1
|
Hoffman L, Hennes DJ, Lyu P. Deciphering the Photocatalysis Mechanism of Semimetallic Bismuth Nanoparticles. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:20118-20128. [PMID: 39634023 PMCID: PMC11613560 DOI: 10.1021/acs.jpcc.4c06136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/17/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Metallic nanoparticle photocatalysts have been developed in various catalytic systems over the past few decades, including diverse noble and non-noble metals with plasmonic properties. The hot-carrier-induced mechanism is one of the most appealing pathways as it can provide energetic electrons or holes for driving thermodynamically unfavorable reactions or increasing the reaction rate. In this work, we evaluate the photocatalytic performance of semimetallic bismuth nanoparticles and offer detailed mechanistic interpretations in terms of hot carriers and interband transitions. The photocatalyzed nitrophenol reduction with sodium borohydride serves as a model reaction, and a wavelength-dependent study reveals the contribution of hot carriers. It is demonstrated that light irradiation under shorter wavelengths could produce deeper hot holes in bismuth nanoparticles, which can be quenched more effectively by hole scavengers, thus facilitating the electron-transfer process and resulting in larger apparent reaction rate constants. The observed photocatalysis enhancement accounts for the unique band structure with an extremely small band gap and exclusive interband absorption in the visible region. This proof-of-concept work offers a different perspective on the photocatalysis mechanism of bismuth nanoparticles and could help us better understand the role of hot carriers involved in photocatalysis, especially with interband transitions.
Collapse
Affiliation(s)
- Lauren
M. Hoffman
- Department of Chemistry and
Biochemistry, University of North Carolina
Asheville, 1 University Heights, Asheville, North Carolina 28804, United States
| | - Delaney J. Hennes
- Department of Chemistry and
Biochemistry, University of North Carolina
Asheville, 1 University Heights, Asheville, North Carolina 28804, United States
| | - Pin Lyu
- Department of Chemistry and
Biochemistry, University of North Carolina
Asheville, 1 University Heights, Asheville, North Carolina 28804, United States
| |
Collapse
|
2
|
Salabat A, Mirhoseini BS, Mirhoseini F. Ionic liquid based surfactant-free microemulsion as a new protocol for preparation of visible light active poly(methyl methacrylate)/TiO 2 nanocomposite. Sci Rep 2024; 14:15676. [PMID: 38977830 PMCID: PMC11231282 DOI: 10.1038/s41598-024-66872-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/04/2024] [Indexed: 07/10/2024] Open
Abstract
The practical application of sensitized TiO2 nanocomposites is very satisfying due to their high photon utilization in visible light, simple recovery without affecting the photocatalytic performance, high energy efficiency, low potential environmental risk, and low operational costs. The objective of this study is developing the ionic liquid (IL)-based surfactant-free microemulsion, as a soft template, for preparation of a novel type of sensitized poly(methyl methacrylate)/TiO2 nanocomposite (PMMA/TiO2/IL). For this purpose, a series of visible light-responsive PMMA/TiO2/IL transparent nanocomposites were prepared in microemulsion composed of methyl methacrylate monomer, 1-buthyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]), and 1-buthanol as amphi-solvent. Techniques such as diffuse reflectance spectroscopy (DRS)), attenuated total reflectance-fourier transform infrared (ATR-FTIR) spectroscopy, atomic force microscopy (AFM), field emission scanning electron microscopy (FE-SEM), and energy dispersive X-ray analysis (EDX) were used to characterize prepared nanocomposites. Photocatalytic degradation of methyl orange dye under visible light illumination, as an application in wastewater treatment, with the investigation of the influence of TiO2 content in the nanocomposite, pH, and nanocomposite reusability on photodegradation efficiency was studied and maximum value of 93.9% obtained at optimum conditions. The FESEM analysis indicated that the utilization of a relatively low amount of ionic liquid and also in absence of the surfactant ensures the monodispersity of the visible light sensitized TiO2 nanoparticles in the polymer matrix.
Collapse
Affiliation(s)
- Alireza Salabat
- Department of Chemistry, Faculty of Science, Arak University, Arak, 38156-8-8349, Iran.
- Institue of Nanosciences and Nanotechnolgy, Arak University, Arak, 38156-8-8349, Iran.
| | | | - Farid Mirhoseini
- Department of Chemistry, Faculty of Science, Arak University, Arak, 38156-8-8349, Iran
| |
Collapse
|
3
|
Fu X, Zhou G, Li J, Yao Q, Han Z, Yang R, Chen X, Wang Y. Critical review on modified floating photocatalysts for emerging contaminants removal from landscape water: problems, methods and mechanism. CHEMOSPHERE 2023; 341:140043. [PMID: 37660787 DOI: 10.1016/j.chemosphere.2023.140043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/13/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Due to the disorderly discharge in modern production and daily life of people, emerging contaminants(ECs) began to appear in landscape water, and have become a key public concern. Because of the unique characteristics of landscape water, it is difficult to efficiently remove ECs either by natural purification or by traditional large-scale sewage treatment facilities. The ideal purification method is to remove them while maintaining a beautiful environment. Possessing the feature of low-density, floating photocatalysts could harvest sufficient light on the surface of the water for photocatalytic degradation, which may be an important supplement for ECs treatment in landscape water. This paper gave a review related to floating photocatalysts and proposed an idea of combining floating photocatalysts to construct bionic photocatalytic materials for contaminative landscape water treatment. Six types of common floating substrates and corresponding applications for floating photocatalysts were concluded in this paper, and the main problem leading to the low efficiency of photocatalysts and three corresponding three improvement strategies were discussed. Besides, the modification mechanisms of photocatalysts were discussed thoroughly. On this basis, the engineering application prospects of bionic photocatalytic materials were proposed to remove ECs in landscape water.
Collapse
Affiliation(s)
- Xiaoning Fu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, China.
| | - Guangzhu Zhou
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, China.
| | - Jianping Li
- China Testing & Certification International Group Qingdao Jingcheng Testing Co., Ltd., Qingdao, 266426, China.
| | - Qiuhui Yao
- The Third Exploration Team, Shandong Bureau of Coal Geology, Tai'an, 271000, China.
| | - Zuozhen Han
- Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, China.
| | - Rongchao Yang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, China.
| | - Xi Chen
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, China.
| | - Yuanhao Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, China.
| |
Collapse
|
4
|
Microemulsion strategy for preparation of TiO2–Ag/poly(methyl methacrylate) nanocomposite and its photodegradation application. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02693-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Zhao Z, Wang X, Wang S, Xiao Z, Zhai S, Ma J, Dong X, Sun H, An Q. Three-Dimensional Hierarchical Seaweed-Derived Carbonaceous Network with Designed g-C 3N 4 Nanosheets: Preparation and Mechanism Insight for 4-Nitrophenol Photoreduction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11054-11067. [PMID: 36049185 DOI: 10.1021/acs.langmuir.2c01700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of g-C3N4-based photocatalysts with abundant active sites is of great significance for photocatalytic reactions. Herein, a smart and robust strategy was presented to fabricate three-dimensional (3D) g-C3N4 nanosheet-coated alginate-based hierarchical porous carbon (g-C3N4@HPC), including coating melamine on calcium alginate (CA) hydrogel beads, freeze-drying hydrogel beads as well as pyrolysis at high temperatures. The resulting photocatalyst possessed a significantly high surface area and a large amount of interconnected macropores compared with porous carbon without the melamine coating. The unique structural features could effectively inhibit the curling and agglomeration of g-C3N4 nanosheets, provide abundant photocatalytic active sites, and promote mass diffusion. Therefore, the g-C3N4@HPC composite exhibited remarkable photocatalytic activity and outstanding stability toward the photoreduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by NaBH4 under natural sunlight and simulated visible-light irradiation (λ > 420 nm) using a 300 W xenon lamp. Moreover, the mechanism toward the photocatalytic reaction was extensively studied by quenching experiments and electron spin resonance (ESR) experiments. The results showed that active hydrogen species were able to be achieved by following a dual-channel pathway in the NaBH4 system, which included photocatalytic reduction of H+ ions and photocatalytic oxidation of BH4- ions. This work not only opens up a new way to design efficient photocatalysts for various reactions but also provides a reference for an in-depth study of the photoreduction mechanism.
Collapse
Affiliation(s)
- Zhenyu Zhao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Xuting Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Shifu Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Zuoyi Xiao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Shangru Zhai
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Jiliang Ma
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Xiaoli Dong
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Haodong Sun
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Qingda An
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
6
|
Singh P, Mirza AU, Mondal AH, Mukhopadhyay K, Nishat N. Functionalization of
PMMA
/
TiO
2
nanocomposites: Synthesis, characterization and their antioxidant and antibacterial evaluation. J Appl Polym Sci 2022. [DOI: 10.1002/app.51749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Paramjit Singh
- Inorganic Material Research Laboratory, Department of Chemistry Jamia Millia Islamia New Delhi India
| | - Azar Ullah Mirza
- Inorganic Material Research Laboratory, Department of Chemistry Jamia Millia Islamia New Delhi India
| | - Aftab Hossain Mondal
- Antimicrobial Research Laboratory, School of Environmental Sciences Jawaharlal Nehru University New Delhi India
| | - Kasturi Mukhopadhyay
- Antimicrobial Research Laboratory, School of Environmental Sciences Jawaharlal Nehru University New Delhi India
| | - Nahid Nishat
- Inorganic Material Research Laboratory, Department of Chemistry Jamia Millia Islamia New Delhi India
| |
Collapse
|
7
|
An X, Erramilli S, Reinhard BM. Plasmonic nano-antimicrobials: properties, mechanisms and applications in microbe inactivation and sensing. NANOSCALE 2021; 13:3374-3411. [PMID: 33538743 PMCID: PMC8349509 DOI: 10.1039/d0nr08353d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Bacterial, viral and fungal infections pose serious threats to human health and well-being. The continuous emergence of acute infectious diseases caused by pathogenic microbes and the rapid development of resistances against conventional antimicrobial drugs necessitates the development of new and effective strategies for the safe elimination of microbes in water, food or on surfaces, as well as for the inactivation of pathogenic microbes in human hosts. The need for new antimicrobials has triggered the development of plasmonic nano-antimicrobials that facilitate both light-dependent and -independent microbe inactivation mechanisms. This review introduces the relevant photophysical mechanisms underlying these plasmonic nano-antimicrobials, and provides an overview of how the photoresponses and materials properties of plasmonic nanostructures can be applied in microbial pathogen inactivation and sensing applications. Through a systematic analysis of the inactivation efficacies of different plasmonic nanostructures, this review outlines the current state-of-the-art in plasmonic nano-antimicrobials and defines the application space for different microbial inactivation strategies. The advantageous optical properties of plasmonic nano-antimicrobials also enhance microbial detection and sensing modalities and thus help to avoid exposure to microbial pathogens. Sensitive and fast plasmonic microbial sensing modalities and their theranostic and targeted therapeutic applications are discussed.
Collapse
Affiliation(s)
- Xingda An
- Department of Chemistry, Boston University, Boston, MA 02215, USA. and The Photonics Center, Boston University, Boston, MA 02215, USA
| | - Shyamsunder Erramilli
- Department of Physics, Boston University, Boston, MA 02215, USA and The Photonics Center, Boston University, Boston, MA 02215, USA
| | - Björn M Reinhard
- Department of Chemistry, Boston University, Boston, MA 02215, USA. and The Photonics Center, Boston University, Boston, MA 02215, USA
| |
Collapse
|
8
|
Huang XH, Hu T, Bu H, Li WX, Li ZL, Hu HJ, Chen WZ, Lin MZ, Li Y, Jiang GB. Transparent floatable magnetic alginate sphere used as photocatalysts carrier for improving photocatalytic efficiency and recycling convenience. Carbohydr Polym 2020; 254:117281. [PMID: 33357857 DOI: 10.1016/j.carbpol.2020.117281] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 01/16/2023]
Abstract
Practical application of powder photocatalysts is far from satisfying due to their low photon utilization, inconvenient recovery and potential environmental risk. In this study, an easily recoverable, environmentally friendly and highly transparent floatable magnetic photocatalyst carrier was prepared based on biopolymer alginate and Fe3O4 particles. Further, three different types of photocatalysts were chosen as model semiconductor photocatalysts and loaded on the shell of the carriers. The freeze process facilitated the formation of internal cavities that enhanced floating ability and transparency of the spheres. Meanwhile, the excellent floating performance offered massive reaction sites for pollutants reacting with photocatalysts, O2 and photons on the air/water interface. Photodegradation results showed all three floatable hybrid photocatalysts exhibited enhanced photocatalytic efficiencies compared to the virgin photocatalysts. In short, the carrier can integrate excellent floating ability, environmental friendliness and full recycling with good stability, and it can greatly improve the photocatalytic efficiency of various powder semiconductor photocatalysts.
Collapse
Affiliation(s)
- Xian-Hang Huang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Matrials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Tian Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Matrials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Huaitian Bu
- Department of Materials and Nanotechnology, SINTEF Industry, Forskningsveien 1, 0373, Oslo, Norway
| | - Wei-Xiong Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Matrials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Zeng-Lin Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Matrials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Han-Jian Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Matrials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Wen-Zhao Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Matrials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Min-Zhao Lin
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Matrials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Gang-Biao Jiang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Matrials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China.
| |
Collapse
|
9
|
Salabat A, Mirhoseini F, Valirasti R. Engineering Poly(Methyl Methacrylate)/Fe 2O 3 Hollow Nanospheres Composite Prepared in Microemulsion System As a Recyclable Adsorbent for Removal of Benzothiophene. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alireza Salabat
- Department of Chemistry, Faculty of Science, Arak University, 38156-8-8349, Arak, Iran
- Institute of Nanosciences & Nanotechnology, Arak University, 38156-8-8349, Arak, Iran
| | - Farid Mirhoseini
- Department of Chemistry, Faculty of Science, Arak University, 38156-8-8349, Arak, Iran
| | - Ramin Valirasti
- Department of Chemistry, Faculty of Science, Arak University, 38156-8-8349, Arak, Iran
| |
Collapse
|
10
|
Formulation and optimization of a novel TiO2/calcium alginate floating photocatalyst. Int J Biol Macromol 2019; 137:992-1001. [DOI: 10.1016/j.ijbiomac.2019.07.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 11/21/2022]
|
11
|
TiO2-SiO2-PMMA Terpolymer Floating Device for the Photocatalytic Remediation of Water and Gas Phase Pollutants. Catalysts 2018. [DOI: 10.3390/catal8110568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Floating photocatalytic devices are highly sought-after as they represent good candidates for practical application in pollutant remediation of large water basins. Here, we present a multilayer floating device for the photocatalytic remediation of contaminants present in water as well as of volatile species close to the water surface. The device was prepared on a novel tailored ter-polymer substrate based on methylmethacrylate, α-methylstyrene and perfluoroctyl methacrylate. The ad hoc synthesized support presents optimal characteristics in terms of buoyancy, transparency, gas permeability, mechanical, UV and thermal stability. The adhesion of the TiO2 top layer was favoured by the adopted casting procedure, followed by a corona pre-treatment and by the deposition of an intermediate SiO2 layer, the latter aimed also at protecting the polymer support from photocatalytic oxidation. The device was characterized by contact angle measurement, UV-vis transmittance and scanning electron microscopy. The final device was tested for the photocatalytic degradation of an emerging water pollutant as well as of vapors of a model volatile organic compound. Relevant activity was observed also under simulated solar irradiation and the device showed good stability and recyclability, prospecting its use for the photocatalytic degradation of pollutants in large water basins.
Collapse
|
12
|
Gorle G, Bathinapatla A, Chen YZ, Ling YC. Near infrared light activatable PEI-wrapped bismuth selenide nanocomposites for photothermal/photodynamic therapy induced bacterial inactivation and dye degradation. RSC Adv 2018; 8:19827-19834. [PMID: 35540975 PMCID: PMC9080770 DOI: 10.1039/c8ra02183j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/01/2018] [Indexed: 11/21/2022] Open
Abstract
The inactivation of bacteria and the degradation of organic pollutants by engineered nanomaterials (NMs) are very effective approaches for producing safe and clean drinking water. The development of new NMs which can act as NIR light mediated antimicrobial agents as well as photocatalytic agents is highly desired. In this study, a novel Bi2Se3 nanoplates (NPs) NM was prepared by a high-temperature reaction (colloidal synthesis) followed by wrapping of the surface with polyethyleneimine (PEI) through electrostatic interactions. The developed Bi2Se3 NPs/PEI exhibited excellent NIR light activated antimicrobial properties for bacterial eradication and efficient photocatalytic properties for organic dye degradation. The results showed that upon 808 nm laser irradiation the engineered Bi2Se3 NPs/PEI eradicated ∼99% of S. aureus and ∼97% of E. coli bacteria within 10 minutes of irradiation through combined dual-modal photothermal therapy (PTT) and photodynamic therapy (PDT) via the generation of heat and reactive oxygen species, respectively. The contributions of PTT and PDT were found to be in a ratio of nearly 4 : 1 in the killing of both species of bacteria. In addition, Bi2Se3 NPs/PEI also acted as an excellent photocatalyst under illumination by a halogen lamp equipped with a 700-1100 nm band pass filter to achieve degradation efficiencies of ∼95% for methylene blue and ∼93% for Rhodamine B within 3 and 4 h, respectively. To the best of our knowledge, this is the first demonstration of these NIR light activated antimicrobial properties, photodynamic properties and photocatalytic properties mediated by Bi2Se3 NPs.
Collapse
Affiliation(s)
- Govinda Gorle
- Department of Chemistry, National Tsing Hua University Hsinchu 30013 Taiwan
| | | | - Yi-Zhan Chen
- Department of Chemistry, National Tsing Hua University Hsinchu 30013 Taiwan
| | - Yong-Chien Ling
- Department of Chemistry, National Tsing Hua University Hsinchu 30013 Taiwan
| |
Collapse
|
13
|
Salabat A, Mirhoseini F, Arjomandzadegan M, Jiryaei E. A novel methodology for fabrication of Ag–polypyrrole core–shell nanosphere using microemulsion system and evaluation of its antibacterial application. NEW J CHEM 2017. [DOI: 10.1039/c7nj00678k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A novel methodology based on microemulsion system was used to prepare Ag–PPy core–shell nanocomposite for antibacterial application
Collapse
Affiliation(s)
- Alireza Salabat
- Department of Chemistry
- Faculty of Science
- Arak University
- Arak
- Iran
| | - Farid Mirhoseini
- Department of Chemistry
- Faculty of Science
- Arak University
- Arak
- Iran
| | - Mohammad Arjomandzadegan
- Infectious Diseases Research Center (IDRC) and Department of Microbiology
- School of Medicine
- Arak University of Medical Sciences
- Arak
- Iran
| | - Elham Jiryaei
- Department of Chemistry
- Faculty of Science
- Arak University
- Arak
- Iran
| |
Collapse
|
14
|
Chladek G, Basa K, Mertas A, Pakieła W, Żmudzki J, Bobela E, Król W. Effect of Storage in Distilled Water for Three Months on the Antimicrobial Properties of Poly(methyl methacrylate) Denture Base Material Doped with Inorganic Filler. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E328. [PMID: 28773451 PMCID: PMC5503091 DOI: 10.3390/ma9050328] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 11/16/2022]
Abstract
The colonization of poly(methyl methacrylate) (PMMA) denture base materials by pathogenic microorganisms is a major problem associated with the use of prostheses, and the incorporation of antimicrobial fillers is a method of improving the antimicrobial properties of these materials. Numerous studies have demonstrated the initial in vitro antimicrobial effectiveness of this type of material; however, reports demonstrating the stability of these fillers over longer periods are not available. In this study, silver sodium hydrogen zirconium phosphate was introduced into the powder component of a PMMA denture base material at concentrations of 0.25%, 0.5%, 1%, 2%, 4%, and 8% (w/w). The survival rates of the gram-positive bacterium Staphylococcus aureus, gram-negative bacterium Escherichia coli and yeast-type fungus Candida albicans were established after fungal or bacterial suspensions were incubated with samples that had been previously stored in distilled water. Storage over a three-month period led to the progressive reduction of the initial antimicrobial properties. The results of this study suggest that additional microbiological tests should be conducted for materials that are treated with antimicrobial fillers and intended for long-term use. Future long-term studies of the migration of silver ions from the polymer matrix and the influence of different media on this ion emission are required.
Collapse
Affiliation(s)
- Grzegorz Chladek
- Faculty of Mechanical Engineering, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, Gliwice 44-100, Poland.
| | - Katarzyna Basa
- Faculty of Mechanical Engineering, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, Gliwice 44-100, Poland.
| | - Anna Mertas
- Chair and Department of Microbiology and Immunology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Jordana 19, Zabrze 41-808, Poland.
| | - Wojciech Pakieła
- Faculty of Mechanical Engineering, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, Gliwice 44-100, Poland.
| | - Jarosław Żmudzki
- Faculty of Mechanical Engineering, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, Gliwice 44-100, Poland.
| | - Elżbieta Bobela
- Chair and Department of Microbiology and Immunology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Jordana 19, Zabrze 41-808, Poland.
| | - Wojciech Król
- Chair and Department of Microbiology and Immunology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Jordana 19, Zabrze 41-808, Poland.
| |
Collapse
|