1
|
Dorn RS, Prescher JA. Bioorthogonal Phosphines: Then and Now. Isr J Chem 2022. [DOI: 10.1002/ijch.202200070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Robert S. Dorn
- Departments of Chemistry University of California Irvine California 92697 United States
| | - Jennifer A. Prescher
- Departments of Chemistry University of California Irvine California 92697 United States
- Molecular Biology & Biochemistry University of California Irvine California 92697 United States
- Pharmaceutical Sciences University of California Irvine California 92697 United States
| |
Collapse
|
2
|
Poulou E, Hackenberger CPR. Staudinger Ligation and Reactions – From Bioorthogonal Labeling to Next‐Generation Biopharmaceuticals. Isr J Chem 2022. [DOI: 10.1002/ijch.202200057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eleftheria Poulou
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Strasse 10 13125 Berlin Germany
- Department of Chemistry Humboldt Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Christian P. R. Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Strasse 10 13125 Berlin Germany
- Department of Chemistry Humboldt Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| |
Collapse
|
3
|
Zhao X, Fu S, Zhao Y, Ni F. One-pot synthesis and multiple MS/MS fragmentation studies of phospholysine peptides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9186. [PMID: 34480769 DOI: 10.1002/rcm.9186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE Compared with phosphorylation of arginine and histidine, the study of phosphorylation of lysine lags far behind. The major challenges toward the current study of phosphorylation of lysine include synthesis and unambiguous phosphosite identification. This study provided a simple chemical synthesis method to construct phospholysine peptides (pLys peptides) and investigated their fragmentation under multiple activation types. METHODS Herein, we developed a synthetic method for pLys peptides in aqueous solution within one pot. Two peptides were lysine-phosphorylated using this method. The purified pLys peptides were first characterized using NMR, then were subjected to nano-liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) analysis under multiple fragmentation method including collision-induced dissociation (CID), higher energy collisional dissociation (HCD), electron transfer dissociation (ETD), electron transfer/higher energy collisional dissociation (EThcD), and ultraviolet photodissociation (UVPD) fragmentation to investigate the relevant diagnostic ions. RESULTS Two pLys peptides were synthesized with a moderate yield following an easily handled experimental protocol. NMR spectra showed the phosphorylation occurred on ε-NH2 of lysine but not other groups. As for the fragmentation, in general, pLys immonium ions and phosphate-related neutral losses were ubiquitous among spectra derived from these activation types except for ETD. Using these ions as diagnostic ions, the misassigned phosphosites by algorithm could be recorrected. UVPD-generated spectra owned good sequence-coverage and abundant fragment ions, with pLys immonium ions and neutral losses of weak intensity. CONCLUSIONS A synthetic method was developed for pLys peptides in aqueous solution within one pot. The characteristic pLys immonium ions and phosphate-related neutral loss could serve as the diagnostic ions for unambiguous phosphosite identification of pLys peptides. In addition, UVPD was promising for the identification of pLys peptides.
Collapse
Affiliation(s)
- Xuelian Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, China
| | - Songsen Fu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, China
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China
| | - Feng Ni
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
4
|
Heiss TK, Dorn RS, Prescher JA. Bioorthogonal Reactions of Triarylphosphines and Related Analogues. Chem Rev 2021; 121:6802-6849. [PMID: 34101453 PMCID: PMC10064493 DOI: 10.1021/acs.chemrev.1c00014] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioorthogonal phosphines were introduced in the context of the Staudinger ligation over 20 years ago. Since that time, phosphine probes have been used in myriad applications to tag azide-functionalized biomolecules. The Staudinger ligation also paved the way for the development of other phosphorus-based chemistries, many of which are widely employed in biological experiments. Several reviews have highlighted early achievements in the design and application of bioorthogonal phosphines. This review summarizes more recent advances in the field. We discuss innovations in classic Staudinger-like transformations that have enabled new biological pursuits. We also highlight relative newcomers to the bioorthogonal stage, including the cyclopropenone-phosphine ligation and the phospha-Michael reaction. The review concludes with chemoselective reactions involving phosphite and phosphonite ligations. For each transformation, we describe the overall mechanism and scope. We also showcase efforts to fine-tune the reagents for specific functions. We further describe recent applications of the chemistries in biological settings. Collectively, these examples underscore the versatility and breadth of bioorthogonal phosphine reagents.
Collapse
|
5
|
Hauser A, Poulou E, Müller F, Schmieder P, Hackenberger CPR. Synthesis and Evaluation of Non-Hydrolyzable Phospho-Lysine Peptide Mimics. Chemistry 2021; 27:2326-2331. [PMID: 32986895 PMCID: PMC7898648 DOI: 10.1002/chem.202003947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/25/2020] [Indexed: 01/16/2023]
Abstract
The intrinsic lability of the phosphoramidate P-N bond in phosphorylated histidine (pHis), arginine (pHis) and lysine (pLys) residues is a significant challenge for the investigation of these post-translational modifications (PTMs), which gained attention rather recently. While stable mimics of pHis and pArg have contributed to study protein substrate interactions or to generate antibodies for enrichment as well as detection, no such analogue has been reported yet for pLys. This work reports the synthesis and evaluation of two pLys mimics, a phosphonate and a phosphate derivative, which can easily be incorporated into peptides using standard fluorenyl-methyloxycarbonyl- (Fmoc-)based solid-phase peptide synthesis (SPPS). In order to compare the biophysical properties of natural pLys with our synthetic mimics, the pKa values of pLys and analogues were determined in titration experiments applying nuclear magnetic resonance (NMR) spectroscopy in small model peptides. These results were used to compute electrostatic potential (ESP) surfaces obtained after molecular geometry optimization. These findings indicate the potential of the designed non-hydrolyzable, phosphonate-based mimic for pLys in various proteomic approaches.
Collapse
Affiliation(s)
- Anett Hauser
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Rössle-Strasse 1013125BerlinGermany
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Strasse 212489BerlinGermany
| | - Eleftheria Poulou
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Rössle-Strasse 1013125BerlinGermany
| | - Fabian Müller
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Strasse 212489BerlinGermany
| | - Peter Schmieder
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Rössle-Strasse 1013125BerlinGermany
| | - Christian P. R. Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Rössle-Strasse 1013125BerlinGermany
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Strasse 212489BerlinGermany
| |
Collapse
|
6
|
Hauser A, Hwang S, Sun H, Hackenberger CPR. Combining free energy calculations with tailored enzyme activity assays to elucidate substrate binding of a phospho-lysine phosphatase. Chem Sci 2020; 11:12655-12661. [PMID: 34094459 PMCID: PMC8163145 DOI: 10.1039/d0sc03930f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022] Open
Abstract
Studying enzymes that are involved in the regulation of dynamic post-translational modifications (PTMs) is of key importance in proteomics research. Such investigations can be particularly challenging when the modification itself is intrinsically labile. In this article, we elucidate the enzymatic activity of Phospholysine Phosphohistidine Inorganic Pyrophosphate Phosphatase (LHPP) towards different O- and N-phosphorylated peptides by a combined experimental and computational approach. LHPP has been previously described to hydrolyze the phosphoramidate bonds in different small molecule substrates, including phosphorylated lysine (pLys). Taking the instability of the phosphoramidate bond into account, we conducted a carefully adjusted enzymatic assay with various pLys pentapeptides to confirm enzymatic phosphatase activity with LHPP. Molecular docking was employed to explore possible binding poses of the substrates in complex with the enzyme. Molecular dynamics based free energy calculations, which are unique in their accuracy and solid theoretical basis, were further applied to predict relative binding affinity of different substrates. Comparison of simulations with experiments clearly suggested a distinct binding motif of pLys peptides as well as a very narrow promiscuity of LHPP. We believe this integrated approach can be widely adopted to study the structure and interaction of poorly characterized enzyme-substrate complexes, in particular with synthetically challenging or labile substrates.
Collapse
Affiliation(s)
- Anett Hauser
- Department of Chemical Biology II, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Berlin Germany
- Institute for Chemistry, Humboldt-Universität zu Berlin Berlin Germany
| | - Songhwan Hwang
- Group of Structural Chemistry and Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Berlin Germany
| | - Han Sun
- Group of Structural Chemistry and Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Berlin Germany
| | - Christian P R Hackenberger
- Department of Chemical Biology II, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Berlin Germany
- Institute for Chemistry, Humboldt-Universität zu Berlin Berlin Germany
| |
Collapse
|
7
|
Huang B, Liu Y, Yao H, Zhao Y. NMR-based investigation into protein phosphorylation. Int J Biol Macromol 2020; 145:53-63. [DOI: 10.1016/j.ijbiomac.2019.12.171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022]
|
8
|
Chabour I, Nájera C, Sansano JM. Diastereoselective multicomponent phosphoramidate-aldehyde-dienophile (PAD) process for the synthesis of polysubstituted cyclohex-2-enyl-amine derivatives. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Arribat M, Cavelier F, Rémond E. Phosphorus-containing amino acids with a P–C bond in the side chain or a P–O, P–S or P–N bond: from synthesis to applications. RSC Adv 2020. [DOI: 10.1039/c9ra10917j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Strategies for the preparation of phosphorus-containing amino acids and their utility in the organic chemistry, physico-chemistry, agrochemistry, and pharmacology fields are reported.
Collapse
Affiliation(s)
| | - Florine Cavelier
- Institut des Biomolécules Max Mousseron
- IBMM
- UMR 5247
- CNRS
- Université de Montpellier
| | - Emmanuelle Rémond
- Institut des Biomolécules Max Mousseron
- IBMM
- UMR 5247
- CNRS
- Université de Montpellier
| |
Collapse
|
10
|
Eivgi O, Vaisman A, Nechmad NB, Baranov M, Lemcoff NG. Latent Ruthenium Benzylidene Phosphite Complexes for Visible-Light-Induced Olefin Metathesis. ACS Catal 2019. [DOI: 10.1021/acscatal.9b05079] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Or Eivgi
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Anna Vaisman
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Noy B. Nechmad
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Mark Baranov
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - N. Gabriel Lemcoff
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
11
|
Cleavable hydrophobic derivatization strategy for enrichment and identification of phosphorylated lysine peptides. Anal Bioanal Chem 2019; 411:4159-4166. [DOI: 10.1007/s00216-019-01770-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/27/2019] [Accepted: 03/07/2019] [Indexed: 10/27/2022]
|
12
|
Hu Y, Weng Y, Jiang B, Li X, Zhang X, Zhao B, Wu Q, Liang Z, Zhang L, Zhang Y. Isolation and identification of phosphorylated lysine peptides by retention time difference combining dimethyl labeling strategy. Sci China Chem 2019. [DOI: 10.1007/s11426-018-9433-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Petkowski JJ, Bains W, Seager S. Natural Products Containing 'Rare' Organophosphorus Functional Groups. Molecules 2019; 24:E866. [PMID: 30823503 PMCID: PMC6429109 DOI: 10.3390/molecules24050866] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/13/2019] [Accepted: 02/22/2019] [Indexed: 12/25/2022] Open
Abstract
Phosphorous-containing molecules are essential constituents of all living cells. While the phosphate functional group is very common in small molecule natural products, nucleic acids, and as chemical modification in protein and peptides, phosphorous can form P⁻N (phosphoramidate), P⁻S (phosphorothioate), and P⁻C (e.g., phosphonate and phosphinate) linkages. While rare, these moieties play critical roles in many processes and in all forms of life. In this review we thoroughly categorize P⁻N, P⁻S, and P⁻C natural organophosphorus compounds. Information on biological source, biological activity, and biosynthesis is included, if known. This review also summarizes the role of phosphorylation on unusual amino acids in proteins (N- and S-phosphorylation) and reviews the natural phosphorothioate (P⁻S) and phosphoramidate (P⁻N) modifications of DNA and nucleotides with an emphasis on their role in the metabolism of the cell. We challenge the commonly held notion that nonphosphate organophosphorus functional groups are an oddity of biochemistry, with no central role in the metabolism of the cell. We postulate that the extent of utilization of some phosphorus groups by life, especially those containing P⁻N bonds, is likely severely underestimated and has been largely overlooked, mainly due to the technological limitations in their detection and analysis.
Collapse
Affiliation(s)
- Janusz J Petkowski
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
| | - William Bains
- Rufus Scientific, 37 The Moor, Melbourn, Royston, Herts SG8 6ED, UK.
| | - Sara Seager
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
- Department of Physics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
| |
Collapse
|
14
|
Pagel M. Inverse electron demand Diels-Alder (IEDDA) reactions in peptide chemistry. J Pept Sci 2019; 25:e3141. [PMID: 30585397 DOI: 10.1002/psc.3141] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 01/05/2023]
Abstract
Click chemistry is applied to selectively modify, lable and ligate peptides for their use as therapeutics, in biomaterials or analytical investigations. The inverse electron demand Diels-Alder (IEDDA) reaction is a catalyst-free click reaction with pronounced chemoselectivity and fast reaction rates. Applications and achievements of the IEDDA reaction in peptide chemistry since 2008 are described in this review.
Collapse
Affiliation(s)
- Mareen Pagel
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Leipzig, Germany
| |
Collapse
|
15
|
Jung H, Shin SH, Kee J. Recent Updates on ProteinN‐Phosphoramidate Hydrolases. Chembiochem 2018; 20:623-633. [DOI: 10.1002/cbic.201800566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Hoyoung Jung
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| | - Son Hye Shin
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| | - Jung‐Min Kee
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| |
Collapse
|
16
|
Hauser A, Penkert M, Hackenberger CPR. Chemical Approaches to Investigate Labile Peptide and Protein Phosphorylation. Acc Chem Res 2017; 50:1883-1893. [PMID: 28723107 DOI: 10.1021/acs.accounts.7b00170] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein phosphorylation is by far the most abundant and most studied post-translational modification (PTM). For a long time, phosphate monoesters of serine (pSer), threonine (pThr), and tyrosine (pTyr) have been considered as the only relevant forms of phosphorylation in organisms. Recently, several research groups have dedicated their efforts to the investigation of other, less characterized phosphoamino acids as naturally occurring PTMs. Such apparent peculiar phosphorylations include the phosphoramidates of histidine (pHis), arginine (pArg), and lysine (pLys), the phosphorothioate of cysteine (pCys), and the anhydrides of pyrophosphorylated serine (ppSer) and threonine (ppThr). Almost all of these phosphorylated amino acids show higher lability under physiological conditions than those of phosphate monoesters. Furthermore, they are prone to hydrolysis under acidic and sometimes basic conditions as well as at elevated temperatures, which renders their synthetic accessibility and proteomic analysis particularly challenging. In this Account, we illustrate recent chemical approaches to probe the occurrence and function of these labile phosphorylation events. Within these endeavors, the synthesis of site-selectively phosphorylated peptides, in particular in combination with chemoselective phosphorylation strategies, was crucial. With these well-defined standards in hand, the appropriate proteomic mass spectrometry-based analysis protocols for the characterization of labile phosphosites in biological samples could be developed. Another successful approach in this research field includes the design and synthesis of stable analogues of these labile PTMs, which were used for the generation of pHis- and pArg-specific antibodies for the detection and enrichment of endogenous phosphorylated samples. Finally, other selective enrichment techniques are described, which rely for instance on the unique chemical environment of a pyrophosphate or the selective interaction between a phosphoamino acid and its phosphatase. It is worth noting that many of those studies are still in their early stages, which is also reflected in the small number of identified phosphosites compared to that of phosphate monoesters. Thus, many challenges need to be mastered to fully understand the biological role of these poorly characterized and rather uncommon phosphorylations. Taken together, this overview exemplifies recent efforts in a flourishing field of functional proteomic analysis and furthermore manifests the power of modern peptide synthesis to address unmet questions in the life sciences.
Collapse
Affiliation(s)
- Anett Hauser
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, 13125 Berlin, Germany
- Institute
of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße
2, 12489 Berlin, Germany
| | - Martin Penkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, 13125 Berlin, Germany
- Institute
of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße
2, 12489 Berlin, Germany
| | - Christian P. R. Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, 13125 Berlin, Germany
- Institute
of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße
2, 12489 Berlin, Germany
| |
Collapse
|
17
|
Marmelstein AM, Moreno J, Fiedler D. Chemical Approaches to Studying Labile Amino Acid Phosphorylation. Top Curr Chem (Cham) 2017; 375:22. [DOI: 10.1007/s41061-017-0111-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 01/23/2017] [Indexed: 12/12/2022]
|
18
|
Chemoselective synthesis and analysis of naturally occurring phosphorylated cysteine peptides. Nat Commun 2016; 7:12703. [PMID: 27586301 PMCID: PMC5025809 DOI: 10.1038/ncomms12703] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/26/2016] [Indexed: 12/15/2022] Open
Abstract
In contrast to protein O-phosphorylation, studying the function of the less frequent N- and S-phosphorylation events have lagged behind because they have chemical features that prevent their manipulation through standard synthetic and analytical methods. Here we report on the development of a chemoselective synthetic method to phosphorylate Cys side-chains in unprotected peptides. This approach makes use of a reaction between nucleophilic phosphites and electrophilic disulfides accessible by standard methods. We achieve the stereochemically defined phosphorylation of a Cys residue and verify the modification using electron-transfer higher-energy dissociation (EThcD) mass spectrometry. To demonstrate the use of the approach in resolving biological questions, we identify an endogenous Cys phosphorylation site in IICB(Glc), which is known to be involved in the carbohydrate uptake from the bacterial phosphotransferase system (PTS). This new chemical and analytical approach finally allows further investigating the functions and significance of Cys phosphorylation in a wide range of crucial cellular processes.
Collapse
|
19
|
Behrendt R, White P, Offer J. Advances in Fmoc solid-phase peptide synthesis. J Pept Sci 2016; 22:4-27. [PMID: 26785684 PMCID: PMC4745034 DOI: 10.1002/psc.2836] [Citation(s) in RCA: 447] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/20/2015] [Indexed: 12/13/2022]
Abstract
Today, Fmoc SPPS is the method of choice for peptide synthesis. Very-high-quality Fmoc building blocks are available at low cost because of the economies of scale arising from current multiton production of therapeutic peptides by Fmoc SPPS. Many modified derivatives are commercially available as Fmoc building blocks, making synthetic access to a broad range of peptide derivatives straightforward. The number of synthetic peptides entering clinical trials has grown continuously over the last decade, and recent advances in the Fmoc SPPS technology are a response to the growing demand from medicinal chemistry and pharmacology. Improvements are being continually reported for peptide quality, synthesis time and novel synthetic targets. Topical peptide research has contributed to a continuous improvement and expansion of Fmoc SPPS applications.
Collapse
Affiliation(s)
- Raymond Behrendt
- Novabiochem, Merck & CieIm Laternenacker 58200SchaffhausenSwitzerland
| | - Peter White
- Novabiochem, Merck Chemicals LtdPadge RoadBeestonNG9 2JRUK
| | - John Offer
- The Francis Crick Institute215 Euston RoadLondonNW1 2BEUK
| |
Collapse
|
20
|
Pagel M, Meier R, Braun K, Wiessler M, Beck-Sickinger AG. On-resin Diels–Alder reaction with inverse electron demand: an efficient ligation method for complex peptides with a varying spacer to optimize cell adhesion. Org Biomol Chem 2016; 14:4809-16. [DOI: 10.1039/c6ob00314a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The DARinvon resin is a new orthogonal reaction in peptide synthesis and the benefits for cell adhesion are discussed.
Collapse
Affiliation(s)
- Mareen Pagel
- Institute of Biochemistry
- Faculty of Biosciences
- Pharmacy and Psychology
- Leipzig
- Germany
| | - René Meier
- Institute of Biochemistry
- Faculty of Biosciences
- Pharmacy and Psychology
- Leipzig
- Germany
| | - Klaus Braun
- Deutsches Krebsforschungszentrum
- 69120 Heidelberg
- Germany
| | | | | |
Collapse
|
21
|
Nischan N, Kasper MA, Mathew T, Hackenberger CPR. Bis(arylmethyl)-substituted unsymmetrical phosphites for the synthesis of lipidated peptides via Staudinger-phosphite reactions. Org Biomol Chem 2016; 14:7500-8. [DOI: 10.1039/c6ob00843g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With this study we introduce new unsymmetrical phosphites to obtain lipidated peptide-conjugates starting from easily accessible azide-modified amino acid or peptide precursors.
Collapse
Affiliation(s)
- N. Nischan
- Freie Universität Berlin
- Institut für Chemie und Biochemie
- 14195 Berlin
- Germany
- Leibniz-Institut für Molekulare Pharmakologie (FMP)
| | - M.-A. Kasper
- Leibniz-Institut für Molekulare Pharmakologie (FMP)
- 13125 Berlin
- Germany
- Humboldt-Universität zu Berlin
- Institut für Chemie
| | - T. Mathew
- Freie Universität Berlin
- Institut für Chemie und Biochemie
- 14195 Berlin
- Germany
| | - C. P. R. Hackenberger
- Freie Universität Berlin
- Institut für Chemie und Biochemie
- 14195 Berlin
- Germany
- Leibniz-Institut für Molekulare Pharmakologie (FMP)
| |
Collapse
|
22
|
Azevedo C, Saiardi A. Why always lysine? The ongoing tale of one of the most modified amino acids. Adv Biol Regul 2015; 60:144-150. [PMID: 26482291 DOI: 10.1016/j.jbior.2015.09.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 09/30/2015] [Accepted: 09/30/2015] [Indexed: 11/26/2022]
Abstract
The complex physiology of living organisms must be finely-tuned to permit the flexibility required to respond to the changing environment. Evolution has provided an interconnected and intricate array of regulatory mechanisms to facilitate this fine-tuning. The number of genes cannot alone explain the complexity of these mechanisms. Rather, signalling is regulated at multiple levels, from genomic to transcriptional, translational and post-translational. Post-translational modification (PTM) of proteins offers an additional level of regulation after protein synthesis that allows a rapid, controlled and reversible response to environmental cues. Many amino acid side chains are post-translationally modified. These modifications can either be enzymatic, such as the phosphorylation of serine, threonine and tyrosine residues, or non-enzymatic, such as the nitrosylation of cysteine residues. Strikingly, lysine residues are targeted by a particularly high number of PTMs including acetylation, methylation, ubiquitination and sumoylation. Additionally, lysines have recently been identified as the target of the non-enzymatic PTM polyphosphorylation. This novel PTM sees linear chains of inorganic polyphosphates (polyP) covalently attached to lysine residues. Interestingly, polyphosphorylation is indirectly dependent on inositol pyrophosphates, a class of cellular messengers. The attachment of polyP to lysine occurs through the phosphoramidate bond, which, unlike the phosphester bond, is unstable under the conditions used in common mass spectroscopy. This characteristic, together with the diversity of lysine PTMs, suggests that many other lysine modifications may still remain unidentified, raising the intriguing possibility that lysine PTMs may be the major means by which signalling pathways modify protein behaviour.
Collapse
Affiliation(s)
- Cristina Azevedo
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK.
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK.
| |
Collapse
|