1
|
Zhukrovska K, Binda E, Fedorenko V, Marinelli F, Yushchuk O. The Impact of Heterologous Regulatory Genes from Lipodepsipeptide Biosynthetic Gene Clusters on the Production of Teicoplanin and A40926. Antibiotics (Basel) 2024; 13:115. [PMID: 38391501 PMCID: PMC10886168 DOI: 10.3390/antibiotics13020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
StrR-like pathway-specific transcriptional regulators (PSRs) function as activators in the biosynthesis of various antibiotics, including glycopeptides (GPAs), aminoglycosides, aminocoumarins, and ramoplanin-like lipodepsipeptides (LDPs). In particular, the roles of StrR-like PSRs have been previously investigated in the biosynthesis of streptomycin, novobiocin, GPAs like balhimycin, teicoplanin, and A40926, as well as LDP enduracidin. In the current study, we focused on StrR-like PSRs from the ramoplanin biosynthetic gene cluster (BGC) in Actinoplanes ramoplaninifer ATCC 33076 (Ramo5) and the chersinamycin BGC in Micromonospora chersina DSM 44151 (Chers28). Through the analysis of the amino acid sequences of Ramo5 and Chers28, we discovered that these proteins are phylogenetically distant from other experimentally investigated StrR PSRs, although all StrR-like PSRs found in BGCs for different antibiotics share a conserved secondary structure. To investigate whether Ramo5 and Chers28, given their phylogenetic positions, might influence the biosynthesis of other antibiotic pathways governed by StrR-like PSRs, the corresponding genes (ramo5 and chers28) were heterologously expressed in Actinoplanes teichomyceticus NRRL B-16726 and Nonomuraea gerenzanensis ATCC 39727, which produce the clinically-relevant GPAs teicoplanin and A40926, respectively. Recombinant strains of NRRL B-16726 and ATCC 39727 expressing chers28 exhibited improved antibiotic production, although the expression of ramo5 did not yield the same effect. These results demonstrate that some StrR-like PSRs can "cross-talk" between distant biosynthetic pathways and might be utilized as tools for the activation of silent BGCs regulated by StrR-like PSRs.
Collapse
Affiliation(s)
- Kseniia Zhukrovska
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine
| | - Elisa Binda
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Victor Fedorenko
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Oleksandr Yushchuk
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
2
|
Kumar N, Yadav M, Kashyap S. Reagent-controlled chemo/stereoselective glycosylation of ʟ-fucal to access rare deoxysugars. Carbohydr Res 2024; 535:108992. [PMID: 38091695 DOI: 10.1016/j.carres.2023.108992] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 01/14/2024]
Abstract
2,6-Dideoxy sugars constitute an important class of anticancer antibiotics natural products and serve as essential medicinal tools for carbohydrate-based drug discovery and vaccine development. In particular, 2-deoxy ʟ-fucose or ʟ-oliose is a rare sugar and vital structural motif of several potent antifungal and immunosuppressive bioactive molecules. Herein, we devised a reagent-controlled stereo and chemoselective activation of ʟ-fucal, enabling the distinctive glycosylation pathways to access the rare ʟ-oliose and 2,3-unsaturated ʟ-fucoside. The milder oxo-philic Bi(OTf)3 catalyst induced the direct 1,2-addition predominantly, whereas B(C6F5)3 promoted the allylic Ferrier-rearrangement of the enol-ether moiety in ʟ-fucal glycal donor, distinguishing the competitive mechanisms. The reagent-tunable modular approach is highly advantageous, employing greener catalysts and atom-economical transformations, expensive ligand/additive-free, and probed for a diverse range of substrates comprising monosaccharides, amino-acids, bioactive natural products, and drug scaffolds embedded with susceptible or labile functionalities.
Collapse
Affiliation(s)
- Nitin Kumar
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology Jaipur (MNITJ), Jaipur, 302017, India
| | - Monika Yadav
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology Jaipur (MNITJ), Jaipur, 302017, India
| | - Sudhir Kashyap
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology Jaipur (MNITJ), Jaipur, 302017, India.
| |
Collapse
|
3
|
Dashti Y, Tajabadi FM, Wu LJ, Sumang FA, Escasinas A, Ellis Allenby NE, Errington J. Discovery of Demurilactone A: A Specific Growth Inhibitor of L-Form Bacillus subtilis. ACS Infect Dis 2022; 8:2253-2258. [PMID: 36268971 PMCID: PMC9673147 DOI: 10.1021/acsinfecdis.2c00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Metabolic profiling of the extracts from a library of actinobacteria led to the identification of a novel polyketide, demurilactone A, produced by Streptomyces strain DEM21308. The structure of the compound was assigned based on a detailed investigation of 1D/2D NMR spectra and HR-MS. Whole genome DNA sequencing, followed by bioinformatics analysis and insertional mutagenesis, identified type I polyketide synthases encoded by the dml gene cluster to direct the biosynthesis of this polyene macrolide. While the number of modules is consistent with the carbon backbone of the assigned structure, some discrepancies were identified in the domain organization of five modules. Close investigation of the amino acid sequences identified several mutations in the conserved motifs of nonfunctional domains. Furthermore, the absolute configuration of hydroxy-bearing stereocenters was proposed based on analyses of the ketoreductase domains. Remarkably, although demurilactone A has little detectable activity against normal-walled bacteria, it specifically inhibits the growth of cell wall-deficient "L-form" Bacillus subtilis at a minimum inhibitory concentration value of 16 μg/mL. Time-lapse microscopy analyses revealed that demurilactone affects membrane dynamics, probably by reducing membrane fluidity. This compound could be a powerful reagent for studying long-standing questions about the involvement of L-forms in recurrent infection.
Collapse
Affiliation(s)
- Yousef Dashti
- The
Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Newcastle Upon Tyne NE2
4AX, U.K.,,
| | - Fatemeh Mazraati Tajabadi
- Odyssey
Therapeutics Inc, The Biosphere, Draymans Way, Newcastle Helix, Newcastle
Upon Tyne NE4 5BX, U.K.
| | - Ling Juan Wu
- The
Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Newcastle Upon Tyne NE2
4AX, U.K.
| | - Felaine Anne Sumang
- The
Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Newcastle Upon Tyne NE2
4AX, U.K.
| | - Alexander Escasinas
- Odyssey
Therapeutics Inc, The Biosphere, Draymans Way, Newcastle Helix, Newcastle
Upon Tyne NE4 5BX, U.K.
| | | | - Jeff Errington
- The
Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Newcastle Upon Tyne NE2
4AX, U.K.,Odyssey
Therapeutics Inc, The Biosphere, Draymans Way, Newcastle Helix, Newcastle
Upon Tyne NE4 5BX, U.K.,
| |
Collapse
|
4
|
Secondary Metabolites and Biosynthetic Gene Clusters Analysis of Deep-Sea Hydrothermal Vent-Derived Streptomyces sp. SCSIO ZS0520. Mar Drugs 2022; 20:md20060393. [PMID: 35736196 PMCID: PMC9228677 DOI: 10.3390/md20060393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 01/27/2023] Open
Abstract
Streptomyces sp. SCSIO ZS0520 is a deep-sea hydrothermal vent-derived actinomycete. Our previous metabolism investigation showed that Streptomyces sp. SCSIO ZS0520 is a producer of cytotoxic actinopyrones. Here, another four types of secondary metabolites were identified, including six salinomycin isomers (2–7), the macrolide elaiophylin (8), the triterpene N-acetyl-aminobacteriohopanetriol (9), and the pyrone minipyrone (10). Among them, compounds 2–6 and 10 are new compounds. To understand the biosynthetic pathway of these compounds, a bioinformatic analysis of the whole genome was carried out, which identified 34 secondary metabolite biosynthetic gene clusters. Next, the biosynthetic pathways responsive to four types of products were deduced on the basis of gene function predictions and structure information. Taken together, these findings prove the metabolite potential of ZS0520 and lay the foundations to solve the remaining biosynthetic issues in four types of marine natural products.
Collapse
|
5
|
Um S, Guo H, Thiengmag S, Benndorf R, Murphy R, Rischer M, Braga D, Poulsen M, de Beer ZW, Lackner G, Beemelmanns C. Comparative Genomic and Metabolic Analysis of Streptomyces sp. RB110 Morphotypes Illuminates Genomic Rearrangements and Formation of a New 46-Membered Antimicrobial Macrolide. ACS Chem Biol 2021; 16:1482-1492. [PMID: 34275291 DOI: 10.1021/acschembio.1c00357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Morphotype switches frequently occur in Actinobacteria and are often associated with disparate natural product production. Here, we report on differences in the secondary metabolomes of two morphotypes of a Streptomyces species, including the discovery of a novel antimicrobial glycosylated macrolide, which we named termidomycin A. While exhibiting an unusual 46-member polyene backbone, termidomycin A (1) shares structural features with the clinically important antifungal agents amphotericin B and nystatin A1. Genomic analyses revealed a biosynthetic gene cluster encoding for a putative giant type I polyketide synthase (PKS), whose domain structure allowed us to propose the relative configuration of the 46-member macrolide. The architecture of the biosynthetic gene cluster was different in both morphotypes, thus leading to diversification of the product spectrum. Given the high frequency of genomic rearrangements in Streptomycetes, the metabolic analysis of distinct morphotypes as exemplified in this study is a promising approach for the discovery of bioactive natural products and pathways of diversification.
Collapse
Affiliation(s)
- Soohyun Um
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - Huijuan Guo
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - Sirinthra Thiengmag
- Synthetic Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - René Benndorf
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - Robert Murphy
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen East, Denmark
| | - Maja Rischer
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - Daniel Braga
- Synthetic Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen East, Denmark
| | - Z. Wilhelm de Beer
- Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| | - Gerald Lackner
- Synthetic Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - Christine Beemelmanns
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| |
Collapse
|
6
|
Engelbrecht A, Saad H, Gross H, Kaysser L. Natural Products from Nocardia and Their Role in Pathogenicity. Microb Physiol 2021; 31:217-232. [PMID: 34139700 DOI: 10.1159/000516864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/26/2021] [Indexed: 11/19/2022]
Abstract
Nocardia spp. are filamentous Actinobacteria of the order Corynebacteriales and mostly known for their ability to cause localized and systemic infections in humans. However, the onset and progression of nocardiosis is only poorly understood, in particular the mechanisms of strain-specific presentations. Recent genome sequencing has revealed an extraordinary capacity for the production of specialized small molecules. Such secondary metabolites are often crucial for the producing microbe to survive the challenges of different environmental conditions. An interesting question thus concerns the role of these natural products in Nocardia-associated pathogenicity and immune evasion in a human host. In this review, a summary and discussion of Nocardia metabolites is presented, which may play a part in nocardiosis because of their cytotoxic, immunosuppressive and metal-chelating properties or otherwise vitally important functions. This review also contains so far unpublished data concerning the biosynthesis of these molecules that were obtained by detailed bioinformatic analyses.
Collapse
Affiliation(s)
- Alicia Engelbrecht
- Department of Pharmaceutical Biology, University of Tübingen, Tübingen, Germany
| | - Hamada Saad
- Department of Pharmaceutical Biology, University of Tübingen, Tübingen, Germany.,Department of Phytochemistry and Plant Systematics, Division of Pharmaceutical Industries, National Research Centre, Cairo, Egypt
| | - Harald Gross
- Department of Pharmaceutical Biology, University of Tübingen, Tübingen, Germany
| | - Leonard Kaysser
- Department of Pharmaceutical Biology, University of Tübingen, Tübingen, Germany.,Institute for Drug Discovery, University of Leipzig, Leipzig, Germany
| |
Collapse
|
7
|
Improved De Novo Draft Genome Sequence of the Nocavionin-Producing Type Strain Nocardia terpenica IFM 0706 and Comparative Genomics with the Closely Related Strain Nocardia terpenica IFM 0406. Microbiol Resour Announc 2020; 9:9/34/e00689-20. [PMID: 32816977 PMCID: PMC7441235 DOI: 10.1128/mra.00689-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We report an improved de novo draft genome sequence of the human-pathogenic strain Nocardia terpenica IFM 0706T The resequencing unveiled that the genome size is larger than anticipated, reducing significantly the number of contigs and building a basis for comparison with the closely related strain N. terpenica IFM 0406.
Collapse
|
8
|
Chen J, Frediansyah A, Männle D, Straetener J, Brötz‐Oesterhelt H, Ziemert N, Kaysser L, Gross H. New Nocobactin Derivatives with Antimuscarinic Activity, Terpenibactins A-C, Revealed by Genome Mining of Nocardia terpenica IFM 0406. Chembiochem 2020; 21:2205-2213. [PMID: 32196864 PMCID: PMC7497119 DOI: 10.1002/cbic.202000062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/07/2020] [Indexed: 12/18/2022]
Abstract
We report a genomics-guided exploration of the metabolic potential of the brasilicardin producer strain Nocardia terpenica IFM 0406. Bioinformatics analysis of the whole genome sequence revealed the presence of a biosynthetic gene cluster presumably responsible for the generation of formerly unknown nocobactin derivatives. Mass spectrometry-assisted isolation led to the identification of three new siderophores, terpenibactins A (1), B (2) and C (3), which belong to the class of nocobactins. Their structures were elucidated by employing spectroscopic techniques. Compounds 1-3 demonstrated inhibitory activity towards the muscarinic M3 receptor, while exhibiting only a low cytotoxicity.
Collapse
Affiliation(s)
- Julia Chen
- Pharmaceutical Institute, Dept. of Pharmaceutical BiologyUniversity of TübingenAuf der Morgenstelle 872076TübingenGermany
- German Center for Infection Research (DZIF) Partner site Tübingen72076TübingenGermany
| | - Andri Frediansyah
- Pharmaceutical Institute, Dept. of Pharmaceutical BiologyUniversity of TübingenAuf der Morgenstelle 872076TübingenGermany
- German Center for Infection Research (DZIF) Partner site Tübingen72076TübingenGermany
- Research Division for Natural Product Technology (BPTBA)Indonesian Institute of Sciences (LIPI)Wonosari55861Indonesia
| | - Daniel Männle
- Pharmaceutical Institute, Dept. of Pharmaceutical BiologyUniversity of TübingenAuf der Morgenstelle 872076TübingenGermany
- German Center for Infection Research (DZIF) Partner site Tübingen72076TübingenGermany
- Department of Applied Natural Products Genome Mining Interfaculty Institute of Microbiology and Infection Medicine (IMIT)University of TübingenAuf der Morgenstelle 2872076TübingenGermany
| | - Jan Straetener
- German Center for Infection Research (DZIF) Partner site Tübingen72076TübingenGermany
- Department of Microbial Bioactive Compounds Interfaculty Institute of Microbiology and Infection Medicine (IMIT)University of TübingenAuf der Morgenstelle 2872076TübingenGermany
| | - Heike Brötz‐Oesterhelt
- German Center for Infection Research (DZIF) Partner site Tübingen72076TübingenGermany
- Department of Microbial Bioactive Compounds Interfaculty Institute of Microbiology and Infection Medicine (IMIT)University of TübingenAuf der Morgenstelle 2872076TübingenGermany
| | - Nadine Ziemert
- German Center for Infection Research (DZIF) Partner site Tübingen72076TübingenGermany
- Department of Applied Natural Products Genome Mining Interfaculty Institute of Microbiology and Infection Medicine (IMIT)University of TübingenAuf der Morgenstelle 2872076TübingenGermany
| | - Leonard Kaysser
- Pharmaceutical Institute, Dept. of Pharmaceutical BiologyUniversity of TübingenAuf der Morgenstelle 872076TübingenGermany
- German Center for Infection Research (DZIF) Partner site Tübingen72076TübingenGermany
| | - Harald Gross
- Pharmaceutical Institute, Dept. of Pharmaceutical BiologyUniversity of TübingenAuf der Morgenstelle 872076TübingenGermany
- German Center for Infection Research (DZIF) Partner site Tübingen72076TübingenGermany
| |
Collapse
|
9
|
Goh F, Zhang MM, Lim TR, Low KN, Nge CE, Heng E, Yeo WL, Sirota FL, Crasta S, Tan Z, Ng V, Leong CY, Zhang H, Lezhava A, Chen SL, Hoon SS, Eisenhaber F, Eisenhaber B, Kanagasundaram Y, Wong FT, Ng SB. Identification and engineering of 32 membered antifungal macrolactone notonesomycins. Microb Cell Fact 2020; 19:71. [PMID: 32192516 PMCID: PMC7081687 DOI: 10.1186/s12934-020-01328-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/12/2020] [Indexed: 12/29/2022] Open
Abstract
Notonesomycin A is a 32-membered bioactive glycosylated macrolactone known to be produced by Streptomyces aminophilus subsp. notonesogenes 647-AV1 and S. aminophilus DSM 40186. In a high throughput antifungal screening campaign, we identified an alternative notonesomycin A producing strain, Streptomyces sp. A793, and its biosynthetic gene cluster. From this strain, we further characterized a new more potent antifungal non-sulfated analogue, named notonesomycin B. Through CRISPR–Cas9 engineering of the biosynthetic gene cluster, we were able to increase the production yield of notonesomycin B by up to 18-fold as well as generate a strain that exclusively produces this analogue.
Collapse
Affiliation(s)
- Falicia Goh
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore.,Biotransformation Innovation Platform, A*STAR, 61 Biopolis Drive, Proteos Level 4, Singapore, 138673, Singapore
| | - Mingzi M Zhang
- Metabolic Engineering, Functional Molecules & Polymers, Institute of Chemical and Engineering Sciences, A*STAR, 31 Biopolis Way, Nanos #01-01, Singapore, 138669, Singapore.,Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, Taiwan, R.O.C
| | - Tian Ru Lim
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore
| | - Kia Ngee Low
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore
| | - Choy Eng Nge
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore
| | - Elena Heng
- Molecular Engineering Laboratory, Institute of Bioengineering and Nanotechnology, A*STAR, 31 Biopolis Way, Nanos, Singapore, 138669, Singapore
| | - Wan Lin Yeo
- Metabolic Engineering, Functional Molecules & Polymers, Institute of Chemical and Engineering Sciences, A*STAR, 31 Biopolis Way, Nanos #01-01, Singapore, 138669, Singapore
| | - Fernanda L Sirota
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore
| | - Sharon Crasta
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore
| | - Zann Tan
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore
| | - Veronica Ng
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore
| | - Chung Yan Leong
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore
| | - Huibin Zhang
- Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Genome #02-01, Singapore, 138672, Singapore
| | - Alexander Lezhava
- Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Genome #02-01, Singapore, 138672, Singapore
| | - Swaine L Chen
- Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Genome #02-01, Singapore, 138672, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 10, Singapore, 119228, Singapore
| | - Shawn S Hoon
- Molecular Engineering Laboratory, Institute of Bioengineering and Nanotechnology, A*STAR, 31 Biopolis Way, Nanos, Singapore, 138669, Singapore
| | - Frank Eisenhaber
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore.,School of Computer Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore, 637553, Singapore
| | - Birgit Eisenhaber
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore
| | | | - Fong T Wong
- Molecular Engineering Laboratory, Institute of Bioengineering and Nanotechnology, A*STAR, 31 Biopolis Way, Nanos, Singapore, 138669, Singapore.
| | - Siew Bee Ng
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore.
| |
Collapse
|
10
|
Pérez-Victoria I, Oves-Costales D, Lacret R, Martín J, Sánchez-Hidalgo M, Díaz C, Cautain B, Vicente F, Genilloud O, Reyes F. Structure elucidation and biosynthetic gene cluster analysis of caniferolides A–D, new bioactive 36-membered macrolides from the marine-derived Streptomyces caniferus CA-271066. Org Biomol Chem 2019; 17:2954-2971. [DOI: 10.1039/c8ob03115k] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The structures of caniferolides A–D have been determined combining NMR and bioinformatics prediction of the absolute configuration.
Collapse
|
11
|
Alferova VA, Novikov RA, Bychkova OP, Rogozhin EA, Shuvalov MV, Prokhorenko IA, Sadykova VS, Kulko AB, Dezhenkova LG, Stepashkina EA, Efremov MA, Sineva ON, Kudryakova GK, Peregudov AS, Solyev PN, Tkachev YV, Fedorova GB, Terekhova LP, Tyurin AP, Trenin AS, Korshun VA. Astolides A and B, antifungal and cytotoxic naphthoquinone-derived polyol macrolactones from Streptomyces hygroscopicus. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
High-Quality Draft Genome Sequence of the Actinobacterium Nocardia terpenica IFM 0406, Producer of the Immunosuppressant Brasilicardins, Using Illumina and PacBio Technologies. GENOME ANNOUNCEMENTS 2016; 4:4/6/e01391-16. [PMID: 27979943 PMCID: PMC5159576 DOI: 10.1128/genomea.01391-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The bacterium Nocardia terpenica IFM 0406 is known as the producer of the immunosuppressant brasilicardin A. Here, we report the completely sequenced genome of strain IFM 0406, which facilitates the heterologous expression of the brasilicardin biosynthetic gene cluster but also unveils the intriguing biosynthetic capacity of the strain to produce secondary metabolites.
Collapse
|