1
|
Ishikawa F, Uchida C, Tanabe G. Proteolytic Regulation in the Biosynthesis of Natural Product Via a ClpP Protease System. ACS Chem Biol 2024; 19:1794-1802. [PMID: 39096241 DOI: 10.1021/acschembio.4c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Protein degradation is a tightly regulated biological process that maintains bacterial proteostasis. ClpPs are a highly conserved family of serine proteases that associate with the AAA + ATPase (an ATPase associated with diverse cellular activities) to degrade protein substrates. Identification and biochemical characterization of protein substrates for the AAA + ATPase-dependent ClpP degradation systems are considered essential for gaining an understanding of the molecular operation of the complex ClpP degradation machinery. Consequently, expanding the repertoire of protein substrates that can be degraded in vitro and within bacterial cells is necessary. Here, we report that AAA + ATPase-ClpP proteolytic complexes promote degradation of the secondary metabolite surfactin synthetases SrfAA, SrfAB, and SrfAC in Bacillus subtilis. On the basis of in vitro and in-cell studies coupled with activity-based protein profiling of nonribosomal peptide synthetases, we showed that SrfAC is targeted to the ClpC-ClpP proteolytic complex, whereas SrfAA is hydrolyzed not only by the ClpC-ClpP proteolytic complex but also by different ClpP proteolytic complexes. Furthermore, SrfAB does not appear to be a substrate for the ClpC-ClpP proteolytic complex, thereby implying that other ClpP proteolytic complexes are involved in the degradation of this surfactin synthetase. Natural product biosynthesis is regulated by the AAA + ATPase-ClpP degradation system, indicating that protein degradation plays a role in the regulatory stages of biosynthesis. However, few studies have examined the regulation of protein degradation levels. Furthermore, SrfAA, SrfAB, and SrfAC were identified as protein substrates for AAA + ATPase-ClpP degradation systems, thereby contributing to a better understanding of the complex ClpP degradation machinery.
Collapse
Affiliation(s)
- Fumihiro Ishikawa
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Chiharu Uchida
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Genzoh Tanabe
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| |
Collapse
|
2
|
Zhao P, Cao S, Wang J, Lin J, Zhang Y, Liu C, Liu H, Zhang Q, Wang M, Meng Y, Yin X, Qi J, Zhang L, Xia X. Activation of secondary metabolite gene clusters in Chaetomium olivaceum via the deletion of a histone deacetylase. Appl Microbiol Biotechnol 2024; 108:332. [PMID: 38734756 PMCID: PMC11088548 DOI: 10.1007/s00253-024-13173-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/23/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
Histone acetylation modifications in filamentous fungi play a crucial role in epigenetic gene regulation and are closely linked to the transcription of secondary metabolite (SM) biosynthetic gene clusters (BGCs). Histone deacetylases (HDACs) play a pivotal role in determining the extent of histone acetylation modifications and act as triggers for the expression activity of target BGCs. The genus Chaetomium is widely recognized as a rich source of novel and bioactive SMs. Deletion of a class I HDAC gene of Chaetomium olivaceum SD-80A, g7489, induces a substantial pleiotropic effect on the expression of SM BGCs. The C. olivaceum SD-80A ∆g7489 strain exhibited significant changes in morphology, sporulation ability, and secondary metabolic profile, resulting in the emergence of new compound peaks. Notably, three polyketides (A1-A3) and one asterriquinone (A4) were isolated from this mutant strain. Furthermore, our study explored the BGCs of A1-A4, confirming the function of two polyketide synthases (PKSs). Collectively, our findings highlight the promising potential of molecular epigenetic approaches for the elucidation of novel active compounds and their biosynthetic elements in Chaetomium species. This finding holds great significance for the exploration and utilization of Chaetomium resources. KEY POINTS: • Deletion of a class I histone deacetylase activated secondary metabolite gene clusters. • Three polyketides and one asterriquinone were isolated from HDAC deleted strain. • Two different PKSs were reported in C. olivaceum SD-80A.
Collapse
Affiliation(s)
- Peipei Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong, China
| | - Shengling Cao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong, China
| | - Jiahui Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong, China
| | - Jiaying Lin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong, China
| | - Yunzeng Zhang
- Department of Thoracic Surgery, Shandong Public Health Clinical Center, Jinan, 250013, Shandong, China
| | - Chengwei Liu
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Hairong Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong, China
| | - Qingqing Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong, China
| | - Mengmeng Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong, China
| | - Yiwei Meng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong, China
| | - Xin Yin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong, China
| | - Jun Qi
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong, China
| | - Lixin Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong, China
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai, 200237, China
| | - Xuekui Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong, China.
| |
Collapse
|
3
|
Dos Reis JBA, Lorenzi AS, Pinho DB, Cortelo PC, do Vale HMM. The hidden treasures in endophytic fungi: a comprehensive review on the diversity of fungal bioactive metabolites, usual analytical methodologies, and applications. Arch Microbiol 2024; 206:185. [PMID: 38506928 DOI: 10.1007/s00203-024-03911-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024]
Abstract
This review provides a comprehensive overview of the key aspects of the natural metabolite production by endophytic fungi, which has attracted significant attention due to its diverse biological activities and wide range of applications. Synthesized by various fungal species, these metabolites encompass compounds with therapeutic, agricultural, and commercial significance. We delved into strategies and advancements aimed at optimizing fungal metabolite production. Fungal cultivation, especially by Aspergillus, Penicillium, and Fusarium, plays a pivotal role in metabolite biosynthesis, and researchers have explored both submerged and solid-state cultivation processes to harness the full potential of fungal species. Nutrient optimization, pH, and temperature control are critical factors in ensuring high yields of the targeted bioactive metabolites especially for scaling up processes. Analytical methods that includes High-Performance Liquid Chromatography (HPLC), Liquid Chromatography-Mass Spectrometry (LC-MS), Gas Chromatography-Mass Spectrometry (GC-MS), Nuclear Magnetic Resonance (NMR), and Mass Spectrometry (MS), are indispensable for the identification and quantification of the compounds. Moreover, genetic engineering and metabolic pathway manipulation have emerged as powerful tools to enhance metabolite production and develop novel fungal strains with increased yields. Regulation and control mechanisms at the genetic, epigenetic, and metabolic levels are explored to fine-tune the biosynthesis of fungal metabolites. Ongoing research aims to overcome the complexity of the steps involved to ensure the efficient production and utilization of fungal metabolites.
Collapse
Affiliation(s)
| | - Adriana Sturion Lorenzi
- Department of Cellular Biology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, DF, Brazil
| | - Danilo Batista Pinho
- Department of Phytopathology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, DF, Brazil
| | | | - Helson Mario Martins do Vale
- Department of Phytopathology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, DF, Brazil
| |
Collapse
|
4
|
Rebollar-Ramos D, Ovalle-Magallanes B, Raja HA, Jacome-Rebollo M, Figueroa M, Tovar-Palacio C, Noriega LG, Madariaga-Mazón A, Mata R. Antidiabetic Potential of a Trimeric Anthranilic Acid Peptide Isolated from Malbranchea flocciformis. Chem Biodivers 2024; 21:e202301602. [PMID: 38102075 DOI: 10.1002/cbdv.202301602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/17/2023]
Abstract
Compound 3, a trimeric anthranilic acid peptide, and another three metabolites were isolated from an organic extract from the culture medium of Malbranchea flocciformis ATCC 34530. The chemical structure proposed previously for 3 was unequivocally assigned via synthesis and X-ray diffraction analysis. Tripeptide 3 showed insulinotropic properties by decreasing the postprandial peak in healthy and hyperglycemic mice. It also increased glucose-induced insulin secretion in INS-1E at 5 μM, specifically at higher glucose concentrations. These results revealed that 3 might act as an insulin sensitizer and a non-classical insulin secretagogue. Altogether, these findings are in harmony with the in vivo oral glucose tolerance test and acute oral hypoglycemic assay. Finally, the chemical composition of the extract was established by the Global Natural Products Social Molecular Network platform. Phylogenetic analysis using the internal transcribed spacer region revealed that M. flocciformis ATCC 34530 is related to the Malbrancheaceae.
Collapse
Affiliation(s)
- Daniela Rebollar-Ramos
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | | | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC-27412, USA
| | - Mariano Jacome-Rebollo
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - Mario Figueroa
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - Claudia Tovar-Palacio
- Dirección de Nutrición, Instituto Nacional Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, 14080, México
| | - Lilia G Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, 14080, México
| | - Abraham Madariaga-Mazón
- Instituto de Química Unidad Mérida and f Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas Unidad Mérida, Universidad Nacional Autónoma de México, Mérida, Yucatán, México
| | - Rachel Mata
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| |
Collapse
|
5
|
Lv H, Li WJ, Xu P, Tang JG, Zheng Y, Wan Y, Lin Y, Wang H, Li XN. Structural diversity of microbial secondary metabolites based on chemical epigenetic manipulation. Bioorg Chem 2024; 143:107093. [PMID: 38185012 DOI: 10.1016/j.bioorg.2023.107093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/09/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024]
Abstract
Fungi are microorganisms with biosynthetic potential that are capable of producing a wide range of chemically diverse and biologically interesting small molecules. Chemical epigenetic manipulation has been increasingly explored as a simple and powerful tool to induce the production of additional microbial secondary metabolites in fungi. This review focuses on chemical epigenetic manipulation in fungi and summarizes 379 epigenetic manipulation products discovered from 2008 to 2022 to promote the discovery of their medicinal value.
Collapse
Affiliation(s)
- Huawei Lv
- College of Pharmaceutical Science & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wen-Jing Li
- College of Pharmaceutical Science & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ping Xu
- College of Pharmaceutical Science & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jia-Gui Tang
- College of Pharmaceutical Science & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yu Zheng
- College of Pharmaceutical Science & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yu Wan
- College of Pharmaceutical Science & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yan Lin
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China.
| | - Hong Wang
- College of Pharmaceutical Science & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xing-Nuo Li
- College of Pharmaceutical Science & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
6
|
Zheng J, Li Y, Liu N, Zhang J, Liu S, Tan H. Multi-omics Data Reveal the Effect of Sodium Butyrate on Gene Expression and Protein Modification in Streptomyces. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:1149-1162. [PMID: 36115661 PMCID: PMC11082262 DOI: 10.1016/j.gpb.2022.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/19/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Streptomycetes possess numerous gene clusters and the potential to produce a large amount of natural products. Histone deacetylase (HDAC) inhibitors play an important role in the regulation of histone modifications in fungi, but their roles in prokaryotes remain poorly understood. Here, we investigated the global effects of the HDAC inhibitor, sodium butyrate (SB), on marine-derived Streptomycesolivaceus FXJ 8.021, particularly focusing on the activation of secondary metabolite biosynthesis. The antiSMASH analysis revealed 33 secondary metabolite biosynthetic gene clusters (BGCs) in strain FXJ 8.021, among which the silent lobophorin BGC was activated by SB. Transcriptomic data showed that the expression of genes involved in lobophorin biosynthesis (ge00097-ge00139) and CoA-ester formation (e.g., ge02824), as well as the glycolysis/gluconeogenesis pathway (e.g., ge01661), was significantly up-regulated in the presence of SB. Intracellular CoA-ester analysis confirmed that SB triggered the biosynthesis of CoA-ester, thereby increasing the precursor supply for lobophorin biosynthesis. Further acetylomic analysis revealed that the acetylation levels on 218 sites of 190 proteins were up-regulated and those on 411 sites of 310 proteins were down-regulated. These acetylated proteins were particularly enriched in transcriptional and translational machinery components (e.g., elongation factor GE04399), and their correlations with the proteins involved in lobophorin biosynthesis were established by protein-protein interaction network analysis, suggesting that SB might function via a complex hierarchical regulation to activate the expression of lobophorin BGC. These findings provide solid evidence that acetylated proteins triggered by SB could affect the expression of genes involved in the biosynthesis of primary and secondary metabolites in prokaryotes.
Collapse
Affiliation(s)
- Jiazhen Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ning Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jihui Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuangjiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Microbial Biotechnology, Shandong University, Qingdao 266237, China.
| | - Huarong Tan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Taniguchi T, Agbo DO. Vibrational circular dichroism spectroscopy in the C-D, XY, and XYZ stretching region. Phys Chem Chem Phys 2023; 25:28567-28575. [PMID: 37861094 DOI: 10.1039/d3cp04287a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Vibrational circular dichroism (VCD) spectroscopy is a powerful technique for structural analysis of chiral molecules, but information available from VCD spectra of large molecular systems can be limited by severe overlap of vibrational bands. While common chiral molecules do not absorb in the 1900-2400 cm-1 region, observation of VCD signals in this spectrally-isolated region is possible for molecules containing C-D, XY, and XYZ chromophores. Thus, a strategic introduction of these chromophores to a target molecule may produce VCD signals informative for molecular structures. VCD spectroscopy in the 1900-2400 cm-1 region is a rather unexplored research field and its basic properties remain to be investigated. This perspective article discusses insight obtained so far on the usefulness and physicochemical aspects of VCD spectroscopy in this region with briefly summarizing previous experimental VCD studies including classic examples as well as our recent results. We show that anharmonic effects such as overtones and combination bands often complicate VCD patterns. On the other hand, some molecules exhibit characteristic VCD signals that can be well interpreted by harmonic DFT spectral calculations for structural analysis. This article also discusses several examples of the use of this region for studying solute-solvent interactions and for VCD signal augmentation.
Collapse
Affiliation(s)
- Tohru Taniguchi
- Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, North 21 West 11, Sapporo 001-0021, Japan.
| | - Davidson Obinna Agbo
- Graduate School of Life Science, Hokkaido University, North 21 West 11, Sapporo 001-0021, Japan
| |
Collapse
|
8
|
Mohamed NZ, Shaban L, Safan S, El-Sayed ASA. Physiological and metabolic traits of Taxol biosynthesis of endophytic fungi inhabiting plants: Plant-microbial crosstalk, and epigenetic regulators. Microbiol Res 2023; 272:127385. [PMID: 37141853 DOI: 10.1016/j.micres.2023.127385] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 05/06/2023]
Abstract
Attenuating the Taxol productivity of fungi with the subculturing and storage under axenic conditions is the challenge that halts the feasibility of fungi to be an industrial platform for Taxol production. This successive weakening of Taxol productivity by fungi could be attributed to the epigenetic down-regulation and molecular silencing of most of the gene clusters encoding Taxol biosynthetic enzymes. Thus, exploring the epigenetic regulating mechanisms controlling the molecular machinery of Taxol biosynthesis could be an alternative prospective technology to conquer the lower accessibility of Taxol by the potent fungi. The current review focuses on discussing the different molecular approaches, epigenetic regulators, transcriptional factors, metabolic manipulators, microbial communications and microbial cross-talking approaches on restoring and enhancing the Taxol biosynthetic potency of fungi to be industrial platform for Taxol production.
Collapse
Affiliation(s)
- Nabil Z Mohamed
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Lamis Shaban
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| | - Samia Safan
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
9
|
Xue M, Hou X, Fu J, Zhang J, Wang J, Zhao Z, Xu D, Lai D, Zhou L. Recent Advances in Search of Bioactive Secondary Metabolites from Fungi Triggered by Chemical Epigenetic Modifiers. J Fungi (Basel) 2023; 9:jof9020172. [PMID: 36836287 PMCID: PMC9961798 DOI: 10.3390/jof9020172] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/31/2023] Open
Abstract
Genomic analysis has demonstrated that many fungi possess essential gene clusters for the production of previously unobserved secondary metabolites; however, these genes are normally reduced or silenced under most conditions. These cryptic biosynthetic gene clusters have become treasures of new bioactive secondary metabolites. The induction of these biosynthetic gene clusters under stress or special conditions can improve the titers of known compounds or the production of novel compounds. Among the inducing strategies, chemical-epigenetic regulation is considered a powerful approach, and it uses small-molecule epigenetic modifiers, which mainly act as the inhibitors of DNA methyltransferase, histone deacetylase, and histone acetyltransferase, to promote changes in the structure of DNA, histones, and proteasomes and to further activate cryptic biosynthetic gene clusters for the production of a wide variety of bioactive secondary metabolites. These epigenetic modifiers mainly include 5-azacytidine, suberoylanilide hydroxamic acid, suberoyl bishydroxamic acid, sodium butyrate, and nicotinamide. This review gives an overview on the method of chemical epigenetic modifiers to trigger silent or low-expressed biosynthetic pathways to yield bioactive natural products through external cues of fungi, mainly based on the research progress in the period from 2007 to 2022. The production of about 540 fungal secondary metabolites was found to be induced or enhanced by chemical epigenetic modifiers. Some of them exhibited significant biological activities such as cytotoxic, antimicrobial, anti-inflammatory, and antioxidant activity.
Collapse
|
10
|
Complementary Strategies to Unlock Biosynthesis Gene Clusters Encoding Secondary Metabolites in the Filamentous Fungus Podospora anserina. J Fungi (Basel) 2022; 9:jof9010009. [PMID: 36675830 PMCID: PMC9864250 DOI: 10.3390/jof9010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The coprophilous ascomycete Podospora anserina is known to have a high potential to synthesize a wide array of secondary metabolites (SMs). However, to date, the characterization of SMs in this species, as in other filamentous fungal species, is far less than expected by the functional prediction through genome mining, likely due to the inactivity of most SMs biosynthesis gene clusters (BGCs) under standard conditions. In this work, our main objective was to compare the global strategies usually used to deregulate SM gene clusters in P. anserina, including the variation of culture conditions and the modification of the chromatin state either by genetic manipulation or by chemical treatment, and to show the complementarity of the approaches between them. In this way, we showed that the metabolomics-driven comparative analysis unveils the unexpected diversity of metabolic changes in P. anserina and that the integrated strategies have a mutual complementary effect on the expression of the fungal metabolome. Then, our results demonstrate that metabolite production is significantly influenced by varied cultivation states and epigenetic modifications. We believe that the strategy described in this study will facilitate the discovery of fungal metabolites of interest and will improve the ability to prioritize the production of specific fungal SMs with an optimized treatment.
Collapse
|
11
|
Bind S, Bind S, Sharma AK, Chaturvedi P. Epigenetic Modification: A Key Tool for Secondary Metabolite Production in Microorganisms. Front Microbiol 2022; 13:784109. [PMID: 35495688 PMCID: PMC9043899 DOI: 10.3389/fmicb.2022.784109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Microorganisms are stupendous source of secondary metabolites, having significant pharmaceutical and industrial importance. Genome mining has led to the detection of several cryptic metabolic pathways in the natural producer of secondary metabolites (SMs) such as actinobacteria and fungi. Production of these bioactive compounds in considerable amount is, however, somewhat challenging. This led to the search of using epigenetics as a key mechanism to alter the expression of genes that encode the SMs toward higher production in microorganisms. Epigenetics is defined as any heritable change without involving the changes in the underlying DNA sequences. Epigenetic modifications include chromatin remodeling by histone posttranslational modifications, DNA methylation, and RNA interference. Biosynthetic gene cluster for SMs remains in heterochromatin state in which the transcription of constitutive gene is regulated by epigenetic modification. Therefore, small-molecule epigenetic modifiers, which promote changes in the structure of chromatin, could control the expression of silent genes and may be rationally employed for discovery of novel bioactive compounds. This review article focuses on the types of epigenetic modifications and their impact on gene expression for enhancement of SM production in microorganisms.
Collapse
Affiliation(s)
- Sudha Bind
- Department of Biological Sciences, CBSH, G. B. Pant University of Agriculture & Technology, Pantnagar, India
| | - Sandhya Bind
- Department of Biological Sciences, CBSH, G. B. Pant University of Agriculture & Technology, Pantnagar, India
| | - A K Sharma
- Department of Biological Sciences, CBSH, G. B. Pant University of Agriculture & Technology, Pantnagar, India
| | - Preeti Chaturvedi
- Department of Biological Sciences, CBSH, G. B. Pant University of Agriculture & Technology, Pantnagar, India
| |
Collapse
|
12
|
Asai T. Discovery of Diverse Natural Products from Undeveloped Fungal Gene Resource by Using Epigenetic Regulation. YAKUGAKU ZASSHI 2022; 142:439-446. [DOI: 10.1248/yakushi.21-00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Teigo Asai
- Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
13
|
Li Z, Zhang H, Cai C, Lin Z, Zhen Z, Chu J, Guo K. Histone acetyltransferase GCN5-mediated lysine acetylation modulates salt stress aadaption of Trichoderma. Appl Microbiol Biotechnol 2022; 106:3033-3049. [PMID: 35376971 DOI: 10.1007/s00253-022-11897-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/28/2022] [Accepted: 03/19/2022] [Indexed: 11/02/2022]
Abstract
Trichoderma viride has a wide range of applications in plant growth promotion, biological control, cellulase production, and biomass utilization. Salinity is a major limitation to Trichoderma strains in the natural environment and fermentation environment, and to improve the adaptability of Trichoderma to salt stress is of great significance to its applications in industry and agriculture. Histone acetylation plays important roles in the regulation of physiological and biochemical processes including various stress responses. GCN5 is the most representative histone acetylase, which plays vital roles in chromatin remodeling of promoters to facilitate the transcription activation. In this paper, we identified a GCN5-encoding gene TvGCN5 in T. viride Tv-1511, and characterized the function and regulating mechanism of TvGCN5-mediated acetylation of histone H3 in the salt adoption of Tv-1511, by constructions of the deletion mutants (Tv-1511-△GCN5) and overexpression mutants (Tv-1511-GCN5-OE) of TvGCN5. Results showed that compared with wild-type Tv-1511, the over-expression of TvGCN5 resulted in the longer mycelia diameter and more biomass under salt stress. Furthermore, Tv-1511-△GCN5 strains obtained the improved sodium (Na+) compartmentation and antioxidant capacity by upregulating the transcriptional levels of genes encoding PM H+-ATPase, vacuolar H+-ATPase, and antioxidant enzymes. Notably, the changes in the transcriptional expressions of these genes are tightly modulated by the TvGCN5-mediated acetylated level of histone H3 in their promoter regions. In all, these results reveal that TvGCN5 plays an important role in stress tolerance of T. viride Tv-1511, and provides potential insight to facilitate the application of epigenetic modulation in the expanding utilization of Trichoderma. KEY POINTS: • Overexpresison of TvGCN5 improves the adoption of T. viride Tv-1511 to salt stress by increasing acetylation level of histone H3 on the promoter regions of sodium-transport and antioxidant-related genes, at H3K9ac, H3K14ac, H3K23ac, and H3K27ac. • Overexprsison of TvGCN5 enhances the ion transport and compartmentation capacity by upregulating the expressions and activities of PM and vacuolar H+-ATPase to tolerate salt stress. • Overexprsison of TvGCN5 promotes the antioxidant capacity by increasing the expressions and activities of antioxidant enzymes in response to salt stress.
Collapse
Affiliation(s)
- Zhe Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China. .,State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 10085, China.
| | - Hao Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Chunjing Cai
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Zhong Lin
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China.
| | - Zhen Zhen
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Jie Chu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Kai Guo
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| |
Collapse
|
14
|
Pillay LC, Nekati L, Makhwitine PJ, Ndlovu SI. Epigenetic Activation of Silent Biosynthetic Gene Clusters in Endophytic Fungi Using Small Molecular Modifiers. Front Microbiol 2022; 13:815008. [PMID: 35237247 PMCID: PMC8882859 DOI: 10.3389/fmicb.2022.815008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/19/2022] [Indexed: 11/29/2022] Open
Abstract
The discovery of silent biosynthetic gene clusters (BGCs) in fungi provides unlimited prospects to harness the secondary metabolites encoded by gene clusters for various applications, including pharmaceuticals. Amplifying these prospects is the new interest in exploring fungi living in the extremes, such as those associated with plants (fungal endophytes). Fungal species in endosymbiosis relationship with plants are recognized as the future factories of clinically relevant agents since discovering that they can produce similar metabolites as their plant host. The endophytes produce these compounds in natural environments as a defense mechanism against pathogens that infect the plant host or as a strategy for mitigating competitors. The signaling cascades leading to the expression of silent biosynthetic gene clusters in the natural environment remain unknown. Lack of knowledge on regulatory circuits of biosynthetic gene clusters limits the ability to exploit them in the laboratory. They are often silent and require tailor-designed strategies for activation. Epigenetic modification using small molecular compounds that alter the chromatin network, leading to the changes in secondary metabolites profile, has achieved considerable success. This review aims to comprehensively analyze the secondary metabolite profiles expressed after treatment with various epigenetic modifiers. We first describe the regulatory circuits governing the expression of secondary metabolites in fungi. Following this, we provide a detailed review of the small molecular modifiers, their mechanism(s) of action, and the diverse chemistries resulting from epigenetic modification. We further show that genetic deletion or epigenetic inhibition of histone deacetylases does not always lead to the overexpression or induction of silent secondary metabolites. Instead, the response is more complex and often leads to differential expression of secondary metabolites. Finally, we propose using this strategy as an initial screening tool to dereplicate promising fungal species.
Collapse
Affiliation(s)
| | | | | | - Sizwe I. Ndlovu
- Discipline of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
15
|
A benzaldehyde derivative obtained from Hypoxylon truncatum NBRC 32353 treated with hygromycin B. J Antibiot (Tokyo) 2022; 75:1-8. [PMID: 34819605 DOI: 10.1038/s41429-021-00483-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/01/2021] [Accepted: 10/07/2021] [Indexed: 11/08/2022]
Abstract
The ribosome-targeted antifungal agent hygromycin B (HygB) alters the secondary metabolite profiles of fungi. Hypoxylon truncatum NBRC 32353 fermented in the presence of hygromycin B in barley medium activated secondary metabolite synthesis. A new benzaldehyde derivative truncaaldehyde (1) was obtained, along with thirteen known compounds (2-14). The structures of the new compounds were revealed using NMR and single-crystal X-ray crystallography. The total synthesis of (±)-1 was achieved using a four-step sequence, and chiral separation was accomplished. The isolated compounds were tested for their monoamine oxidase (MAO) -A and -B inhibitory activities, with six compounds ((±)-1, 4, 5, 7, 8, and 10) showing inhibitory activity.
Collapse
|
16
|
Zhai YJ, Huo GM, Wei J, Lin LB, Zhang Q, Li JN, Chen X, Han WB, Gao JM. Structures and absolute configurations of butenolide derivatives from the isopod-associated fungus Pidoplitchkoviella terricola. PHYTOCHEMISTRY 2022; 193:112981. [PMID: 34653910 DOI: 10.1016/j.phytochem.2021.112981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
In this research, twenty aromatic and branched aliphatic polyketides, including seven previously undescribed butenolide derivatives, piterriones A-G and one known analogue, along with twelve known altenusin derivatives, were isolated from the isopod-associated fungus Pidoplitchkoviella terricola. Their structures were elucidated by analysis of NMR (1D and 2D) and mass spectrometry data, and their absolute configurations were determined by Mosher's method, microscale derivatization, and comparison of their specific rotations and ECD spectra. Dihydroaltenuene B exhibited mushroom tyrosinase inhibitory activity with an IC50 value of 38.33 ± 1.59 μM, which was comparable to that of the positive control, kojic acid (IC50 = 39.72 ± 1.34 μM). A molecular-docking study disclosed the hydrogen bonding interactions between the 3-OH and 4'-OH of dihydroaltenuene B and the His244, Met280 and Gly281 residues of tyrosinase.
Collapse
Affiliation(s)
- Yi-Jie Zhai
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Guang-Ming Huo
- Institute of Medicinal Fungi, School of Food Science, Nanjing Xiaozhuang University, Nanjing, Jiangsu, 210017, People's Republic of China
| | - Jing Wei
- College of Biology Pharmacy & Food Engineering, Shangluo University, Shangluo, 726000, Shaanxi, People's Republic of China
| | - Li-Bin Lin
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Qiang Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Jian-Nan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Xin Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Wen-Bo Han
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China.
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
17
|
Taniguchi T, Zubir MZM, Harada N, Monde K. Exploration of chromophores for a VCD couplet in a spectrally transparent infrared region for biomolecules. Phys Chem Chem Phys 2021; 23:27525-27532. [PMID: 34874381 DOI: 10.1039/d1cp04074j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Interactions of two chromophores such as carbonyl groups yield a strong VCD couplet that reflects the molecular structures. The use of VCD couplets for biomacromolecular structural studies has been hampered by severe signal overlap caused by numerous functional groups that originally exist in biomacromolecules. Nitrile, isonitrile, alkyne, and azido groups show characteristic IR absorption in the 2300-2000 cm-1 region, where biomolecules do not strongly absorb. We herein examined the usefulness of these functional groups as chromophores to observe a strong VCD couplet that can be readily interpreted using theoretical calculations. Studies on a chiral binaphthyl scaffold possessing two identical chromophores showed that nitrile and isonitrile groups generate moderately-strong but complex VCD signals due to anharmonic contributions. The nature of their anharmonic VCD patterns is discussed by comparison with the VCD spectrum of a mono-chromophoric molecule and by anharmonic DFT calculations. On the other hand, through studies on diazido binaphthyl and diazido monosaccharide, we demonstrated that the azido group is more promising for structural analysis of larger molecules due to its simple, strong VCD couplet whose spectral patterns are readily predicted by harmonic DFT calculations.
Collapse
Affiliation(s)
- Tohru Taniguchi
- Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo 001-0021, Japan.
| | | | - Nobuyuki Harada
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Kenji Monde
- Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo 001-0021, Japan.
| |
Collapse
|
18
|
Cytochalasans and azaphilones: suitable chemotaxonomic markers for the Chaetomium species. Appl Microbiol Biotechnol 2021; 105:8139-8155. [PMID: 34647136 DOI: 10.1007/s00253-021-11630-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 10/20/2022]
Abstract
The accurate taxonomic concept of the fungal Chaetomium species has been a hard work due to morphological similarity. Chemotaxonomy based on secondary metabolites is a powerful tool for taxonomical purposes, which could be used as an auxiliary reference to solve the problems encountered in the classification of Chaetomium. Among secondary metabolites produced by Chaetomium, cytochalasans and azaphilones exhibited a pattern of distribution and frequency of occurrence that establish them as chemotaxonomic markers for the Chaetomium species. This review attempted to elucidate the composition of the Chaetomium species and its relationship with classical taxonomy by summarizing the pattern of cytochalasans and azaphilones distribution and biosynthesis in the Chaetomium species. KEY POINTS: • Secondary metabolites from the genus Chaetomium are summarized. • Cytochalasans and azaphilones could be characteristic metabolites of the Chaetomium species. • Cytochalasans and azaphilones could be used to analyze for taxonomical purposes.
Collapse
|
19
|
Guo X, Meng Q, Niu S, Liu J, Guo X, Sun Z, Liu D, Gu Y, Huang J, Fan A, Lin W. Epigenetic Manipulation to Trigger Production of Guaiane-Type Sesquiterpenes from a Marine-Derived Spiromastix sp. Fungus with Antineuroinflammatory Effects. JOURNAL OF NATURAL PRODUCTS 2021; 84:1993-2003. [PMID: 34161733 DOI: 10.1021/acs.jnatprod.1c00293] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Epigenetic manipulation of a deep-sea sediment-derived Spiromastix sp. fungus using suberoylanilide hydroxamic acid (SAHA) induction resulted in the activation of a terpene-related biosynthetic gene cluster, and nine new guaiane-type sesquiterpenes, spiromaterpenes A-I (1-9), were isolated. Their structures were determined using various spectroscopic techniques, in association with the modified Mosher's method, computed electronic circular dichroism (ECD) spectra, and chemical conversion for configurational assignments. Compounds 4-6 exhibited significant effects against the NO production on lipopolysaccharide (LPS)-induced microglia cells BV2, and the preliminary SAR analyses demonstrated that a 2(R),11-diol unit is favorable. The most active 5 abolished LPS-induced NF-κB translocation from the cytosol to the nucleus in BV-2 microglial cells, accompanied by the marked reduction of the transcription levels of pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α dose-dependently in both LPS-induced BV-2 and BV-2 cells, as well as the protein and mRNA levels of iNOS and COX-2. This study complements the gap in knowledge regarding the anti-neuroinflammatory activity of guaiane-type sesquiterpenoids at the cellular level and suggests that 5 is promising for further optimization as a multifunctional agent for antineuroinflammation.
Collapse
Affiliation(s)
- Xiang Guo
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, P.R. China
| | - Qinyu Meng
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, P.R. China
| | - Siwen Niu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, P.R. China
| | - Jie Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, P.R. China
| | - Xingchen Guo
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, P.R. China
| | - Zhaolun Sun
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, P.R. China
| | - Dong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, P.R. China
| | - Yucheng Gu
- Syngenta, Jealott's Hill International Research Centre Bracknell, Berks RG42 6EY, U.K
| | - Jian Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, P.R. China
| | - Aili Fan
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, P.R. China
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, P.R. China
- Institute of Ocean Research, Ningbo Institute of Marine Medicine, Peking University, Beijing 100191, P.R. China
| |
Collapse
|
20
|
Biologically active secondary metabolites and biotechnological applications of species of the family Chaetomiaceae (Sordariales): an updated review from 2016 to 2021. Mycol Prog 2021. [DOI: 10.1007/s11557-021-01704-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
21
|
del Río RE, Joseph-Nathan P. Vibrational Circular Dichroism Absolute Configuration of Natural Products From 2015 to 2019. Nat Prod Commun 2021. [DOI: 10.1177/1934578x21996166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although demonstrated in 1975, vibrational circular dichroism (VCD) finally started to popularize during this century as a reliable tool to determine the absolute configuration (AC) of organic molecules. This research field continues to be a very dynamic one, in particular for the study of natural products which are a unlimited source of chiral molecules. It therefore turns of interest to summarize the accomplishments published in recent years and to comment on some eventual difficulties that emerged in rare cases to complete the AC determination task. Therefore the aim of this review is to update VCD results for the AC assignment of natural products published from 2015 to 2019, a period in which VCD was reported in some 126 publications involving almost 300 molecules. They are organized according the type of studied metabolite allowing an easily search. The molecules correspond to 28 monoterpenes concerning 17 papers, to 42 sesquiterpenes in 14 papers, to 51 diterpenes in 19 publications, to 5 other terpenoids in three papers, to 48 aromatic molecules in 15 reports, to 20 polyketides in 10 publications, to 27 miscellaneous formulas also in 10 papers, and to 76 nitrogen containing compounds, which include alkaloids and their synthetic analogs, in 38 articles. The landscape of reviewed molecules is quite wide as it goes from simple monoterpenes, like borneol or camphor, to very relevant biological molecules like the alkaloid cocaine or tadalafil samples to distinguish genuine and counterfeit Cialis®. In addition, 5 natural products and a simple derivative published outside the reviewed period, were used to illustrate some aspects of density functional theory calculations.
Collapse
Affiliation(s)
- Rosa E. del Río
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Mexico
| | - Pedro Joseph-Nathan
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
22
|
Multifarious Elicitors: Invoking Biosynthesis of Various Bioactive Secondary Metabolite in Fungi. Appl Biochem Biotechnol 2020; 193:668-686. [PMID: 33135129 DOI: 10.1007/s12010-020-03423-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/11/2020] [Indexed: 10/23/2022]
Abstract
Natural products are considered to be the lifeline treatment for several diseases where their structural complexity makes them a source of potential lead molecules. As a producer of antibiotics, food colorants, enzymes, and nutritious food, fungi are beneficial to humans. Fungi, as a source of novel natural products, draw attention of scientists. However, redundant isolation of metabolite retards the rate of discovery. So, apart from the standard conditions for the production of secondary metabolites, certain induction strategies are used to trigger biosynthetic genes in fungi. Advancement in the computational tools helps in connecting gene clusters and their metabolite production. Therefore, modern analytical tools and the genomic era in hand leads to the identification of manifold of cryptic metabolites. The cryptic biosynthetic gene cluster (BGC) has become a treasure hunt for new metabolites representing biosynthetic pathways, regulatory mechanisms, and other factors. This review includes the use of chemical inducers/epigenetic modifiers and co-culture (species interaction) techniques to induce these BGCs. Furthermore, it cites a detailed representation of molecules isolated using these strategies. Since the induction occurs on the genomic molecular DNA and histones, this together brings a significant exploration of the biosynthetic pathways.Graphical Abstract.
Collapse
|
23
|
Toghueo RMK, Sahal D, Boyom FF. Recent advances in inducing endophytic fungal specialized metabolites using small molecule elicitors including epigenetic modifiers. PHYTOCHEMISTRY 2020; 174:112338. [PMID: 32179305 DOI: 10.1016/j.phytochem.2020.112338] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
Today when the quest of new lead molecules to supply the development pipeline is driving the course of drug discovery, endophytic fungi with their outstanding biosynthetic potential seem to be highly promising avenues for natural product scientists. However, challenges such as the production of inadequate quantities of compounds, the attenuation or loss of ability of endophytes to produce the compound of interest when grown in culture and the inability of fungal endophytes to express their full biosynthetic potential in laboratory conditions have been the major constraints. These have led to the application of small chemical elicitors that induce epigenetic changes in fungi to activate their silent gene clusters optimizing the amount of metabolites of interest or inducing the synthesis of hitherto undescribed compounds. In this respect small molecular weight compounds which are known to function as inhibitors of histone deacetylase (HDAC), DNA methyltransferase (DNMT) and proteasome have proven their efficacy in enhancing or inducing the production of specialized metabolites by fungi. Moreover, organic solvents, metals and plants extracts are also acknowledged for their ability to cause shifts in fungal metabolism. We highlight the successful studies from the past two decades reporting the ability of structurally diverse small molecular weight compounds to elicit the production of previously undescribed metabolites from endophytic fungi grown in culture. This mini review argues in favor of chemical elicitation as an effective strategy to optimize the production of fungal metabolites and invigorate the pipeline of drug discovery with new chemical entities.
Collapse
Affiliation(s)
- Rufin Marie Kouipou Toghueo
- Antimicrobial and Biocontrol Agents Unit (AmBcAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Dinkar Sahal
- Malaria Drug Discovery Laboratory, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Fabrice Fekam Boyom
- Antimicrobial and Biocontrol Agents Unit (AmBcAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| |
Collapse
|
24
|
Epigenetic manipulation of filamentous fungi for biotechnological applications: a systematic review. Biotechnol Lett 2020; 42:885-904. [PMID: 32246346 DOI: 10.1007/s10529-020-02871-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/21/2020] [Indexed: 01/11/2023]
Abstract
The study of the epigenetic regulation of gene function has reached pivotal importance in life sciences in the last decades. The mechanisms and effects of processes such as DNA methylation, histone posttranslational modifications and non-coding RNAs, as well as their impact on chromatin structure and dynamics, are clearly involved in physiology homeostasis in plants, animals and microorganisms. In the fungal kingdom, studies on the model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe contributed enormously to the elucidation of the eukaryote epigenetic landscape. Epigenetic regulation plays a central role in the expression of virulence attributes of human pathogens such as Candida albicans. In this article, we review the most recent studies on the effects of drugs capable of altering epigenetic states and on the impact of chromatin structure-related genes deletion in filamentous fungi. Emphasis is given on plant and insect pathogens, endophytes, secondary metabolites and cellulases/xylanases producing species.
Collapse
|
25
|
Kamauchi H, Kinoshita K, Koyama K. Discovery of Medicinal Seeds from Chemically Engineered Extracts. J SYN ORG CHEM JPN 2019. [DOI: 10.5059/yukigoseikyokaishi.77.895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Borade BR, Nomula R, Gonnade RG, Kontham R. Fe(III)-Catalyzed Diastereoselective Friedel-Crafts Alkylation-Hemiketalization-Lactonization Cascade for the Synthesis of Polycyclic Bridged 2-Chromanol Lactones. Org Lett 2019; 21:2629-2633. [PMID: 30924674 DOI: 10.1021/acs.orglett.9b00614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An unprecedented Fe(III)-catalyzed Friedel-Crafts alkylation-hemiketalization-lactonization cascade of electron-rich hydroxy arenes and distinctively functionalized unsaturated 4-keto esters is developed for the construction of polycyclic bridged 2-chromanol lactones. Following this simple and facile protocol, a broad range of products was prepared in good to excellent yields as a single diastereomer. An unusual conglomerate (enantiomerically pure polymorph) of 3ac is reported along with the absolute stereochemistry, and the remaining products were rigorously confirmed by single-crystal X-ray analysis and analogy.
Collapse
Affiliation(s)
- Balasaheb R Borade
- Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad 201002 , India
| | | | - Rajesh G Gonnade
- Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad 201002 , India
| | - Ravindar Kontham
- Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad 201002 , India
| |
Collapse
|
27
|
Akone SH, Pham CD, Chen H, Ola ARB, Ntie-Kang F, Proksch P. Epigenetic modification, co-culture and genomic methods for natural product discovery. PHYSICAL SCIENCES REVIEWS 2019. [DOI: 10.1515/psr-2018-0118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Fungi and bacteria are encountered in many habitats where they live in complex communities interacting with one another mainly by producing secondary metabolites, which are organic compounds that are not directly involved in the normal growth, development, or reproduction of the organism. These organisms appear as a promising source for the discovery of novel bioactive natural products that may find their application in medicine. However, the production of secondary metabolites by those organisms when cultured axenically is limited as only a subset of biosynthetic genes is expressed under standard laboratory conditions leading to the search of new methods for the activation of the silent genes including epigenetic modification and co-cultivation. Biosynthetic gene clusters which produce secondary metabolites are known to be present in a heterochromatin state in which the transcription of constitutive genes is usually regulated by epigenetic modification including DNA methylation and histone deacetylation. Therefore, small-molecule epigenetic modifiers which promote changes in the structure of chromatin could control the expression of silent genes and may be rationally employed for the discovery of novel bioactive compounds. Co-cultivation, which is also known as mixed-fermentation, usually implies two or more microorganisms in the same medium in which the resulting competition is known to enhance the production of constitutively present compounds and/or to lead to the induction of cryptic metabolites that were not detected in axenic cultures of the considered axenic microorganism. Genomic strategies could help to identify biosynthetic gene clusters in fungal genomes and link them to their products by the means of novel algorithms as well as integrative pan-genomic approaches. Despite that all these techniques are still in their infancy, they appear as promising sources for the discovery of new bioactive compounds. This chapter presents recent ecological techniques for the discovery of new secondary metabolites that might find application in medicine.
Collapse
|
28
|
Morishita Y, Okazaki Y, Luo YY, Nunoki J, Taniguchi T, Oshima Y, Asai T. Use of plant hormones to activate silent polyketide biosynthetic pathways in Arthrinium sacchari, a fungus isolated from a spider. Org Biomol Chem 2019; 17:780-784. [PMID: 30608107 DOI: 10.1039/c8ob02837k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Plant hormones were evaluated for their ability to activate fungal secondary metabolite production. Three synthetic cytokinins, kinetin, 6-benzylaminopurine, and forchlorfenuron, showed remarkable enhancement of the production of aromatic polyketides derived from emodin in a fungus, Arthrinium sacchari, and allowed us to isolate a new polyketide. Furthermore, we firstly demonstrated the potential of plant hormones to activate a wide range of fungal secondary metabolite production processes.
Collapse
Affiliation(s)
- Yohei Morishita
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 komaba, meguro-ku, Tokyo 153-8902, Japan.
| | | | | | | | | | | | | |
Collapse
|
29
|
Pan R, Bai X, Chen J, Zhang H, Wang H. Exploring Structural Diversity of Microbe Secondary Metabolites Using OSMAC Strategy: A Literature Review. Front Microbiol 2019; 10:294. [PMID: 30863377 PMCID: PMC6399155 DOI: 10.3389/fmicb.2019.00294] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 02/04/2019] [Indexed: 12/27/2022] Open
Abstract
Microbial secondary metabolites (MSMs) have played and continue to play a highly significant role in the drug discovery and development process. Genetically, MSM chemical structures are biologically synthesized by microbial gene clusters. Recently, however, the speed of new bioactive MSM discovery has been slowing down due to consistent employment of conventional cultivation and isolation procedure. In order to alleviate this challenge, a number of new approaches have been developed. The strategy of one strain many compounds (OSMAC) has been shown as a simple and powerful tool that can activate many silent biogenetic gene clusters in microorganisms to make more natural products. This review highlights important and successful examples using OSMAC approaches, which covers changing medium composition and cultivation status, co-cultivation with other strain(s), adding enzyme inhibitor(s) and MSM biosynthetic precursor(s). Available evidences had shown that variation of cultivation condition is the most effective way to produce more MSMs and facilitate the discovery of new therapeutic agents.
Collapse
Affiliation(s)
- Rui Pan
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Xuelian Bai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jianwei Chen
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Hong Wang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
30
|
Pfannenstiel BT, Keller NP. On top of biosynthetic gene clusters: How epigenetic machinery influences secondary metabolism in fungi. Biotechnol Adv 2019; 37:107345. [PMID: 30738111 DOI: 10.1016/j.biotechadv.2019.02.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/10/2019] [Accepted: 02/05/2019] [Indexed: 02/07/2023]
Abstract
Fungi produce an abundance of bioactive secondary metabolites which can be utilized as antibiotics and pharmaceutical drugs. The genes encoding secondary metabolites are contiguously arranged in biosynthetic gene clusters (BGCs), which supports co-regulation of all genes required for any one metabolite. However, an ongoing challenge to harvest this fungal wealth is the finding that many of the BGCs are 'silent' in laboratory settings and lie in heterochromatic regions of the genome. Successful approaches allowing access to these regions - in essence converting the heterochromatin covering BGCs to euchromatin - include use of epigenetic stimulants and genetic manipulation of histone modifying proteins. This review provides a comprehensive look at the chromatin remodeling proteins which have been shown to regulate secondary metabolism, the use of chemical inhibitors used to induce BGCs, and provides future perspectives on expansion of epigenetic tools and concepts to mine the fungal metabolome.
Collapse
Affiliation(s)
- Brandon T Pfannenstiel
- Department of Genetics, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Nancy P Keller
- Department of Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
31
|
El-Hawary SS, Sayed AM, Mohammed R, Hassan HM, Zaki MA, Rateb ME, Mohammed TA, Amin E, Abdelmohsen UR. Epigenetic Modifiers Induce Bioactive Phenolic Metabolites in the Marine-Derived Fungus Penicillium brevicompactum. Mar Drugs 2018; 16:md16080253. [PMID: 30061488 PMCID: PMC6117726 DOI: 10.3390/md16080253] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/19/2018] [Accepted: 07/28/2018] [Indexed: 01/16/2023] Open
Abstract
Fungi usually contain gene clusters that are silent or cryptic under normal laboratory culture conditions. These cryptic genes could be expressed for a wide variety of bioactive compounds. One of the recent approaches to induce production of such cryptic fungal metabolites is to use histone deacetylases (HDACs) inhibitors. In the present study, the cultures of the marine-derived fungus Penicillium brevicompactum treated with nicotinamide and sodium butyrate were found to produce a lot of phenolic compounds. Nicotinamide treatment resulted in the isolation and identification of nine compounds 1–9. Sodium butyrate also enhanced the productivity of anthranilic acid (10) and ergosterol peroxide (11). The antioxidant as well as the antiproliferative activities of each metabolite were determined. Syringic acid (4), sinapic acid (5), and acetosyringone (6) exhibited potent in vitro free radical scavenging, (IC50 20 to 30 µg/mL) and antiproliferative activities (IC50 1.14 to 1.71 µM) against HepG2 cancer cell line. Furthermore, a pharmacophore model of the active compounds was generated to build up a structure-activity relationship.
Collapse
Affiliation(s)
- Seham S El-Hawary
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11787, Egypt.
| | - Ahmed M Sayed
- Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
- Pharmacognosy Department, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt.
| | - Rabab Mohammed
- Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Hossam M Hassan
- Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Mohamed A Zaki
- Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Mostafa E Rateb
- Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
- Marine Biodiscovery Centre, University of Aberdeen, Aberdeen, Scotland AB24 3UE, UK.
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK.
| | - Tarek A Mohammed
- Marine Invertebrates, National Institute of Oceanography and Fisheries, Red Sea Branch, Hurghada 84511, Egypt.
| | - Elham Amin
- Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | | |
Collapse
|
32
|
Zhao M, Yuan LY, Guo DL, Ye Y, Da-Wa ZM, Wang XL, Ma FW, Chen L, Gu YC, Ding LS, Zhou Y. Bioactive halogenated dihydroisocoumarins produced by the endophytic fungus Lachnum palmae isolated from Przewalskia tangutica. PHYTOCHEMISTRY 2018; 148:97-103. [PMID: 29421516 DOI: 10.1016/j.phytochem.2018.01.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/03/2018] [Accepted: 01/26/2018] [Indexed: 06/08/2023]
Abstract
Guided by the UPLC-ESIMS profile, seven previously undescribed halogenated dihydroisocoumarins, palmaerones A-G, along with eleven known dihydroisocoumarins, were isolated from Lachnum palmae, an endophytic fungus from Przewalskia tangutica by exposure to a histone deacetylase inhibitor SAHA. Structures of the isolates were elucidated by analysis of their NMR, MS and optical rotation values. The antimicrobial, anti-inflammatory and cytotoxic activities of palmaerones A-G were evaluated. Palmaerones A-G showed antimicrobial activities against the strains (C. neoformans, Penicillium sp., C. albicans, B. subtilis and S. aureus), and palmaerone E exhibited potential antimicrobial activities against all the test strains with the MIC value in the range of 10-55 μg/mL. Palmaerones A and E exhibited moderate inhibitory effects on NO production in LPS-induced RAW 264.7 cells, with the IC50 values of 26.3 and 38.7 μM, respectively and no obvious toxicities were observed at 50 μM. Palmaerone E showed weak cytotoxicity against HepG2 with the IC50 value of 42.8 μM. This work provides an effective strategy for expanding natural product resource.
Collapse
Affiliation(s)
- Min Zhao
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Lv-Yi Yuan
- Southwest University for Nationalities, Chengdu, 610041, PR China
| | - Da-Le Guo
- Chengdu University of TCM, Chengdu, 610041, PR China
| | - Ye Ye
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Zhuo-Ma Da-Wa
- Tibet Autonomous Region Institute for Food and Drug Control, Lhasa, 850000, PR China
| | - Xiao-Ling Wang
- Southwest University for Nationalities, Chengdu, 610041, PR China
| | - Feng-Wei Ma
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Lei Chen
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre, Berkshire, RG42 6EY, UK
| | - Li-Sheng Ding
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China.
| | - Yan Zhou
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China.
| |
Collapse
|
33
|
Taniguchi T. Analysis of Molecular Configuration and Conformation by (Electronic and) Vibrational Circular Dichroism: Theoretical Calculation and Exciton Chirality Method. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20170113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Tohru Taniguchi
- Faculty of Advanced Life Science, Frontier Research Center for Advanced Material and Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo, Hokkaido 001-0021
| |
Collapse
|
34
|
Zheng Y, Ma K, Lyu H, Huang Y, Liu H, Liu L, Che Y, Liu X, Zou H, Yin WB. Genetic Manipulation of the COP9 Signalosome Subunit PfCsnE Leads to the Discovery of Pestaloficins in Pestalotiopsis fici. Org Lett 2017; 19:4700-4703. [DOI: 10.1021/acs.orglett.7b02346] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yanjing Zheng
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Zhejiang
Provincial (Wenzhou) Key Lab for Water Environment and Marine Biological
Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Ke Ma
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid
Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haining Lyu
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Huang
- State
Key
Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongwei Liu
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ling Liu
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongsheng Che
- State Key Laboratory of Toxicology & Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Xingzhong Liu
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huixi Zou
- Zhejiang
Provincial (Wenzhou) Key Lab for Water Environment and Marine Biological
Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Wen-Bing Yin
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid
Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
35
|
Li Y, Zhang Q, Wang H, Cheng B, Zhai H. Bioinspired Total Synthesis of (±)-Chaetophenol C Enabled by a Pd-Catalyzed Cascade Cyclization. Org Lett 2017; 19:4387-4390. [DOI: 10.1021/acs.orglett.7b02124] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yun Li
- State
Key Laboratory of Applied Organic Chemistry, College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- State
Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qingyu Zhang
- State
Key Laboratory of Applied Organic Chemistry, College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hongyu Wang
- State
Key Laboratory of Applied Organic Chemistry, College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Bin Cheng
- State
Key Laboratory of Applied Organic Chemistry, College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hongbin Zhai
- Laboratory
of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| |
Collapse
|
36
|
Li G, Kusari S, Golz C, Laatsch H, Strohmann C, Spiteller M. Epigenetic Modulation of Endophytic Eupenicillium sp. LG41 by a Histone Deacetylase Inhibitor for Production of Decalin-Containing Compounds. JOURNAL OF NATURAL PRODUCTS 2017; 80:983-988. [PMID: 28333449 DOI: 10.1021/acs.jnatprod.6b00997] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
An endophytic fungus, Eupenicillium sp. LG41, isolated from the Chinese medicinal plant Xanthium sibiricum, was subjected to epigenetic modulation using an NAD+-dependent histone deacetylase (HDAC) inhibitor, nicotinamide. Epigenetic stimulation of the endophyte led to enhanced production of two new decalin-containing compounds, eupenicinicols C and D (3 and 4), along with two biosynthetically related known compounds, eujavanicol A (1) and eupenicinicol A (2). The structures and stereochemistry of the new compounds were elucidated by extensive spectroscopic analysis using LC-HRMS, NMR, optical rotation, and ECD calculations, as well as single-crystal X-ray diffraction. Compounds 3 and 4 exist in chemical equilibrium with two and three cis/trans isomers, respectively, as revealed by LC-MS analysis. Compound 4 was active against Staphylococcus aureus with an MIC of 0.1 μg/mL and demonstrated marked cytotoxicity against the human acute monocytic leukemia cell line (THP-1). We have shown that the HDAC inhibitor, nicotinamide, enhanced the production of compounds 3 and 4 by endophytic Eupenicillium sp. LG41, facilitating their isolation, structure elucidation, and evaluation of their biological activities.
Collapse
Affiliation(s)
- Gang Li
- Institute of Environmental Research (INFU), Department of Chemistry and Chemical Biology, Chair of Environmental Chemistry and Analytical Chemistry, TU Dortmund , Otto-Hahn-Straße 6, 44221 Dortmund, Germany
| | - Souvik Kusari
- Institute of Environmental Research (INFU), Department of Chemistry and Chemical Biology, Chair of Environmental Chemistry and Analytical Chemistry, TU Dortmund , Otto-Hahn-Straße 6, 44221 Dortmund, Germany
| | - Christopher Golz
- Inorganic Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund , Otto-Hahn-Straße 6, 44221 Dortmund, Germany
| | - Hartmut Laatsch
- Institute for Organic and Biomolecular Chemistry, University of Göttingen , Tammannstrasse 2, D-37077 Göttingen, Germany
| | - Carsten Strohmann
- Inorganic Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund , Otto-Hahn-Straße 6, 44221 Dortmund, Germany
| | - Michael Spiteller
- Institute of Environmental Research (INFU), Department of Chemistry and Chemical Biology, Chair of Environmental Chemistry and Analytical Chemistry, TU Dortmund , Otto-Hahn-Straße 6, 44221 Dortmund, Germany
| |
Collapse
|
37
|
Future directions for the discovery of antibiotics from actinomycete bacteria. Emerg Top Life Sci 2017; 1:1-12. [PMID: 33525817 DOI: 10.1042/etls20160014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/03/2017] [Accepted: 02/09/2017] [Indexed: 11/17/2022]
Abstract
Antimicrobial resistance (AMR) is a growing societal problem, and without new anti-infective drugs, the UK government-commissioned O'Neil report has predicted that infectious disease will claim the lives of an additional 10 million people a year worldwide by 2050. Almost all the antibiotics currently in clinical use are derived from the secondary metabolites of a group of filamentous soil bacteria called actinomycetes, most notably in the genus Streptomyces. Unfortunately, the discovery of these strains and their natural products (NPs) peaked in the 1950s and was then largely abandoned, partly due to the repeated rediscovery of known strains and compounds. Attention turned instead to rational target-based drug design, but this was largely unsuccessful and few new antibiotics have made it to clinic in the last 60 years. In the early 2000s, however, genome sequencing of the first Streptomyces species reinvigorated interest in NP discovery because it revealed the presence of numerous cryptic NP biosynthetic gene clusters that are not expressed in the laboratory. Here, we describe how the use of new technologies, including improved culture-dependent and -independent techniques, combined with searching underexplored environments, promises to identify a new generation of NP antibiotics from actinomycete bacteria.
Collapse
|
38
|
Taniguchi T, Monde K. Practical Use of Circular Dichroism and Vibrational Circular Dichroism for Structural Analysis. J SYN ORG CHEM JPN 2017. [DOI: 10.5059/yukigoseikyokaishi.75.522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Kenji Monde
- Faculty of Advanced Life Science, Hokkaido University
| |
Collapse
|
39
|
Campyridones A–D, pyridone alkaloids from a mangrove endophytic fungus Campylocarpon sp. HDN13-307. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.07.080] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
40
|
Henke MT, Kelleher NL. Modern mass spectrometry for synthetic biology and structure-based discovery of natural products. Nat Prod Rep 2016; 33:942-50. [PMID: 27376415 PMCID: PMC4981503 DOI: 10.1039/c6np00024j] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Covering: up to 2016In this highlight, we describe the current landscape for dereplication and discovery of natural products based on the measurement of the intact mass by LC-MS. Often it is assumed that because better mass accuracy (provided by higher resolution mass spectrometers) is necessary for absolute chemical formula determination (≤1 part-per-million), that it is also necessary for dereplication of natural products. However, the average ability to dereplicate tapers off at ∼10 ppm, with modest improvement gained from better mass accuracy when querying focused databases of natural products. We also highlight some recent examples of how these platforms are applied to synthetic biology, and recent methods for dereplication and correlation of substructures using tandem MS data. We also offer this highlight to serve as a brief primer for those entering the field of mass spectrometry-based natural products discovery.
Collapse
Affiliation(s)
- Matthew T Henke
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| | | |
Collapse
|
41
|
Taniguchi T, Hongen T, Monde K. Studying the stereostructures of biomolecules and their analogs by vibrational circular dichroism. Polym J 2016. [DOI: 10.1038/pj.2016.61] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Wu G, Zhou H, Zhang P, Wang X, Li W, Zhang W, Liu X, Liu HW, Keller NP, An Z, Yin WB. Polyketide Production of Pestaloficiols and Macrodiolide Ficiolides Revealed by Manipulations of Epigenetic Regulators in an Endophytic Fungus. Org Lett 2016; 18:1832-5. [DOI: 10.1021/acs.orglett.6b00562] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Guangwei Wu
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Haichuan Zhou
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Peng Zhang
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiuna Wang
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Li
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Weiwei Zhang
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xingzhong Liu
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hong-Wei Liu
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Nancy P. Keller
- Department
of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Zhiqiang An
- Texas
Therapeutics Institute, the Brown Foundation Institute of Molecular
Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030, United States
| | - Wen-Bing Yin
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
43
|
Multicomponent Analysis of the Differential Induction of Secondary Metabolite Profiles in Fungal Endophytes. Molecules 2016; 21:molecules21020234. [PMID: 26901184 PMCID: PMC6272891 DOI: 10.3390/molecules21020234] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/10/2016] [Accepted: 02/13/2016] [Indexed: 11/29/2022] Open
Abstract
Small molecule histone deacetylase (HDAC) and DNA methyltransferase (DNMT) inhibitors are commonly used to perturb the production of fungal metabolites leading to the induction of the expression of silent biosynthetic pathways. Several reports have described the variable effects observed in natural product profiles in fungi treated with HDAC and DNMT inhibitors, such as enhanced chemical diversity and/or the induction of new molecules previously unknown to be produced by the strain. Fungal endophytes are known to produce a wide variety of secondary metabolites (SMs) involved in their adaptation and survival within higher plants. The plant-microbe interaction may influence the expression of some biosynthetic pathways, otherwise cryptic in these fungi when grown in vitro. The aim of this study was to setup a systematic approach to evaluate and identify the possible effects of HDAC and DNMT inhibitors on the metabolic profiles of wild type fungal endophytes, including the chemical identification and characterization of the most significant SMs induced by these epigenetic modifiers.
Collapse
|