artificial epoxygenase. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00609f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemogenetic engineering turned the heme protein nitrobindin into an artificial epoxygenase: MnPPIX was introduced and subsequent protein engineering increased the activity in the epoxidation of styrene derivatives by overall 7-fold.
Collapse
Affiliation(s)
- Daniel F. Sauer
- Institute of Biotechnology
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Malte Wittwer
- Institute of Biotechnology
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Ulrich Markel
- Institute of Biotechnology
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Alexander Minges
- Institute of Biochemical Plant Physiology
- Heinrich Heine University Düsseldorf
- 40225 Düsseldorf
- Germany
| | - Markus Spiertz
- Institute of Biotechnology
- RWTH Aachen University
- 52074 Aachen
- Germany
| | | | - Mehdi D. Davari
- Institute of Biotechnology
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Georg Groth
- Institute of Biochemical Plant Physiology
- Heinrich Heine University Düsseldorf
- 40225 Düsseldorf
- Germany
| | - Jun Okuda
- Institute of Inorganic Chemistry
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology
- RWTH Aachen University
- 52074 Aachen
- Germany
- DWI – Leibniz Institute for Interactive Materials
| |
Collapse
|
17
|
Abstract
Metalloenzymes such as the carbonic anhydrases (CAs, EC 4.2.1.1) possess highly specialized active sites that promote fast reaction rates and high substrate selectivity for the physiologic reaction that they catalyze, hydration of CO2 to bicarbonate and a proton. Among the eight genetic CA macrofamilies, α-CAs possess rather spacious active sites and show catalytic promiscuity, being esterases with many types of esters, but also acting on diverse small molecules such as cyanamide, carbonyl sulfide (COS), CS2, etc. Although artificial CAs have been developed with the intent to efficiently catalyse non-biologically related chemical transformations with high control of stereoselectivity, the activities of these enzymes were much lower when compared to natural CAs. Here, we report an overview on the catalytic activities of α-CAs as well as of enzymes which were mutated or artificially designed by incorporation of transition metal ions. In particular, the distinct catalytic mechanisms of the reductase, oxidase and metatheses-ase such as de novo designed CAs are discussed.
Collapse
|
18
|
Foster JC, Grocott MC, Arkinstall LA, Varlas S, Redding MJ, Grayson SM, O’Reilly RK. It is Better with Salt: Aqueous Ring-Opening Metathesis Polymerization at Neutral pH. J Am Chem Soc 2020; 142:13878-13885. [PMID: 32673484 PMCID: PMC7426906 DOI: 10.1021/jacs.0c05499] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Indexed: 12/15/2022]
Abstract
Aqueous ring-opening metathesis polymerization (ROMP) is a powerful tool for polymer synthesis under environmentally friendly conditions, functionalization of biomacromolecules, and preparation of polymeric nanoparticles via ROMP-induced self-assembly (ROMPISA). Although new water-soluble Ru-based metathesis catalysts have been developed and evaluated for their efficiency in mediating cross metathesis (CM) and ring-closing metathesis (RCM) reactions, little is known with regards to their catalytic activity and stability during aqueous ROMP. Here, we investigate the influence of solution pH, the presence of salt additives, and catalyst loading on ROMP monomer conversion and catalyst lifetime. We find that ROMP in aqueous media is particularly sensitive to chloride ion concentration and propose that this sensitivity originates from chloride ligand displacement by hydroxide or H2O at the Ru center, which reversibly generates an unstable and metathesis inactive complex. The formation of this Ru-(OH)n complex not only reduces monomer conversion and catalyst lifetime but also influences polymer microstructure. However, we find that the addition of chloride salts dramatically improves ROMP conversion and control. By carrying out aqueous ROMP in the presence of various chloride sources such as NaCl, KCl, or tetrabutylammonium chloride, we show that diblock copolymers can be readily synthesized via ROMPISA in solutions with high concentrations of neutral H2O (i.e., 90 v/v%) and relatively low concentrations of catalyst (i.e., 1 mol %). The capability to conduct aqueous ROMP at neutral pH is anticipated to enable new research avenues, particularly for applications in biological media, where the unique characteristics of ROMP provide distinct advantages over other polymerization strategies.
Collapse
Affiliation(s)
- Jeffrey C. Foster
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| | - Marcus C. Grocott
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| | - Lucy A. Arkinstall
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| | - Spyridon Varlas
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| | - McKenna J. Redding
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Scott M. Grayson
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Rachel K. O’Reilly
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| |
Collapse
|
19
|
Himiyama T, Okamoto Y. Artificial Metalloenzymes: From Selective Chemical Transformations to Biochemical Applications. Molecules 2020; 25:molecules25132989. [PMID: 32629938 PMCID: PMC7411666 DOI: 10.3390/molecules25132989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 11/16/2022] Open
Abstract
Artificial metalloenzymes (ArMs) comprise a synthetic metal complex in a protein scaffold. ArMs display performances combining those of both homogeneous catalysts and biocatalysts. Specifically, ArMs selectively catalyze non-natural reactions and reactions inspired by nature in water under mild conditions. In the past few years, the construction of ArMs that possess a genetically incorporated unnatural amino acid and the directed evolution of ArMs have become of great interest in the field. Additionally, biochemical applications of ArMs have steadily increased, owing to the fact that compartmentalization within a protein scaffold allows the synthetic metal complex to remain functional in a sea of inactivating biomolecules. In this review, we present updates on: 1) the newly reported ArMs, according to their type of reaction, and 2) the unique biochemical applications of ArMs, including chemoenzymatic cascades and intracellular/in vivo catalysis. We believe that ArMs have great potential as catalysts for organic synthesis and as chemical biology tools for pharmaceutical applications.
Collapse
Affiliation(s)
- Tomoki Himiyama
- National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka 563-8577, Japan;
- DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Ikeda, Osaka 563-8577, Japan
| | - Yasunori Okamoto
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki aza Aoba, Aoba-ku, Sendai 980-8578, Japan
- Correspondence: ; Tel.: +81-22-795-5264
| |
Collapse
|
20
|
|
21
|
Messina MS, Maynard HD. Modification of Proteins Using Olefin Metathesis. MATERIALS CHEMISTRY FRONTIERS 2020; 4:1040-1051. [PMID: 34457313 PMCID: PMC8388616 DOI: 10.1039/c9qm00494g] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Olefin metathesis has revolutionized synthetic approaches to carbon-carbon bond formation. With a rich history beginning in industrial settings through its advancement in academic laboratories leading to new and highly active metathesis catalysts, olefin metathesis has found use in the generation of complex natural products, the cyclization of bioactive materials, and in the polymerization of new and unique polymer architectures. Throughout this review, we will trace the deployment of olefin metathesis-based strategies for the modification of proteins, a process which has been facilitated by the extensive development of stable, isolable, and highly active transition-metal-based metathesis catalysts. We first begin by summarizing early works which detail peptide modification strategies that played a vital role in identifying stable metathesis catalysts. We then delve into protein modification using cross metathesis and finish with recent work on the generation of protein-polymer conjugates through ring-opening metathesis polymerization.
Collapse
Affiliation(s)
- Marco S Messina
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, USA
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, USA
| | - Heather D Maynard
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, USA
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, USA
| |
Collapse
|
22
|
TANAKA K, VONG K. Unlocking the therapeutic potential of artificial metalloenzymes. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:79-94. [PMID: 32161212 PMCID: PMC7167364 DOI: 10.2183/pjab.96.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In order to harness the functionality of metals, nature has evolved over billions of years to utilize metalloproteins as key components in numerous cellular processes. Despite this, transition metals such as ruthenium, palladium, iridium, and gold are largely absent from naturally occurring metalloproteins, likely due to their scarcity as precious metals. To mimic the evolutionary process of nature, the field of artificial metalloenzymes (ArMs) was born as a way to benefit from the unique chemoselectivity and orthogonality of transition metals in a biological setting. In its current state, numerous examples have successfully incorporated transition metals into a variety of protein scaffolds. Using these ArMs, many examples of new-to-nature reactions have been carried out, some of which have shown substantial biocompatibility. Given the rapid rate at which this field is growing, this review aims to highlight some important studies that have begun to take the next step within this field; namely the development of ArM-centered drug therapies or biotechnological tools.
Collapse
Affiliation(s)
- Katsunori TANAKA
- Cluster for Pioneering Research, RIKEN, Wako, Saitama, Japan
- A. Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Russia
- Baton Zone Program, RIKEN, Wako, Saitama, Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Tokyo, Japan
- Correspondence should be addressed: K. Tanaka, Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan (e-mail: )
| | - Kenward VONG
- Cluster for Pioneering Research, RIKEN, Wako, Saitama, Japan
| |
Collapse
|
23
|
Matsuo T, Miyake T, Hirota S. Recent developments on creation of artificial metalloenzymes. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Atroposelective antibodies as a designed protein scaffold for artificial metalloenzymes. Sci Rep 2019; 9:13551. [PMID: 31537832 PMCID: PMC6753118 DOI: 10.1038/s41598-019-49844-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/02/2019] [Indexed: 11/09/2022] Open
Abstract
Design and engineering of protein scaffolds are crucial to create artificial metalloenzymes. Herein we report the first example of C-C bond formation catalyzed by artificial metalloenzymes, which consist of monoclonal antibodies (mAbs) and C2 symmetric metal catalysts. Prepared as a tailored protein scaffold for a binaphthyl derivative (BN), mAbs bind metal catalysts bearing a 1,1'-bi-isoquinoline (BIQ) ligand to yield artificial metalloenzymes. These artificial metalloenzymes catalyze the Friedel-Crafts alkylation reaction. In the presence of mAb R44E1, the reaction proceeds with 88% ee. The reaction catalyzed by Cu-catalyst incorporated into the binding site of mAb R44E1 is found to show excellent enantioselectivity with 99% ee. The protein environment also enables the use of BIQ-based catalysts as asymmetric catalysts for the first time.
Collapse
|
25
|
Davis H, Ward TR. Artificial Metalloenzymes: Challenges and Opportunities. ACS CENTRAL SCIENCE 2019; 5:1120-1136. [PMID: 31404244 PMCID: PMC6661864 DOI: 10.1021/acscentsci.9b00397] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Indexed: 05/04/2023]
Abstract
Artificial metalloenzymes (ArMs) result from the incorporation of an abiotic metal cofactor within a protein scaffold. From the earliest techniques of transition metals adsorbed on silk fibers, the field of ArMs has expanded dramatically over the past 60 years to encompass a range of reaction classes and inspired approaches: Assembly of the ArMs has taken multiple forms with both covalent and supramolecular anchoring strategies, while the scaffolds have been intuitively selected and evolved, repurposed, or designed in silico. Herein, we discuss some of the most prominent recent examples of ArMs to highlight the challenges and opportunities presented by the field.
Collapse
|
26
|
|
27
|
Rebelein JG, Cotelle Y, Garabedian B, Ward TR. Chemical Optimization of Whole-Cell Transfer Hydrogenation Using Carbonic Anhydrase as Host Protein. ACS Catal 2019; 9:4173-4178. [PMID: 31080690 PMCID: PMC6503580 DOI: 10.1021/acscatal.9b01006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/03/2019] [Indexed: 12/12/2022]
Abstract
![]()
Artificial
metalloenzymes combine a synthetic metallocofactor with
a protein scaffold and can catalyze abiotic reactions in vivo. Herein, we report on our efforts to valorize human carbonic anhydrase
II as a scaffold for whole-cell transfer hydrogenation. Two platforms
were tested: periplasmic compartmentalization and surface display
in Escherichia coli. A chemical optimization of an
IrCp* cofactor was performed. This led to 90 turnovers in the cell,
affording a 69-fold increase in periplasmic product formation over
the previously reported, sulfonamide-bearing IrCp* cofactor. These
findings highlight the versatility of carbonic anhydrase as a promising
scaffold for whole-cell catalysis with artificial metalloenzymes.
Collapse
Affiliation(s)
- Johannes G. Rebelein
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Yoann Cotelle
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Brett Garabedian
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Thomas R. Ward
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| |
Collapse
|
28
|
Sabatino V, Ward TR. Aqueous olefin metathesis: recent developments and applications. Beilstein J Org Chem 2019; 15:445-468. [PMID: 30873229 PMCID: PMC6404410 DOI: 10.3762/bjoc.15.39] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/24/2019] [Indexed: 12/22/2022] Open
Abstract
Olefin metathesis is one of the most powerful C-C double-bond-forming reactions. Metathesis reactions have had a tremendous impact in organic synthesis, enabling a variety of applications in polymer chemistry, drug discovery and chemical biology. Although challenging, the possibility to perform aqueous metatheses has become an attractive alternative, not only because water is a more sustainable medium, but also to exploit biocompatible conditions. This review focuses on the progress made in aqueous olefin metatheses and their applications in chemical biology.
Collapse
Affiliation(s)
- Valerio Sabatino
- Department of Chemistry, University of Basel, Building 1096, Mattenstraße 24a, Biopark Rosental, 4058, Basel, Switzerland
| | - Thomas R Ward
- Department of Chemistry, University of Basel, Building 1096, Mattenstraße 24a, Biopark Rosental, 4058, Basel, Switzerland
| |
Collapse
|
29
|
Grimm AR, Sauer DF, Davari MD, Zhu L, Bocola M, Kato S, Onoda A, Hayashi T, Okuda J, Schwaneberg U. Cavity Size Engineering of a β-Barrel Protein Generates Efficient Biohybrid Catalysts for Olefin Metathesis. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03652] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alexander R. Grimm
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074 Aachen, Germany
| | - Daniel F. Sauer
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany
| | - Mehdi D. Davari
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074 Aachen, Germany
| | - Leilei Zhu
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074 Aachen, Germany
| | - Marco Bocola
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074 Aachen, Germany
| | - Shunsuke Kato
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Akira Onoda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Takashi Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Jun Okuda
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074 Aachen, Germany
- DWI—Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, D-52074 Aachen, Germany
| |
Collapse
|
30
|
Jeschek M, Panke S, Ward TR. Artificial Metalloenzymes on the Verge of New-to-Nature Metabolism. Trends Biotechnol 2017; 36:60-72. [PMID: 29061328 DOI: 10.1016/j.tibtech.2017.10.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 01/13/2023]
Abstract
Residing at the interface of chemistry and biotechnology, artificial metalloenzymes (ArMs) offer an attractive technology to combine the versatile reaction repertoire of transition metal catalysts with the exquisite catalytic features of enzymes. While earlier efforts in this field predominantly comprised studies in well-defined test-tube environments, a trend towards exploiting ArMs in more complex environments has recently emerged. Integration of these artificial biocatalysts in enzymatic cascades and using them in whole-cell biotransformations and in vivo opens up entirely novel prospects for both preparative chemistry and synthetic biology. We highlight selected recent developments with a particular focus on challenges and opportunities in the in vivo application of ArMs.
Collapse
Affiliation(s)
- Markus Jeschek
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland.
| | - Sven Panke
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland
| | - Thomas R Ward
- Department of Chemistry, University of Basel, Basel, Switzerland
| |
Collapse
|
31
|
Deshpande AR, Pochapsky TC, Ringe D. The Metal Drives the Chemistry: Dual Functions of Acireductone Dioxygenase. Chem Rev 2017; 117:10474-10501. [PMID: 28731690 DOI: 10.1021/acs.chemrev.7b00117] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Acireductone dioxygenase (ARD) from the methionine salvage pathway (MSP) is a unique enzyme that exhibits dual chemistry determined solely by the identity of the divalent transition-metal ion (Fe2+ or Ni2+) in the active site. The Fe2+-containing isozyme catalyzes the on-pathway reaction using substrates 1,2-dihydroxy-3-keto-5-methylthiopent-1-ene (acireductone) and dioxygen to generate formate and the ketoacid precursor of methionine, 2-keto-4-methylthiobutyrate, whereas the Ni2+-containing isozyme catalyzes an off-pathway shunt with the same substrates, generating methylthiopropionate, carbon monoxide, and formate. The dual chemistry of ARD was originally discovered in the bacterium Klebsiella oxytoca, but it has recently been shown that mammalian ARD enzymes (mouse and human) are also capable of catalyzing metal-dependent dual chemistry in vitro. This is particularly interesting, since carbon monoxide, one of the products of off-pathway reaction, has been identified as an antiapoptotic molecule in mammals. In addition, several biochemical and genetic studies have indicated an inhibitory role of human ARD in cancer. This comprehensive review describes the biochemical and structural characterization of the ARD family, the proposed experimental and theoretical approaches to establishing mechanisms for the dual chemistry, insights into the mechanism based on comparison with structurally and functionally similar enzymes, and the applications of this research to the field of artificial metalloenzymes and synthetic biology.
Collapse
Affiliation(s)
- Aditi R Deshpande
- Departments of Biochemistry and ‡Chemistry and §the Rosenstiel Institute for Basic Biomedical Research, Brandeis University , Waltham, Massachusetts 02454, United States
| | - Thomas C Pochapsky
- Departments of Biochemistry and ‡Chemistry and §the Rosenstiel Institute for Basic Biomedical Research, Brandeis University , Waltham, Massachusetts 02454, United States
| | - Dagmar Ringe
- Departments of Biochemistry and ‡Chemistry and §the Rosenstiel Institute for Basic Biomedical Research, Brandeis University , Waltham, Massachusetts 02454, United States
| |
Collapse
|
32
|
Schwizer F, Okamoto Y, Heinisch T, Gu Y, Pellizzoni MM, Lebrun V, Reuter R, Köhler V, Lewis JC, Ward TR. Artificial Metalloenzymes: Reaction Scope and Optimization Strategies. Chem Rev 2017; 118:142-231. [PMID: 28714313 DOI: 10.1021/acs.chemrev.7b00014] [Citation(s) in RCA: 520] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The incorporation of a synthetic, catalytically competent metallocofactor into a protein scaffold to generate an artificial metalloenzyme (ArM) has been explored since the late 1970's. Progress in the ensuing years was limited by the tools available for both organometallic synthesis and protein engineering. Advances in both of these areas, combined with increased appreciation of the potential benefits of combining attractive features of both homogeneous catalysis and enzymatic catalysis, led to a resurgence of interest in ArMs starting in the early 2000's. Perhaps the most intriguing of potential ArM properties is their ability to endow homogeneous catalysts with a genetic memory. Indeed, incorporating a homogeneous catalyst into a genetically encoded scaffold offers the opportunity to improve ArM performance by directed evolution. This capability could, in turn, lead to improvements in ArM efficiency similar to those obtained for natural enzymes, providing systems suitable for practical applications and greater insight into the role of second coordination sphere interactions in organometallic catalysis. Since its renaissance in the early 2000's, different aspects of artificial metalloenzymes have been extensively reviewed and highlighted. Our intent is to provide a comprehensive overview of all work in the field up to December 2016, organized according to reaction class. Because of the wide range of non-natural reactions catalyzed by ArMs, this was done using a functional-group transformation classification. The review begins with a summary of the proteins and the anchoring strategies used to date for the creation of ArMs, followed by a historical perspective. Then follows a summary of the reactions catalyzed by ArMs and a concluding critical outlook. This analysis allows for comparison of similar reactions catalyzed by ArMs constructed using different metallocofactor anchoring strategies, cofactors, protein scaffolds, and mutagenesis strategies. These data will be used to construct a searchable Web site on ArMs that will be updated regularly by the authors.
Collapse
Affiliation(s)
- Fabian Schwizer
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Yasunori Okamoto
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Tillmann Heinisch
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Yifan Gu
- Searle Chemistry Laboratory, University of Chicago , 5735 S. Ellis Ave., Chicago, Illinois 60637, United States
| | - Michela M Pellizzoni
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Vincent Lebrun
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Raphael Reuter
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Valentin Köhler
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Jared C Lewis
- Searle Chemistry Laboratory, University of Chicago , 5735 S. Ellis Ave., Chicago, Illinois 60637, United States
| | - Thomas R Ward
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| |
Collapse
|
33
|
|
34
|
Neville A, Iniesta J, Palomo JM. Design of Heterogeneous Hoveyda-Grubbs Second-Generation Catalyst-Lipase Conjugates. Molecules 2016; 21:molecules21121680. [PMID: 27929435 PMCID: PMC6273280 DOI: 10.3390/molecules21121680] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/25/2016] [Accepted: 11/30/2016] [Indexed: 12/20/2022] Open
Abstract
Heterogeneous catalysts have been synthesized by the conjugation of Hoveyda–Grubbs second-generation catalyst with a lipase. The catalytic properties of the organometallic compound in solution were firstly optimized, evaluating the activity of Ru in the ring-closing metathesis of diethyldiallymalonate at 25 °C at different solvents and in the presence of different additives. The best result was found using tetrahydrofuran as a solvent. Some additives such as phenylboronic acid or polyetheneglycol slightly improved the activity of the Ru catalyst whereas others, such as pyridine or dipeptides affected it negatively. The organometallic compound immobilized on functionalized-surface materials activated with boronic acid or epoxy groups (around 50–60 µg per mg support) and showed 50% conversion at 24 h in the ring-closing metathesis. Cross-linked enzyme aggregates (CLEA’s) of the Hoveyda–Grubbs second-generation catalyst with Candida antarctica lipase (CAL-B) were prepared, although low Ru catalyst was found to be translated in low conversion. Therefore, a sol–gel preparation of the Hoveyda–Grubbs second-generation and CAL-B was performed. This catalyst exhibited good activity in the metathesis of diethyldiallymalonate in toluene and in aqueous media. Finally, a new sustainable approach was used by the conjugation lipase–Grubbs in solid phase in aqueous media. Two strategies were used: one using lipase previously covalently immobilized on an epoxy-Sepharose support (hydrophilic matrix) and then conjugated with grubbs; and in the second, the free lipase was incubated with organometallic in aqueous solution and then immobilized on epoxy-Sepharose. The different catalysts showed excellent conversion values in the ring-closing metathesis of diethyldiallymalonate in aqueous media at 25 °C.
Collapse
Affiliation(s)
- Anthony Neville
- Department of Biocatalysis, Institute of Catalysis (CSIC), Marie Curie 2, Cantoblanco, Campus UAM, 28049 Madrid, Spain.
| | - Javier Iniesta
- Department of Biocatalysis, Institute of Catalysis (CSIC), Marie Curie 2, Cantoblanco, Campus UAM, 28049 Madrid, Spain.
| | - Jose M Palomo
- Department of Biocatalysis, Institute of Catalysis (CSIC), Marie Curie 2, Cantoblanco, Campus UAM, 28049 Madrid, Spain.
| |
Collapse
|
35
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2015. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Osseili H, Sauer DF, Beckerle K, Arlt M, Himiyama T, Polen T, Onoda A, Schwaneberg U, Hayashi T, Okuda J. Artificial Diels-Alderase based on the transmembrane protein FhuA. Beilstein J Org Chem 2016; 12:1314-1321. [PMID: 27559380 PMCID: PMC4979952 DOI: 10.3762/bjoc.12.124] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/10/2016] [Indexed: 11/23/2022] Open
Abstract
Copper(I) and copper(II) complexes were covalently linked to an engineered variant of the transmembrane protein Ferric hydroxamate uptake protein component A (FhuA ΔCVFtev). Copper(I) was incorporated using an N-heterocyclic carbene (NHC) ligand equipped with a maleimide group on the side arm at the imidazole nitrogen. Copper(II) was attached by coordination to a terpyridyl ligand. The spacer length was varied in the back of the ligand framework. These biohybrid catalysts were shown to be active in the Diels–Alder reaction of a chalcone derivative with cyclopentadiene to preferentially give the endo product.
Collapse
Affiliation(s)
- Hassan Osseili
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Daniel F Sauer
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Klaus Beckerle
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Marcus Arlt
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 1, 52056 Aachen, Germany
| | - Tomoki Himiyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Tino Polen
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Akira Onoda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 1, 52056 Aachen, Germany
| | - Takashi Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Jun Okuda
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| |
Collapse
|
37
|
Sauer DF, Gotzen S, Okuda J. Metatheases: artificial metalloproteins for olefin metathesis. Org Biomol Chem 2016; 14:9174-9183. [DOI: 10.1039/c6ob01475e] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent advance in the design of artificial metalloproteins for olefin metathesis is presented.
Collapse
Affiliation(s)
- D. F. Sauer
- Institute of Inorganic Chemistry
- RWTH Aachen University
- 52056 Aachen
- Germany
| | - S. Gotzen
- Institute of Inorganic Chemistry
- RWTH Aachen University
- 52056 Aachen
- Germany
| | - J. Okuda
- Institute of Inorganic Chemistry
- RWTH Aachen University
- 52056 Aachen
- Germany
| |
Collapse
|
38
|
Sauer DF, Himiyama T, Tachikawa K, Fukumoto K, Onoda A, Mizohata E, Inoue T, Bocola M, Schwaneberg U, Hayashi T, Okuda J. A Highly Active Biohybrid Catalyst for Olefin Metathesis in Water: Impact of a Hydrophobic Cavity in a β-Barrel Protein. ACS Catal 2015. [DOI: 10.1021/acscatal.5b01792] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel F. Sauer
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany
| | - Tomoki Himiyama
- Department of Applied
Chemistry, Graduate School of Engineering, Osaka University, 2-1
Yamadaoka, Suita 565-0871, Japan
| | - Kengo Tachikawa
- Department of Applied
Chemistry, Graduate School of Engineering, Osaka University, 2-1
Yamadaoka, Suita 565-0871, Japan
| | - Kazuki Fukumoto
- Department of Applied
Chemistry, Graduate School of Engineering, Osaka University, 2-1
Yamadaoka, Suita 565-0871, Japan
| | - Akira Onoda
- Department of Applied
Chemistry, Graduate School of Engineering, Osaka University, 2-1
Yamadaoka, Suita 565-0871, Japan
| | - Eiichi Mizohata
- Department of Applied
Chemistry, Graduate School of Engineering, Osaka University, 2-1
Yamadaoka, Suita 565-0871, Japan
| | - Tsuyoshi Inoue
- Department of Applied
Chemistry, Graduate School of Engineering, Osaka University, 2-1
Yamadaoka, Suita 565-0871, Japan
| | - Marco Bocola
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 1, D-52056 Aachen, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 1, D-52056 Aachen, Germany
| | - Takashi Hayashi
- Department of Applied
Chemistry, Graduate School of Engineering, Osaka University, 2-1
Yamadaoka, Suita 565-0871, Japan
| | - Jun Okuda
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany
| |
Collapse
|
39
|
Prier CK, Arnold FH. Chemomimetic biocatalysis: exploiting the synthetic potential of cofactor-dependent enzymes to create new catalysts. J Am Chem Soc 2015; 137:13992-4006. [PMID: 26502343 DOI: 10.1021/jacs.5b09348] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Despite the astonishing breadth of enzymes in nature, no enzymes are known for many of the valuable catalytic transformations discovered by chemists. Recent work in enzyme design and evolution, however, gives us good reason to think that this will change. We describe a chemomimetic biocatalysis approach that draws from small-molecule catalysis and synthetic chemistry, enzymology, and molecular evolution to discover or create enzymes with non-natural reactivities. We illustrate how cofactor-dependent enzymes can be exploited to promote reactions first established with related chemical catalysts. The cofactors can be biological, or they can be non-biological to further expand catalytic possibilities. The ability of enzymes to amplify and precisely control the reactivity of their cofactors together with the ability to optimize non-natural reactivity by directed evolution promises to yield exceptional catalysts for challenging transformations that have no biological counterparts.
Collapse
Affiliation(s)
- Christopher K Prier
- Division of Chemistry and Chemical Engineering, California Institute of Technology , 1200 East California Boulevard, MC 210-41, Pasadena, California 91125, United States
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology , 1200 East California Boulevard, MC 210-41, Pasadena, California 91125, United States
| |
Collapse
|