1
|
Gao FT, Wu QK, Zhang M, Shimadate Y, Qian G, Song YY, Kato A, Li YX, Jia YM, Fleet GWJ, Yu CY. Design and synthesis of 6-C-alkyl-DMDP type nanomolar inhibitors of β-galactosidase and β-glucosidase based on broussonetine S and related derivatives. Eur J Med Chem 2024; 275:116570. [PMID: 38878517 DOI: 10.1016/j.ejmech.2024.116570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 07/12/2024]
Abstract
Broussonetine S (9), its C-1' and C-10' stereoisomers, and their corresponding enantiomers have been synthesized from enantiomeric arabinose-derived cyclic nitrones, with cross metathesis (CM), epoxidation and Keck asymmetric allylation as key steps. Glycosidase inhibition assays showed that broussonetine S (9) and its C-10' epimer (10'-epi-9) were nanomolar inhibitors of bovine liver β-galactosidase and β-glucosidase; while their C-1' stereoisomers were 10-fold less potent towards these enzymes. The glycosidase inhibition results and molecular docking calculations revealed the importance of the configurations of pyrrolidine core and C-1' hydroxyl for inhibition potency and spectra. Together with the docking calculations we previously reported for α-1-C-alkyl-DAB derivatives, we designed and synthesized a series of 6-C-alkyl-DMDP derivatives with very simple alkyl chains. The inhibition potency of these derivatives was enhanced by increasing the length of the side chain, and maintained at nanomolar scale inhibitions of bovine liver β-glucosidase and β-galactosidase after the alkyl groups are longer than eight or ten carbons for the (6R)-C-alkyl-DMDP derivatives and their 6S epimers, respectively. Molecular docking calculations indicated that each series of 6-C-alkyl-DMDP derivatives resides in the same active site of β-glucosidase or β-galactosidase with basically similar binding conformations, and their C-6 long alkyl chains extend outwards along the hydrophobic groove with similar orientations. The increasing inhibitions of β-glucosidase and β-galactosidase with the number of carbon atoms in the side chains may be explained by improved adaptability of longer alkyl chains in the hydrophobic grooves. In addition, the lower β-glucosidase and β-galactosidase inhibitions of (6S)-C-alkyl-DMDP derivatives than their C-6 R stereoisomers can be attributed to the misfolding of their alkyl chains and resulted decreased adaptability in the hydrophobic groove. The work reported herein is valuable for design and development of more potent and selective inhibitors of β-galactosidase and β-glucosidase, which have potential in treatment of lysosomal storage diseases. Furthermore, part of the 6-C-alkyl-DMDP derivatives and their enantiomers were also tested as potential anti-cancer agents; all the compounds tested were found with moderate cytotoxic effects on MKN45 cells, which would indicate potential applications of these iminosugars in development of novel anticancer agents.
Collapse
Affiliation(s)
- Feng-Teng Gao
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing-Kun Wu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Ming Zhang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuna Shimadate
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Gong Qian
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Laboratory of Immunology for Environment and Health, Jinan, 250014, Shandong, China
| | - Ying-Ying Song
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Laboratory of Immunology for Environment and Health, Jinan, 250014, Shandong, China
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Yi-Xian Li
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yue-Mei Jia
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - George W J Fleet
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Borie-Guichot M, Lan Tran M, Garcia V, Oukhrib A, Rodriguez F, Turrin CO, Levade T, Génisson Y, Ballereau S, Dehoux C. Multivalent pyrrolidines acting as pharmacological chaperones against Gaucher disease. Bioorg Chem 2024; 146:107295. [PMID: 38513326 DOI: 10.1016/j.bioorg.2024.107295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
A concise asymmetric synthesis of clickable enantiomeric pyrrolidines was achieved using Crabbé-Ma allenation. The synthesized iminosugars were grafted by copper-free strain-promoted alkyne-azide cycloaddition onto phosphorus dendrimers. The hexavalent and dodecavalent pyrrolidines were evaluated as β-glucocerebrosidase inhibitors. The level of inhibition suggests that monofluorocyclooctatriazole group may contribute to the affinity for the protein leading to potent multivalent inhibitors. Docking studies were carried out to rationalize these results. Then, the iminosugars clusters were evaluated as pharmacological chaperones in Gaucher patients' fibroblasts. An increase in β-glucocerebrosidase activity was observed with hexavalent and dodecavalent pyrrolidines at concentrations as low as 1 µM and 0.1 µM, respectively. These iminosugar clusters constitute the first example of multivalent pyrrolidines acting as pharmacological chaperones against Gaucher disease.
Collapse
Affiliation(s)
- Marc Borie-Guichot
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, F-31062 Toulouse, France
| | - My Lan Tran
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Virginie Garcia
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université Paul Sabatier, France
| | | | - Frédéric Rodriguez
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Cédric-Olivier Turrin
- IMD-Pharma, 205 Route de Narbonne, 31077 Toulouse Cedex 4, France; Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099 31077 Toulouse CEDEX 4, France; LCC-CNRS, Université de Toulouse, CNRS 31013 Toulouse CEDEX 6, France
| | - Thierry Levade
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université Paul Sabatier, France; Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, F-31059 Toulouse, France
| | - Yves Génisson
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Stéphanie Ballereau
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Cécile Dehoux
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, F-31062 Toulouse, France.
| |
Collapse
|
3
|
Grasso D, Galderisi S, Santucci A, Bernini A. Pharmacological Chaperones and Protein Conformational Diseases: Approaches of Computational Structural Biology. Int J Mol Sci 2023; 24:ijms24065819. [PMID: 36982893 PMCID: PMC10054308 DOI: 10.3390/ijms24065819] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Whenever a protein fails to fold into its native structure, a profound detrimental effect is likely to occur, and a disease is often developed. Protein conformational disorders arise when proteins adopt abnormal conformations due to a pathological gene variant that turns into gain/loss of function or improper localization/degradation. Pharmacological chaperones are small molecules restoring the correct folding of a protein suitable for treating conformational diseases. Small molecules like these bind poorly folded proteins similarly to physiological chaperones, bridging non-covalent interactions (hydrogen bonds, electrostatic interactions, and van der Waals contacts) loosened or lost due to mutations. Pharmacological chaperone development involves, among other things, structural biology investigation of the target protein and its misfolding and refolding. Such research can take advantage of computational methods at many stages. Here, we present an up-to-date review of the computational structural biology tools and approaches regarding protein stability evaluation, binding pocket discovery and druggability, drug repurposing, and virtual ligand screening. The tools are presented as organized in an ideal workflow oriented at pharmacological chaperones' rational design, also with the treatment of rare diseases in mind.
Collapse
Affiliation(s)
- Daniela Grasso
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Silvia Galderisi
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Andrea Bernini
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, 53100 Siena, Italy
| |
Collapse
|
4
|
Zi D, Shimadate Y, Wang JZ, Kato A, Li YX, Jia YM, Fleet GWJ, Yu CY. Design, synthesis and glycosidase inhibition of DAB derivatives with C-4 peptide and dipeptide branches. Org Biomol Chem 2023; 21:2729-2741. [PMID: 36916165 DOI: 10.1039/d3ob00097d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
A series of DAB-peptide and DAB-dipeptide derivatives were synthesized from D-tartrate-derived nitrone 18. The DAB peptides 16 are derivatives of trans,trans-3,4-dihydroxy-L-proline. Glycosidase inhibition assay found four of them to be weak and selective bovine liver β-galactosidase inhibitors, and the C-2' methyl substituted compound 23b showed the most potent β-galactosidase inhibition (IC50 = 0.66 μM). Molecular docking studies revealed different docking modes of compound 23b compared to those of other DAB-peptides, and partial similarity of compound 23b to DGJ.
Collapse
Affiliation(s)
- Dong Zi
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuna Shimadate
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Jun-Zhe Wang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Yi-Xian Li
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue-Mei Jia
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - George W J Fleet
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Zi D, Song YY, Lu TT, Kise M, Kato A, Wang JZ, Jia YM, Li YX, Fleet GWJ, Yu CY. Nanomolar β-glucosidase and β-galactosidase inhibition by enantiomeric α-1-C-alkyl-1,4-dideoxy-1,4-imino-arabinitol derivatives. Eur J Med Chem 2023; 247:115056. [PMID: 36603505 DOI: 10.1016/j.ejmech.2022.115056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
A series of α-1-C-alkyl DAB (1,4-dideoxy-1,4-imino-d-arabinitol) and LAB (1,4-dideoxy-1,4-imino-l-arabinitol) derivatives with aryl substituents have been designed as analogues of broussonetine W (12), and assayed as glycosidase inhibitors. While the inhibition spectrum of α-1-C-alkyl DAB derivative 16 showed a good correlation to that of broussonetine W (12), introduction of substituents on the terminal aryl (17a-f) or hydroxyl groups at C-1' position of the alkyl chains (18a-e) decreased their α-glucosidase inhibitions but greatly improved their inhibitions of bovine liver β-glucosidase and β-galactosidase. Furthermore, epimerization of C-1' configurations of compounds 18a-e clearly lowered their inhibition potency of bovine liver β-glucosidase and β-galactosidase. Notably, some of the α-1-C-alkyl DAB derivatives were also found to have potent human lysosome β-glucosidase inhibitions. In contrast, enantiomers of compounds 18a-e and 1'-epi-18a-e generally showed increased α-glucosidase inhibitions, but sharply decreased bovine liver β-glucosidase and β-galactosidase inhibitions. Molecular docking calculations unveiled the novel two set of binding modes for each series of compounds; introduction of C-1' hydroxyl altered the conformations of the pyrrolidine rings and orientation of their long chains, resulting in improved accommodation in the hydrophobic grooves. The compounds reported herein are very potent β-glucosidase and β-galactosidase inhibitions with novel binding mode; and the structure-activity relationship provides guidance for design and development of more pyrrolidine pharmacological chaperones for lysosomal storage diseases.
Collapse
Affiliation(s)
- Dong Zi
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying-Ying Song
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Laboratory of Immunology for Environment and Health, Jinan, 250014, Shandong, China
| | - Tian-Tian Lu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Maki Kise
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Jun-Zhe Wang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue-Mei Jia
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi-Xian Li
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - George W J Fleet
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
GCase Enhancers: A Potential Therapeutic Option for Gaucher Disease and Other Neurological Disorders. Pharmaceuticals (Basel) 2022; 15:ph15070823. [PMID: 35890122 PMCID: PMC9325019 DOI: 10.3390/ph15070823] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/07/2022] Open
Abstract
Pharmaceutical chaperones (PCs) are small compounds able to bind and stabilize misfolded proteins, allowing them to recover their native folding and thus their biological activity. In particular, lysosomal storage disorders (LSDs), a class of metabolic disorders due to genetic mutations that result in misfolded lysosomal enzymes, can strongly benefit from the use of PCs able to facilitate their translocation to the lysosomes. This results in a recovery of their catalytic activity. No PC for the GCase enzyme (lysosomal acid-β-glucosidase, or glucocerebrosidase) has reached the market yet, despite the importance of this enzyme not only for Gaucher disease, the most common LSD, but also for neurological disorders, such as Parkinson’s disease. This review aims to describe the efforts made by the scientific community in the last 7 years (since 2015) in order to identify new PCs for the GCase enzyme, which have been mainly identified among glycomimetic-based compounds.
Collapse
|
7
|
Pončáková T, Fábian M, Martinková M, Novotná M, Fabišíková M, Tvrdoňová M, Pilátová MB, Nosálová N, Kuchár J, Jáger D, Litecká M. Stereoselective synthesis and anticancer profile of C-alkyl pyrrolidine-diols with a sphingoid base-like backbone. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Scafuri B, Verdino A, D'Arminio N, Marabotti A. Computational methods to assist in the discovery of pharmacological chaperones for rare diseases. Brief Bioinform 2022; 23:6590149. [PMID: 35595532 DOI: 10.1093/bib/bbac198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/13/2022] [Accepted: 04/28/2022] [Indexed: 12/21/2022] Open
Abstract
Pharmacological chaperones are chemical compounds able to bind proteins and stabilize them against denaturation and following degradation. Some pharmacological chaperones have been approved, or are under investigation, for the treatment of rare inborn errors of metabolism, caused by genetic mutations that often can destabilize the structure of the wild-type proteins expressed by that gene. Given that, for rare diseases, there is a general lack of pharmacological treatments, many expectations are poured out on this type of compounds. However, their discovery is not straightforward. In this review, we would like to focus on the computational methods that can assist and accelerate the search for these compounds, showing also examples in which these methods were successfully applied for the discovery of promising molecules belonging to this new category of pharmacologically active compounds.
Collapse
Affiliation(s)
- Bernardina Scafuri
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy
| | - Anna Verdino
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy
| | - Nancy D'Arminio
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy
| | - Anna Marabotti
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy
| |
Collapse
|
9
|
Wang JZ, Shimadate Y, Kise M, Kato A, Jia YM, Li YX, Fleet G, Yu CY. Trans, trans-2-C-aryl-3,4-dihydroxypyrrolidines as potent and selective β-glucosidase inhibitors: Pharmacological chaperones for gaucher disease. Eur J Med Chem 2022; 238:114499. [DOI: 10.1016/j.ejmech.2022.114499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022]
|
10
|
Wang JZ, Cheng B, Kato A, Kise M, Shimadate Y, Jia YM, Li YX, Fleet GW, Yu CY. Design, synthesis and glycosidase inhibition of C-4 branched LAB and DAB derivatives. Eur J Med Chem 2022; 233:114230. [DOI: 10.1016/j.ejmech.2022.114230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 12/17/2022]
|
11
|
Mechanistic Insight into the Mode of Action of Acid β-Glucosidase Enhancer Ambroxol. Int J Mol Sci 2022; 23:ijms23073536. [PMID: 35408914 PMCID: PMC8998264 DOI: 10.3390/ijms23073536] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 01/27/2023] Open
Abstract
Ambroxol (ABX) is a mucolytic agent used for the treatment of respiratory diseases. Bioactivity has been demonstrated as an enhancement effect on lysosomal acid β-glucosidase (β-Glu) activity in Gaucher disease (GD). The positive effects observed have been attributed to a mechanism of action similar to pharmacological chaperones (PCs), but an exact mechanistic description is still pending. The current study uses cell culture and in vitro assays to study the effects of ABX on β-Glu activity, processing, and stability upon ligand binding. Structural analogues bromohexine, 4-hydroxybromohexine, and norbromohexine were screened for chaperone efficacy, and in silico docking was performed. The sugar mimetic isofagomine (IFG) strongly inhibits β-Glu, while ABX exerts its inhibitory effect in the micromolar range. In GD patient fibroblasts, IFG and ABX increase mutant β-Glu activity to identical levels. However, the characteristics of the banding patterns of Endoglycosidase-H (Endo-H)-digested enzyme and a substantially lower half-life of ABX-treated β-Glu suggest different intracellular processing. In line with this observation, IFG efficiently stabilizes recombinant β-Glu against thermal denaturation in vitro, whereas ABX exerts no significant effect. Additional β-Glu enzyme activity testing using Bromohexine (BHX) and two related structures unexpectedly revealed that ABX alone can refunctionalize β-Glu in cellula. Taken together, our data indicate that ABX has little in vitro ability to act as PC, so the mode of action requires further clarification.
Collapse
|
12
|
Davighi MG, Clemente F, Matassini C, Cardona F, Nielsen MB, Goti A, Morrone A, Paoli P, Cacciarini M. Photoswitchable inhibitors of human β-glucocerebrosidase. Org Biomol Chem 2022; 20:1637-1641. [PMID: 35107482 DOI: 10.1039/d1ob02159a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Light-switchable inhibitors of the enzyme β-glucocerebrosidase (GCase) have been developed by anchoring a specific azasugar to a dihydroazulene or an azobenzene responsive moiety. Their inhibitory effect towards human GCase, before and after irradiation are reported, and the effect on thermal denaturation of recombinant GCase and cytotoxicity were studied on selected candidates.
Collapse
Affiliation(s)
- Maria Giulia Davighi
- Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3-13, 50019 Sesto F.no (FI), Italy.
| | - Francesca Clemente
- Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3-13, 50019 Sesto F.no (FI), Italy.
| | - Camilla Matassini
- Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3-13, 50019 Sesto F.no (FI), Italy.
| | - Francesca Cardona
- Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3-13, 50019 Sesto F.no (FI), Italy. .,Associated with LENS, via N. Carrara 1, 50019 Sesto F.no (FI), Italy
| | - Mogens Brøndsted Nielsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Andrea Goti
- Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3-13, 50019 Sesto F.no (FI), Italy. .,Associated with LENS, via N. Carrara 1, 50019 Sesto F.no (FI), Italy
| | - Amelia Morrone
- Paediatric Neurology Unit and Laboratories, Neuroscience Department, Meyer Children's Hospital, and Department of Neurosciences, Pharmacology and Child Health. University of Florence, Viale Pieraccini 24, 50139 Firenze, Italy
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Firenze, Italy
| | - Martina Cacciarini
- Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3-13, 50019 Sesto F.no (FI), Italy.
| |
Collapse
|
13
|
Fábianová D, Pončáková T, Martinková M, Fábian M, Fabišíková M, Pilátová MB, Macejová A, Kuchár J, Jáger D. A straightforward approach toward cytotoxic pyrrolidine alkaloids: Novel analogues of natural broussonetines. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Li RF, Yang JX, Liu J, Ai GM, Zhang HY, Xu LY, Chen SB, Zhang HX, Li XL, Cao ZR, Wang KR. Positional Isomeric Effects on the Optical Properties, Multivalent Glycosidase Inhibition Effect, and Hypoglycemic Effect of Perylene Bisimide-deoxynojirimycin Conjugates. J Med Chem 2021; 64:5863-5873. [PMID: 33886333 DOI: 10.1021/acs.jmedchem.1c00036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although multivalent glycosidase inhibitors have shown enhanced glycosidase inhibition activities, further applications and research directions need to be developed in the future. In this paper, two positional isomeric perylene bisimide derivatives (PBI-4DNJ-1 and PBI-4DNJ-2) with 1-deoxynojirimycin conjugated were synthesized. Furthermore, PBI-4DNJ-1 and PBI-4DNJ-2 showed positional isomeric effects on the optical properties, self-assembly behaviors, glycosidase inhibition activities, and hypoglycemic effects. Importantly, PBI-4DNJ-1 exhibited potent hypoglycemic effects in mice with 41.33 ± 2.84 and 37.45 ± 3.94% decreases in blood glucose at 15 and 30 min, respectively. The molecular docking results showed that the active fragment of PBI-4DNJ-1 has the highest binding energy (9.649 kcal/mol) and the highest total hydrogen bond energy (62.83 kJ/mol), which were related to the positional isomeric effect on the hypoglycemic effect in mice. This work introduced a new means to develop antihyperglycemic agents in the field of multivalent glycomimetics.
Collapse
Affiliation(s)
- Ren-Feng Li
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Baoding 071002, P. R. China.,Department of Immunology, School of Basic Medical Science, Hebei University, Baoding 071002, P. R. China
| | - Jian-Xing Yang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Baoding 071002, P. R. China
| | - Jing Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, P. R. China
| | - Guo-Min Ai
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Hui-Yan Zhang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Baoding 071002, P. R. China
| | - Li-Yue Xu
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Si-Bing Chen
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Hong-Xin Zhang
- Medical Comprehensive Experimental Center, Hebei University, Baoding 071002, P. R. China
| | - Xiao-Liu Li
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Baoding 071002, P. R. China
| | - Zhi-Ran Cao
- Department of Immunology, School of Basic Medical Science, Hebei University, Baoding 071002, P. R. China
| | - Ke-Rang Wang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Baoding 071002, P. R. China
| |
Collapse
|
15
|
Kopytova AE, Rychkov GN, Nikolaev MA, Baydakova GV, Cheblokov AA, Senkevich KA, Bogdanova DA, Bolshakova OI, Miliukhina IV, Bezrukikh VA, Salogub GN, Sarantseva SV, Usenko TC, Zakharova EY, Emelyanov AK, Pchelina SN. Ambroxol increases glucocerebrosidase (GCase) activity and restores GCase translocation in primary patient-derived macrophages in Gaucher disease and Parkinsonism. Parkinsonism Relat Disord 2021; 84:112-121. [PMID: 33609962 DOI: 10.1016/j.parkreldis.2021.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 01/11/2021] [Accepted: 02/01/2021] [Indexed: 12/24/2022]
Abstract
Mutations in the glucocerebrosidase gene (GBA) encoding the lysosomal enzyme glucocerebrosidase (GCase) cause Gaucher disease (GD) and are the most commonly known genetic risk factor for Parkinson disease (PD). Ambroxol is one of the most effective pharmacological chaperones of GCase. Fourteen GD patients, six PD patients with mutations in the GBA gene (GBA-PD), and thirty controls were enrolled. GCase activity and hexosylsphingosine (HexSph) concentration were measured in dried blood and macrophage spots using liquid chromatography coupled with tandem mass spectrometry. The effect of ambroxol on GCase translocation to lysosomes was assessed using confocal microscopy. The results showed that ambroxol treatment significantly increased GCase activity in cultured macrophages derived from patient blood monocytic cell (PBMC) of GD (by 3.3-fold) and GBA-PD patients (by 3.5-fold) compared to untreated cells (p < 0.0001 and p < 0.0001, respectively) four days after cultivation. Ambroxol treatment significantly reduced HexSph concentration in GD (by 2.1-fold) and GBA-PD patients (by 1.6-fold) (p < 0.0001 and p < 0.0001, respectively). GD macrophage treatment resulted in increased GCase level and increased enzyme colocalization with the lysosomal marker LAMP2. The possible binding modes of ambroxol to mutant GCase carrying N370S amino acid substitution at pH 4.7 were examined using molecular docking and molecular dynamics simulations. The ambroxol position characterized by minimal binding free energy was observed in close vicinity to the residue, at position 370. Taken together, these data showed that PBMC-derived macrophages could be used for assessing ambroxol therapy response for GD patients and also for GBA-PD patients.
Collapse
Affiliation(s)
- A E Kopytova
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Center «Kurchatov Institute», Gatchina, Russia.
| | - G N Rychkov
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Center «Kurchatov Institute», Gatchina, Russia; Peter the Great St.Petersburg Polytechnic University, Saint-Petersburg, Russia; Kurchatov Genome Center - PNPI, Gatchina, Russia
| | - M A Nikolaev
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Center «Kurchatov Institute», Gatchina, Russia; First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - G V Baydakova
- Research Center for Medical Genetics, Moscow, Russia
| | - A A Cheblokov
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Center «Kurchatov Institute», Gatchina, Russia
| | - K A Senkevich
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Center «Kurchatov Institute», Gatchina, Russia; First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - D A Bogdanova
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Center «Kurchatov Institute», Gatchina, Russia
| | - O I Bolshakova
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Center «Kurchatov Institute», Gatchina, Russia
| | - I V Miliukhina
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Center «Kurchatov Institute», Gatchina, Russia; Institute of Experimental Medicine, Saint-Petersburg, Russia; First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - V A Bezrukikh
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - G N Salogub
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - S V Sarantseva
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Center «Kurchatov Institute», Gatchina, Russia
| | - T C Usenko
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Center «Kurchatov Institute», Gatchina, Russia; First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - E Y Zakharova
- Research Center for Medical Genetics, Moscow, Russia
| | - A K Emelyanov
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Center «Kurchatov Institute», Gatchina, Russia; Institute of Experimental Medicine, Saint-Petersburg, Russia; First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - S N Pchelina
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Center «Kurchatov Institute», Gatchina, Russia; Institute of Experimental Medicine, Saint-Petersburg, Russia; First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| |
Collapse
|
16
|
Affiliation(s)
- Yoshihiro Natori
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| |
Collapse
|
17
|
Li S, Jaszczyk J, Pannecoucke X, Poisson T, Martin OR, Nicolas C. Stereospecific Synthesis of Glycoside Mimics Through Migita‐Kosugi‐Stille Cross‐Coupling Reactions of Chemically and Configurationally Stable 1‐
C
‐Tributylstannyl Iminosugars. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sizhe Li
- Institut de Chimie Organique et Analytique UMR 7311 Université d'Orléans et CNRS Rue de Chartres, BP 6759 45067 Orléans cedex 2 France
| | - Justyna Jaszczyk
- Institut de Chimie Organique et Analytique UMR 7311 Université d'Orléans et CNRS Rue de Chartres, BP 6759 45067 Orléans cedex 2 France
| | - Xavier Pannecoucke
- Normandie Université, COBRA, UMR 6014 et FR 3038 Université de Rouen, INSA Rouen, CNRS 1 rue Tesnière 76821 Mont Saint-Aignan Cedex France
| | - Thomas Poisson
- Normandie Université, COBRA, UMR 6014 et FR 3038 Université de Rouen, INSA Rouen, CNRS 1 rue Tesnière 76821 Mont Saint-Aignan Cedex France
- Institut Universitaire de France 1 rue Descartes 75231 Paris France
| | - Olivier R. Martin
- Institut de Chimie Organique et Analytique UMR 7311 Université d'Orléans et CNRS Rue de Chartres, BP 6759 45067 Orléans cedex 2 France
| | - Cyril Nicolas
- Institut de Chimie Organique et Analytique UMR 7311 Université d'Orléans et CNRS Rue de Chartres, BP 6759 45067 Orléans cedex 2 France
| |
Collapse
|
18
|
Castellan T, Garcia V, Rodriguez F, Fabing I, Shchukin Y, Tran ML, Ballereau S, Levade T, Génisson Y, Dehoux C. Concise asymmetric synthesis of new enantiomeric C-alkyl pyrrolidines acting as pharmacological chaperones against Gaucher disease. Org Biomol Chem 2020; 18:7852-7861. [PMID: 32975266 DOI: 10.1039/d0ob01522a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A concise and asymmetric synthesis of the enantiomeric pyrrolidines 2 and ent-2 are herein reported. Both enantiomers were assessed as β-GCase inhibitors. While compound ent-2 acted as a poor competitive inhibitor, its enantiomer 2 proved to be a potent non-competitive inhibitor. Docking studies were carried out to substantiate their respective protein binding mode. Both pyrrolidines were also able to enhance lysosomal β-GCase residual activity in N370S homozygous Gaucher fibroblasts. Notably, the non-competitive inhibitor 2 displayed an enzyme activity enhancement comparable to that of reference compounds IFG and NN-DNJ. This work highlights the impact of inhibitors chirality on their protein binding mode and shows that, beyond competitive inhibitors, the study of non-competitive ones can lead to the identification of new relevant parmacological chaperones.
Collapse
Affiliation(s)
- Tessa Castellan
- SPCMIB, UMR5068 CNRS-Université Paul Sabatier-Toulouse III, 118 Route de Narbonne, F-31062 Toulouse, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Synthesis of " All-Cis" Trihydroxypiperidines from a Carbohydrate-Derived Ketone: Hints for the Design of New β-Gal and GCase Inhibitors. Molecules 2020; 25:molecules25194526. [PMID: 33023214 PMCID: PMC7582770 DOI: 10.3390/molecules25194526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/18/2020] [Accepted: 09/30/2020] [Indexed: 12/02/2022] Open
Abstract
Pharmacological chaperones (PCs) are small compounds able to rescue the activity of mutated lysosomal enzymes when used at subinhibitory concentrations. Nitrogen-containing glycomimetics such as aza- or iminosugars are known to behave as PCs for lysosomal storage disorders (LSDs). As part of our research into lysosomal sphingolipidoses inhibitors and looking in particular for new β-galactosidase inhibitors, we report the synthesis of a series of alkylated azasugars with a relative “all-cis” configuration at the hydroxy/amine-substituted stereocenters. The novel compounds were synthesized from a common carbohydrate-derived piperidinone intermediate 8, through reductive amination or alkylation of the derived alcohol. In addition, the reaction of ketone 8 with several lithium acetylides allowed the stereoselective synthesis of new azasugars alkylated at C-3. The activity of the new compounds towards lysosomal β-galactosidase was negligible, showing that the presence of an alkyl chain in this position is detrimental to inhibitory activity. Interestingly, 9, 10, and 12 behave as good inhibitors of lysosomal β-glucosidase (GCase) (IC50 = 12, 6.4, and 60 µM, respectively). When tested on cell lines bearing the Gaucher mutation, they did not impart any enzyme rescue. However, altogether, the data included in this work give interesting hints for the design of novel inhibitors.
Collapse
|
20
|
Han TU, Sam R, Sidransky E. Small Molecule Chaperones for the Treatment of Gaucher Disease and GBA1-Associated Parkinson Disease. Front Cell Dev Biol 2020; 8:271. [PMID: 32509770 PMCID: PMC7248408 DOI: 10.3389/fcell.2020.00271] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
Parkinson disease, the second most common movement disorder, is a complex neurodegenerative disorder hallmarked by the accumulation of alpha-synuclein, a neural-specific small protein associated with neuronal synapses. Mutations in the glucocerebrosidase gene (GBA1), implicated in the rare, autosomal recessive lysosomal disorder Gaucher disease, are the most common known genetic risk factor for Parkinson disease. Insights into the inverse relationship between glucocerebrosidase and alpha-synuclein have led to new therapeutic approaches for the treatment of Gaucher disease and GBA1-associated Parkinson disease. Unlike the current drugs used to treat Gaucher disease, which are highly expensive and do not cross the blood-brain-barrier, new small molecules therapies, including competitive and non-competitive chaperones that enhance glucocerebrosidase levels are being developed to overcome these limitations. Some of these include iminosugars, ambroxol, other competitive glucocerebrosidase inhibitors, and non-inhibitory chaperones or activators that do not compete for the active site. These drugs, which have been shown in different disease models to increase glucocerebrosidase activity, could have potential as a therapy for Gaucher disease and GBA1- associated Parkinson disease. Some have been demonstrated to reduce α-synuclein levels in pre-clinical studies using cell-based or animal models of GBA1-associated Parkinson disease, and may also have utility for idiopathic Parkinson disease.
Collapse
Affiliation(s)
- Tae-Un Han
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Richard Sam
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Ellen Sidransky
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
21
|
Clemente F, Matassini C, Faggi C, Giachetti S, Cresti C, Morrone A, Paoli P, Goti A, Martínez-Bailén M, Cardona F. Glucocerebrosidase (GCase) activity modulation by 2-alkyl trihydroxypiperidines: Inhibition and pharmacological chaperoning. Bioorg Chem 2020; 98:103740. [PMID: 32200326 DOI: 10.1016/j.bioorg.2020.103740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/26/2020] [Accepted: 03/07/2020] [Indexed: 12/22/2022]
Abstract
The enzyme glucocerebrosidase (GCase) has become an important therapeutic target due to its involvement in pathological disorders consequent to enzyme deficiency, such as the lysosomal storage Gaucher disease (GD) and the neurological Parkinson disease (PD). Pharmacological chaperones (PCs) are small compounds able to stabilize enzymes when used at sub-inhibitory concentrations, thus rescuing enzyme activity. We report the stereodivergent synthesis of trihydroxypiperidines alkylated at C-2 with both configurations, by means of the stereoselective addition of Grignard reagents to a carbohydrate-derived nitrone in the presence or absence of Lewis acids. All the target compounds behave as good GCase inhibitors, with IC50 in the micromolar range. Moreover, compound 11a behaves as a PC in fibroblasts derived from Gaucher patients bearing the N370/RecNcil mutation and the homozygous L444P mutation, rescuing the activity of the deficient enzyme by up to 1.9- and 1.8-fold, respectively. Rescues of 1.2-1.4-fold were also observed in wild-type fibroblasts, which is important for targeting sporadic forms of PD.
Collapse
Affiliation(s)
- F Clemente
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy
| | - C Matassini
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy.
| | - C Faggi
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy
| | - S Giachetti
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy
| | - C Cresti
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy
| | - A Morrone
- Paediatric Neurology Unit and Laboratories, Neuroscience Department, Meyer Children's Hospital, and Department of Neurosciences, Pharmacology and Child Health, University of Florence, Viale Pieraccini n. 24, 50139 Firenze, Italy
| | - P Paoli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - A Goti
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy; Associated with Consorzio Interuniversitario Nazionale di ricerca in Metodologie e Processi Innovativi di Sintesi (CINMPIS), Italy
| | - M Martínez-Bailén
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, c/ Prof. García González 1, E-41012 Sevilla, Spain
| | - F Cardona
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy; Associated with Consorzio Interuniversitario Nazionale di ricerca in Metodologie e Processi Innovativi di Sintesi (CINMPIS), Italy.
| |
Collapse
|
22
|
Martínez-Bailén M, Carmona AT, Cardona F, Matassini C, Goti A, Kubo M, Kato A, Robina I, Moreno-Vargas AJ. Synthesis of multimeric pyrrolidine iminosugar inhibitors of human β-glucocerebrosidase and α-galactosidase A: First example of a multivalent enzyme activity enhancer for Fabry disease. Eur J Med Chem 2020; 192:112173. [PMID: 32146376 DOI: 10.1016/j.ejmech.2020.112173] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 11/29/2022]
Abstract
The synthesis of a chemical library of multimeric pyrrolidine-based iminosugars by incorporation of three pairs of epimeric pyrrolidine-azides into different alkyne scaffolds via CuAAC is presented. The new multimers were evaluated as inhibitors of two important therapeutic enzymes, human α-galactosidase A (α-Gal A) and lysosomal β-glucocerebrosidase (GCase). Structure-activity relationships were established focusing on the iminosugar inhitope, the valency of the dendron and the linker between the inhitope and the central scaffold. Remarkable is the result obtained in the inhibition of α-Gal A, where one of the nonavalent compounds showed potent inhibition (0.20 μM, competitive inhibition), being a 375-fold more potent inhibitor than the monovalent reference. The potential of the best α-Gal A inhibitors to act as pharmacological chaperones was analyzed by evaluating their ability to increase the activity of this enzyme in R301G fibroblasts from patients with Fabry disease, a genetic disorder related with a reduced activity of α-Gal A. The best enzyme activity enhancement was obtained for the same nonavalent compound, which increased 5.2-fold the activity of the misfolded enzyme at 2.5 μM, what constitutes the first example of a multivalent α-Gal A activity enhancer of potential interest in the treatment of Fabry disease.
Collapse
Affiliation(s)
- Macarena Martínez-Bailén
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, C/Prof. García González, 1, 41012, Sevilla, Spain
| | - Ana T Carmona
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, C/Prof. García González, 1, 41012, Sevilla, Spain.
| | - Francesca Cardona
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Firenze, Italy; Consorzio Interuniversitario Nazionale di Ricerca in Metodologie e Processi Innovativi di Sintesi (CINMPIS), 70125, Bari, Italy
| | - Camilla Matassini
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Firenze, Italy
| | - Andrea Goti
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Firenze, Italy; Consorzio Interuniversitario Nazionale di Ricerca in Metodologie e Processi Innovativi di Sintesi (CINMPIS), 70125, Bari, Italy
| | - Moemi Kubo
- Department of Hospital Pharmacy, University of Toyama, Toyama, 930-0194, Japan
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, Toyama, 930-0194, Japan
| | - Inmaculada Robina
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, C/Prof. García González, 1, 41012, Sevilla, Spain
| | - Antonio J Moreno-Vargas
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, C/Prof. García González, 1, 41012, Sevilla, Spain.
| |
Collapse
|
23
|
Wu QK, Kinami K, Kato A, Li YX, Fleet GWJ, Yu CY, Jia YM. Synthesis and Glycosidase Inhibition of Broussonetine M and Its Analogues. Molecules 2019; 24:molecules24203712. [PMID: 31619020 PMCID: PMC6832352 DOI: 10.3390/molecules24203712] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 01/13/2023] Open
Abstract
Cross-metathesis (CM) and Keck asymmetric allylation, which allows access to defined stereochemistry of a remote side chain hydroxyl group, are the key steps in a versatile synthesis of broussonetine M (3) from the d-arabinose-derived cyclic nitrone 14. By a similar strategy, ent-broussonetine M (ent-3) and six other stereoisomers have been synthesized, respectively, starting from l-arabino-nitrone (ent-14), l-lyxo-nitrone (ent-3-epi-14), and l-xylo-nitrone (2-epi-14) in five steps, in 26%–31% overall yield. The natural product broussonetine M (3) and 10’-epi-3 were potent inhibitors of β-glucosidase (IC50 = 6.3 μM and 0.8 μM, respectively) and β-galactosidase (IC50 = 2.3 μM and 0.2 μM, respectively); while their enantiomers, ent-3 and ent-10’-epi-3, were selective and potent inhibitors of rice α-glucosidase (IC50 = 1.2 μM and 1.3 μM, respectively) and rat intestinal maltase (IC50 = 0.29 μM and 18 μM, respectively). Both the configuration of the polyhydroxylated pyrrolidine ring and C-10’ hydroxyl on the alkyl side chain affect the specificity and potency of glycosidase inhibition.
Collapse
Affiliation(s)
- Qing-Kun Wu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Kyoko Kinami
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Yi-Xian Li
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - George W J Fleet
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, OX13TA Oxford, UK.
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China.
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China.
| | - Yue-Mei Jia
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
24
|
Natori Y, Sakuma T, Watanabe H, Wakamatsu H, Kato A, Adachi I, Takahata H, Yoshimura Y. Catalytic asymmetric synthesis of stereoisomers of 1-C-n-butyl-LABs for the SAR study of α-glucosidase inhibition. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
25
|
Synthesis of N-benzyl substituted 1,4-imino-l-lyxitols with a basic functional group as selective inhibitors of Golgi α-mannosidase IIb. Bioorg Chem 2019; 83:424-431. [DOI: 10.1016/j.bioorg.2018.10.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/23/2018] [Accepted: 10/29/2018] [Indexed: 12/17/2022]
|
26
|
Exploring substituent diversity on pyrrolidine-aryltriazole iminosugars: Structural basis of β-glucocerebrosidase inhibition. Bioorg Chem 2019; 86:652-664. [PMID: 30825709 DOI: 10.1016/j.bioorg.2019.02.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/05/2019] [Accepted: 02/09/2019] [Indexed: 01/03/2023]
Abstract
The synthesis of a library of pyrrolidine-aryltriazole hybrids through CuAAC between two epimeric dihydroxylated azidomethylpyrrolidines and differently substituted phenylacetylenes is reported. The evaluation of the new compounds as inhibitors of lysosomal β-glucocerebrosidase showed the importance of the substitution pattern of the phenyl moiety in the inhibition. Crystallization and docking studies revealed key interactions of the pyrrolidine motif with aminoacid residues of the catalytic site while the aryltriazole moiety extended along a hydrophobic surface groove. Some of these compounds were able to increase the enzyme activity in Gaucher patient fibroblasts, acting as a new type of chemical chaperone for Gaucher disease.
Collapse
|
27
|
Baudoin-Dehoux C, Castellan T, Rodriguez F, Rives A, Stauffert F, Garcia V, Levade T, Compain P, Génisson Y. Selective Targeting of the Interconversion between Glucosylceramide and Ceramide by Scaffold Tailoring of Iminosugar Inhibitors. Molecules 2019; 24:E354. [PMID: 30669468 PMCID: PMC6359432 DOI: 10.3390/molecules24020354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/10/2019] [Accepted: 01/12/2019] [Indexed: 11/29/2022] Open
Abstract
A series of simple C-alkyl pyrrolidines already known as cytotoxic inhibitors of ceramide glucosylation in melanoma cells can be converted into their corresponding 6-membered analogues by means of a simple ring expansion. This study illustrated how an isomerisation from iminosugar pyrrolidine toward piperidine could invert their targeting from glucosylceramide (GlcCer) formation toward GlcCer hydrolysis. Thus, we found that the 5-membered ring derivatives did not inhibit the hydrolysis reaction of GlcCer catalysed by lysosomal β-glucocerebrosidase (GBA). On the other hand, the ring-expanded C-alkyl piperidine isomers, non-cytotoxic and inactive regarding ceramide glucosylation, revealed to be potent inhibitors of GBA. A molecular docking study showed that the positions of the piperidine ring of the compound 6b and its analogous 2-O-heptyl DIX 8 were similar to that of isofagomine. Furthermore, compound 6b promoted mutant GBA enhancements over 3-fold equivalent to that of the related O-Hept DIX 8 belonging to one of the most potent iminosugar-based pharmacological chaperone series reported to date.
Collapse
Affiliation(s)
- Cécile Baudoin-Dehoux
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), Université Paul Sabatier-Toulouse III/ CNRS (UMR5068), 118 route de Narbonne, F-31062 Toulouse, France.
| | - Tessa Castellan
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), Université Paul Sabatier-Toulouse III/ CNRS (UMR5068), 118 route de Narbonne, F-31062 Toulouse, France.
| | - Frédéric Rodriguez
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), Université Paul Sabatier-Toulouse III/ CNRS (UMR5068), 118 route de Narbonne, F-31062 Toulouse, France.
| | - Arnaud Rives
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), Université Paul Sabatier-Toulouse III/ CNRS (UMR5068), 118 route de Narbonne, F-31062 Toulouse, France.
| | - Fabien Stauffert
- Laboratoire d'Innovation Moléculaire et Application (LIMA). Université de Strasbourg, Université de Haute-Alsace, CNRS (UMR 7042), Equipe Synthèse Organique et Molécules Bioactives (SYBIO), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67000 Strasbourg, France.
| | - Virginie Garcia
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université Paul Sabatier, Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, F-31059 Toulouse, France.
| | - Thierry Levade
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université Paul Sabatier, Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, F-31059 Toulouse, France.
| | - Philippe Compain
- Laboratoire d'Innovation Moléculaire et Application (LIMA). Université de Strasbourg, Université de Haute-Alsace, CNRS (UMR 7042), Equipe Synthèse Organique et Molécules Bioactives (SYBIO), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67000 Strasbourg, France.
| | - Yves Génisson
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), Université Paul Sabatier-Toulouse III/ CNRS (UMR5068), 118 route de Narbonne, F-31062 Toulouse, France.
| |
Collapse
|
28
|
Li M, Wang KR, Yang JX, Peng YT, Liu YX, Zhang HX, Li XL. Supramolecular azasugar clusters based on an amphiphilic fatty-acid-deoxynojirimycin derivative as multivalent glycosidase inhibitors. J Mater Chem B 2019; 7:1379-1383. [DOI: 10.1039/c8tb03249a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A novel supramolecular multivalent glycosidase inhibitor was constructed based on the amphiphilic deoxynojirimycin derivative FA-DNJ.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education)
- Key Laboratory of Chemical Biology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
| | - Ke-Rang Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education)
- Key Laboratory of Chemical Biology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
| | - Jian-Xing Yang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education)
- Key Laboratory of Chemical Biology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
| | - Ya-Tong Peng
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education)
- Key Laboratory of Chemical Biology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
| | - Yi-Xuan Liu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education)
- Key Laboratory of Chemical Biology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
| | - Hong-Xin Zhang
- Medical Comprehensive Experimental Center of Hebei University
- Baoding
- China
| | - Xiao-Liu Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education)
- Key Laboratory of Chemical Biology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
| |
Collapse
|
29
|
Design of a New α-1- C-Alkyl-DAB Derivative Acting as a Pharmacological Chaperone for β-Glucocerebrosidase Using Ligand Docking and Molecular Dynamics Simulation. MOLECULES (BASEL, SWITZERLAND) 2018; 23:molecules23102683. [PMID: 30340368 PMCID: PMC6222826 DOI: 10.3390/molecules23102683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 11/17/2022]
Abstract
Some point mutations in β-glucocerebrosidase cause either improper folding or instability of this protein, resulting in Gaucher disease. Pharmacological chaperones bind to the mutant enzyme and stabilize this enzyme; thus, pharmacological chaperone therapy was proposed as a potential treatment for Gaucher disease. The binding affinities of α-1-C-alkyl 1,4-dideoxy-1,4-imino-d-arabinitol (DAB) derivatives, which act as pharmacological chaperones for β-glucocerebrosidase, abruptly increased upon elongation of their alkyl chain. In this study, the primary causes of such an increase in binding affinity were analyzed using protein–ligand docking and molecular dynamics simulations. We found that the activity cliff between α-1-C-heptyl-DAB and α-1-C-octyl-DAB was due to the shape and size of the hydrophobic binding site accommodating the alkyl chains, and that the interaction with this hydrophobic site controlled the binding affinity of the ligands well. Furthermore, based on the aromatic/hydrophobic properties of the binding site, a 7-(tetralin-2-yl)-heptyl-DAB compound was designed and synthesized. This compound had significantly enhanced activity. The design strategy in consideration of aromatic interactions in the hydrophobic pocket was useful for generating effective pharmacological chaperones for the treatment of Gaucher disease.
Collapse
|
30
|
Yoshimura Y, Wakamatsu H, Natori Y, Saito Y, Minakawa N. Glycosylation reactions mediated by hypervalent iodine: application to the synthesis of nucleosides and carbohydrates. Beilstein J Org Chem 2018; 14:1595-1618. [PMID: 30013687 PMCID: PMC6037013 DOI: 10.3762/bjoc.14.137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/15/2018] [Indexed: 12/23/2022] Open
Abstract
To synthesize nucleoside and oligosaccharide derivatives, we often use a glycosylation reaction to form a glycoside bond. Coupling reactions between a nucleobase and a sugar donor in the former case, and the reaction between an acceptor and a sugar donor of in the latter are carried out in the presence of an appropriate activator. As an activator of the glycosylation, a combination of a Lewis acid catalyst and a hypervalent iodine was developed for synthesizing 4'-thionucleosides, which could be applied for the synthesis of 4'-selenonucleosides as well. The extension of hypervalent iodine-mediated glycosylation allowed us to couple a nucleobase with cyclic allylsilanes and glycal derivatives to yield carbocyclic nucleosides and 2',3'-unsaturated nucleosides, respectively. In addition, the combination of hypervalent iodine and Lewis acid could be used for the glycosylation of glycals and thioglycosides to produce disaccharides. In this paper, we review the use of hypervalent iodine-mediated glycosylation reactions for the synthesis of nucleosides and oligosaccharide derivatives.
Collapse
Affiliation(s)
- Yuichi Yoshimura
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Komatsushima 4-4-1, Aoba-ku, Sendai, 981-8558, Japan
| | - Hideaki Wakamatsu
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Komatsushima 4-4-1, Aoba-ku, Sendai, 981-8558, Japan
| | - Yoshihiro Natori
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Komatsushima 4-4-1, Aoba-ku, Sendai, 981-8558, Japan
| | - Yukako Saito
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Komatsushima 4-4-1, Aoba-ku, Sendai, 981-8558, Japan
| | - Noriaki Minakawa
- Graduate School of Pharmaceutical Science, Tokushima University, Shomachi 1-78-1, Tokushima, 770-8505, Japan
| |
Collapse
|
31
|
Pereira DM, Valentão P, Andrade PB. Tuning protein folding in lysosomal storage diseases: the chemistry behind pharmacological chaperones. Chem Sci 2018; 9:1740-1752. [PMID: 29719681 PMCID: PMC5896381 DOI: 10.1039/c7sc04712f] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/10/2018] [Indexed: 12/15/2022] Open
Abstract
Misfolding of proteins is the basis of several proteinopathies. Chemical and pharmacological chaperones are small molecules capable of inducing the correct conformation of proteins, thus being of interest for human therapeutics. The most recent developments in medicinal chemistry and in the drug development of pharmacological chaperones are discussed, with focus on lysosomal storage diseases.
Collapse
Affiliation(s)
- David M Pereira
- REQUIMTE/LAQV , Laboratório de Farmacognosia , Departamento de Química , Faculdade de Farmácia , Universidade do Porto , Rua de Jorge Viterbo Ferreira 228 , 4050-313 Porto , Portugal .
| | - Patrícia Valentão
- REQUIMTE/LAQV , Laboratório de Farmacognosia , Departamento de Química , Faculdade de Farmácia , Universidade do Porto , Rua de Jorge Viterbo Ferreira 228 , 4050-313 Porto , Portugal .
| | - Paula B Andrade
- REQUIMTE/LAQV , Laboratório de Farmacognosia , Departamento de Química , Faculdade de Farmácia , Universidade do Porto , Rua de Jorge Viterbo Ferreira 228 , 4050-313 Porto , Portugal .
| |
Collapse
|
32
|
Jacková D, Martinková M, Gonda J, Stanková K, Bago Pilátová M, Herich P, Kožíšek J. The convergent synthesis and anticancer activity of broussonetinines related analogues. Carbohydr Res 2017; 451:59-71. [PMID: 28965067 DOI: 10.1016/j.carres.2017.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 11/25/2022]
Abstract
The convergent synthesis of broussonetinines related congeners 3 and 4 with the simple C13 alkyl side chain and differently configured pyrrolidine skeleton has been achieved. Our approach relied on the [3,3]-sigmatropic rearrangements of chiral allylic substrates derived from d-xylose. Cross metathesis of the common oxazolidinone intermediates 7 and 8 with tridec-1-ene followed by alkylative cyclization completed the construction of both C-alkyl iminosugars. The targeted compounds 3 and 4 were screened for antiproliferative/cytotoxic activities against multiple cancer cell lines by MTT assay. Compound 3 exhibited very good in vitro potency on Caco-2 and Jurkat cell lines with IC50 value of 5.1 μM and 5.8 μM, respectively.
Collapse
Affiliation(s)
- Dominika Jacková
- Institute of Chemical Sciences, Department of Organic Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, 040 01 Košice, Slovak Republic
| | - Miroslava Martinková
- Institute of Chemical Sciences, Department of Organic Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, 040 01 Košice, Slovak Republic.
| | - Jozef Gonda
- Institute of Chemical Sciences, Department of Organic Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, 040 01 Košice, Slovak Republic
| | - Kvetoslava Stanková
- Institute of Chemical Sciences, Department of Organic Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, 040 01 Košice, Slovak Republic
| | - Martina Bago Pilátová
- Institute of Pharmacology, Faculty of Medicine, P.J. Šafárik University, SNP 1, 040 66 Košice, Slovak Republic
| | - Peter Herich
- Institute of Physical Chemistry and Chemical Physics, Department of Physical Chemistry, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic; Central Laboratories, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic
| | - Jozef Kožíšek
- Institute of Physical Chemistry and Chemical Physics, Department of Physical Chemistry, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic
| |
Collapse
|
33
|
α-Geminal disubstituted pyrrolidine iminosugars and their C-4-fluoro analogues: Synthesis, glycosidase inhibition and molecular docking studies. Bioorg Med Chem 2017; 25:5148-5159. [DOI: 10.1016/j.bmc.2017.07.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/12/2017] [Accepted: 07/12/2017] [Indexed: 11/24/2022]
|
34
|
Yilmazer B, Yagci ZB, Bakar E, Ozden B, Ulgen K, Ozkirimli E. Investigation of novel pharmacological chaperones for Gaucher Disease. J Mol Graph Model 2017; 76:364-378. [DOI: 10.1016/j.jmgm.2017.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/16/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
|
35
|
Martínez-Bailén M, Carmona AT, Moreno-Clavijo E, Robina I, Ide D, Kato A, Moreno-Vargas AJ. Tuning of β-glucosidase and α-galactosidase inhibition by generation and in situ screening of a library of pyrrolidine-triazole hybrid molecules. Eur J Med Chem 2017; 138:532-542. [DOI: 10.1016/j.ejmech.2017.06.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/17/2017] [Accepted: 06/26/2017] [Indexed: 10/19/2022]
|
36
|
Naresh A, Marumudi K, Kunwar AC, Rao BV. Palladium-Catalyzed Double Allylation of Sugar-Imines by Employing Tamaru-Kimura's Protocol: Access to Unnatural Iminosugars. Org Lett 2017; 19:1642-1645. [PMID: 28290702 DOI: 10.1021/acs.orglett.7b00441] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conversion of vinyl pyranosylamine and vinyl furanosylamines to 2,6- and 2,5-disubstituted pyrrolidine and piperidine iminosugars, respectively, in one pot was developed using Kimura and Tamaru's procedure, where a Pd salt in the presence of Et2Zn was used for the domino reaction. In this procedure, double allylation, which involves nucleophilic allylation-heterocyclization, took place to give desired nitrogen heterocycles. This strategy was further elaborated to synthesize some unnatural deoxycalystegines, hydroxylated pyrrolidines, piperidines, and indolizidine analogues.
Collapse
Affiliation(s)
- Annavareddi Naresh
- Organic and Biomolecular Chemistry Division and ‡Centre for NMR & Structural Chemistry, CSIR-Indian Institute of Chemical Technology , Tarnaka, Hyderabad 500007, India
| | - Kanakaraju Marumudi
- Organic and Biomolecular Chemistry Division and ‡Centre for NMR & Structural Chemistry, CSIR-Indian Institute of Chemical Technology , Tarnaka, Hyderabad 500007, India
| | - A C Kunwar
- Organic and Biomolecular Chemistry Division and ‡Centre for NMR & Structural Chemistry, CSIR-Indian Institute of Chemical Technology , Tarnaka, Hyderabad 500007, India
| | - Batchu Venkateswara Rao
- Organic and Biomolecular Chemistry Division and ‡Centre for NMR & Structural Chemistry, CSIR-Indian Institute of Chemical Technology , Tarnaka, Hyderabad 500007, India
| |
Collapse
|
37
|
Strategy for designing selective α-l-rhamnosidase inhibitors: Synthesis and biological evaluation of l-DMDP cyclic isothioureas. Bioorg Med Chem 2017; 25:107-115. [DOI: 10.1016/j.bmc.2016.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 11/17/2022]
|
38
|
Sánchez-Fernández EM, García Fernández JM, Mellet CO. Glycomimetic-based pharmacological chaperones for lysosomal storage disorders: lessons from Gaucher, GM1-gangliosidosis and Fabry diseases. Chem Commun (Camb) 2016; 52:5497-515. [PMID: 27043200 DOI: 10.1039/c6cc01564f] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Lysosomal storage disorders (LSDs) are often caused by mutations that destabilize native folding and impair the trafficking of enzymes, leading to premature endoplasmic reticulum (ER)-associated degradation, deficiencies of specific hydrolytic functions and aberrant storage of metabolites in the lysosomes. Enzyme replacement therapy (ERT) and substrate reduction therapy (SRT) are available for a few of these conditions, but most remain orphan. A main difficulty is that virtually all LSDs involve neurological decline and neither proteins nor the current SRT drugs can cross the blood-brain barrier. Twenty years ago a new therapeutic paradigm better suited for neuropathic LSDs was launched, namely pharmacological chaperone (PC) therapy. PCs are small molecules capable of binding to the mutant protein at the ER, inducing proper folding, restoring trafficking and increasing enzyme activity and substrate processing in the lysosome. In many LSDs the mutated protein is a glycosidase and the accumulated substrate is an oligo- or polysaccharide or a glycoconjugate, e.g. a glycosphingolipid. Although it might appear counterintuitive, substrate analogues (glycomimetics) behaving as competitive glycosidase inhibitors are good candidates to perform PC tasks. The advancements in the knowledge of the molecular basis of LSDs, including enzyme structures, binding modes, trafficking pathways and substrate processing mechanisms, have been put forward to optimize PC selectivity and efficacy. Moreover, the chemical versatility of glycomimetics and the variety of structures at hand allow simultaneous optimization of chaperone and pharmacokinetic properties. In this Feature Article we review the advancements made in this field in the last few years and the future outlook through the lessons taught by three archetypical LSDs: Gaucher disease, GM1-gangliosidosis and Fabry disease.
Collapse
Affiliation(s)
- Elena M Sánchez-Fernández
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Profesor García González 1, 41012, Sevilla, Spain.
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain.
| | - Carmen Ortiz Mellet
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Profesor García González 1, 41012, Sevilla, Spain.
| |
Collapse
|
39
|
Malinowski M, Rowicki T, Guzik P, Wielechowska M, Sobiepanek A, Sas W. Diversity-Oriented Synthesis and Biological Evaluation of Iminosugars from Unprotected 2-Deoxy-d
-ribose. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600459] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Maciej Malinowski
- Faculty of Chemistry; Warsaw University of Technology; ul. Noakowskiego 3 00-664 Warsaw Poland
| | - Tomasz Rowicki
- Faculty of Chemistry; Warsaw University of Technology; ul. Noakowskiego 3 00-664 Warsaw Poland
| | - Patrycja Guzik
- Faculty of Chemistry; Warsaw University of Technology; ul. Noakowskiego 3 00-664 Warsaw Poland
| | - Monika Wielechowska
- Faculty of Chemistry; Warsaw University of Technology; ul. Noakowskiego 3 00-664 Warsaw Poland
| | - Anna Sobiepanek
- Faculty of Chemistry; Warsaw University of Technology; ul. Noakowskiego 3 00-664 Warsaw Poland
| | - Wojciech Sas
- Faculty of Chemistry; Warsaw University of Technology; ul. Noakowskiego 3 00-664 Warsaw Poland
| |
Collapse
|
40
|
D'Adamio G, Matassini C, Parmeggiani C, Catarzi S, Morrone A, Goti A, Paoli P, Cardona F. Evidence for a multivalent effect in inhibition of sulfatases involved in lysosomal storage disorders (LSDs). RSC Adv 2016. [DOI: 10.1039/c6ra15806d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
New targets sensitive to multivalency: synthesis of nonavalent pyrrolidine iminosugars.
Collapse
Affiliation(s)
- G. D'Adamio
- Department of Chemistry “Ugo Schiff”
- University of Florence
- 50019 Sesto Fiorentino
- Italy
| | - C. Matassini
- Department of Chemistry “Ugo Schiff”
- University of Florence
- 50019 Sesto Fiorentino
- Italy
| | - C. Parmeggiani
- Department of Chemistry “Ugo Schiff”
- University of Florence
- 50019 Sesto Fiorentino
- Italy
- CNR – INO and LENS
| | - S. Catarzi
- Paediatric Neurology Unit and Laboratories
- Neuroscience Department
- Meyer Children's Hospital
- Department of Neurosciences
- Pharmacology and Child Health
| | - A. Morrone
- Paediatric Neurology Unit and Laboratories
- Neuroscience Department
- Meyer Children's Hospital
- Department of Neurosciences
- Pharmacology and Child Health
| | - A. Goti
- Department of Chemistry “Ugo Schiff”
- University of Florence
- 50019 Sesto Fiorentino
- Italy
| | - P. Paoli
- Department of Experimental and Clinical Biomedical Sciences
- University of Florence
- 50134 Florence
- Italy
| | - F. Cardona
- Department of Chemistry “Ugo Schiff”
- University of Florence
- 50019 Sesto Fiorentino
- Italy
| |
Collapse
|