1
|
Rudra S, Mondal S, Chakraborty M, Swamy MJ, Jana T. Galactose Glycopolymer- Grafted Silica Nanoparticles: Synthesis and Binding Studies with Lectin. ACS APPLIED BIO MATERIALS 2024; 7:5689-5701. [PMID: 39116418 DOI: 10.1021/acsabm.4c00759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Weak binding of carbohydrates with protein receptors possesses serious drawbacks in the advancement of therapeutics; however, the development of strategies for multipoint interactions between carbohydrates and protein can overcome these challenges. One such method is developed in this work where glycopolymer-grafted silica nanoparticles with a large number of carbohydrate units are prepared for the interactions with multiple binding sites of the protein. First, a glycomonomer, β-d-galactose-hydroxyethyl methacrylate (β-GEMA), was synthesized in a two-step process by coupling β-d-galactose pentaacetate and hydroxyethyl methacrylate (HEMA), followed by deacetylation for the preparation of poly(β-GEMA) glycopolymers (GPs). Further, the poly(β-GEMA) chains were grafted onto the silica nanoparticle (SiNP) surface by utilizing the "grafting-from" strategy of surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization to prepare p(β-GEMA)-grafted SiNPs (GNPs). Five different chain lengths ranging from 10 to 40 kDa of the GPs and the GNPs were prepared, and various characterization techniques confirmed the formation of GPs and grafting of the GPs on the SiNP surface. The particle size of GNPs and the number of GPs grafted on the SiNP surface showed a strong dependence on the chain length of the GPs. Further, the GNPs were subjected to a binding study with β-galactose-specific protein peanut agglutinin (PNA). A much stronger binding in the case of GNPs was observed with an association constant ∼320 times and ∼53 times than that of the monomeric methyl-β-d-galactopyranoside and the GPs, respectively. Additionally, the binding of the PNA with GNPs and GPs was also studied with varying chain lengths to understand the effects of the chain length on the binding affinity. A clear increase in binding constants was observed in the case of GNPs with increasing chain length of grafted GPs, attributed to the enhanced enthalpic and entropic contributions. This work holds its uniqueness in these improved interactions between carbohydrates and proteins, which can be used for carbohydrate-based targeted therapeutics.
Collapse
Affiliation(s)
- Somdatta Rudra
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Saradamoni Mondal
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | | | - Musti J Swamy
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Tushar Jana
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
2
|
Beach M, Nayanathara U, Gao Y, Zhang C, Xiong Y, Wang Y, Such GK. Polymeric Nanoparticles for Drug Delivery. Chem Rev 2024; 124:5505-5616. [PMID: 38626459 PMCID: PMC11086401 DOI: 10.1021/acs.chemrev.3c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
3
|
Bercea M, Lupu A. Recent Insights into Glucose-Responsive Concanavalin A-Based Smart Hydrogels for Controlled Insulin Delivery. Gels 2024; 10:260. [PMID: 38667679 PMCID: PMC11048858 DOI: 10.3390/gels10040260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/24/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Many efforts are continuously undertaken to develop glucose-sensitive biomaterials able of controlling glucose levels in the body and self-regulating insulin delivery. Hydrogels that swell or shrink as a function of the environmental free glucose content are suitable systems for monitoring blood glucose, delivering insulin doses adapted to the glucose concentration. In this context, the development of sensors based on reversible binding to glucose molecules represents a continuous challenge. Concanavalin A (Con A) is a bioactive protein isolated from sword bean plants (Canavalia ensiformis) and contains four sugar-binding sites. The high affinity for reversibly and specifically binding glucose and mannose makes Con A as a suitable natural receptor for the development of smart glucose-responsive materials. During the last few years, Con A was used to develop smart materials, such as hydrogels, microgels, nanoparticles and films, for producing glucose biosensors or drug delivery devices. This review is focused on Con A-based materials suitable in the diagnosis and therapeutics of diabetes. A brief outlook on glucose-derived theranostics of cancer is also presented.
Collapse
Affiliation(s)
- Maria Bercea
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Alexandra Lupu
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
4
|
Mansoor S, Adeyemi SA, Kondiah PPD, Choonara YE. A Closed Loop Stimuli-Responsive Concanavalin A-Loaded Chitosan-Pluronic Hydrogel for Glucose-Responsive Delivery of Short-Acting Insulin Prototyped in RIN-5F Pancreatic Cells. Biomedicines 2023; 11:2545. [PMID: 37760986 PMCID: PMC10526345 DOI: 10.3390/biomedicines11092545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The optimal treatment of diabetes (in particular, type 1 diabetes-T1D) remains a challenge. Closed-loop systems (implants/inserts) provide significant advantages for glucose responsivity and providing real-time sustained release of rapid-acting insulin. Concanavalin A (ConA), a glucose affinity agent, has been used to design closed-loop insulin delivery systems but not without significant risk of leakage of ConA from the matrices and poor mechanical strength of the hydrogels impacting longevity and control of insulin release. Therefore, this work focused on employing a thermoresponsive co-forming matrix between Pluronic F-127 (PL) and structurally robust chitosan (CHT) via EDC/NHS coupling (i.e., covalent linkage of -NH2 from CHT and ConA to the -COOH of PL). The system was characterized for its chemical structure stability and integrity (FTIR, XRD and TGA), injectability, rheological parameters and hydrogel morphology (Texture Analysis, Elastosens TM Bio2 and SEM). The prepared hydrogels demonstrated shear-thinning for injectability with a maximum force of 4.9 ± 8.3 N in a 26G needle with sol-gel transitioning from 25 to 38 °C. The apparent yield stress value of the hydrogel was determined to be 67.47 Pa. The insulin loading efficiency within the hydrogel matrix was calculated to be 46.8%. Insulin release studies revealed glucose responsiveness in simulated glycemic media (4 and 10 mg/mL) over 7 days (97%) (305 nm via fluorescence spectrophotometry). The MTT studies were performed over 72 h on RIN-5F pancreatic cells with viability results >80%. Results revealed that the thermoresponsive hydrogel is a promising alternative to current closed-loop insulin delivery systems.
Collapse
Affiliation(s)
| | | | | | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2093, South Africa; (S.M.); (S.A.A.); (P.P.D.K.)
| |
Collapse
|
5
|
Kenoth R, Sreekumar AK, Sukanya A, Prabu AA, Kamlekar RK. Interaction of sugar stabilised silver nanoparticles with Momordica charantia seed lectin, a type II ribosome inactivating protein. Glycoconj J 2023; 40:179-189. [PMID: 36800135 DOI: 10.1007/s10719-023-10107-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/03/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
Sugar-stabilised nanomaterials have received a lot of attention in cancer therapy in recent years due to their pronounced application as specific targeting agents and maximizing their therapeutic potential while bypassing off-target effects. Lectins, the carbohydrate-binding proteins, are capable of binding to receptors present on the target cell/tissue and interact with transformed glycans better than normal cells. Besides some of the lectins exhibit anticancer activity. Conjugating sugar-stabilised NPs with lectins there for is expected to multiply the potential for the early diagnosis of cancer cells and the specific release of drugs into the tumor site. Because of the prospective applications of lectin-sugar-stabilised nanoparticle conjugates, it is important to understand their molecular interaction and physicochemical properties. Momordica charantia Seed Lectin (MCL) is a type II RIP and has been known as an anti-tumor agent. Investigation of the interaction between sugar-stabilised silver nanoparticles and MCL has been performed by fluorescence spectroscopy to explore the possibility of creating an effective biocompatible drug delivery system against cancer cells. In this regard interaction between lectin and NPs should be well-preserved, while recognizing the specific cell surface sugar. Therefore experiments were carried out in the presence and absence of specific sugar galactose. Protein intrinsic fluorescence emission is quenched at ~ 20% at saturation during the interaction without any significant shift in fluorescence emission maximum. Binding experiments reveal a good affinity. Tetrameric MCL binds to a single nanoparticle. Stern-Volmer analysis of the quenching data suggests that the interaction is via static quenching leading to complex formation. Hemagglutination experiments together with interaction studies in the presence of specific sugar show that the sugar-binding site of the lectin is distinct from the nanoparticle-binding site and cell recognition is very much intact even after binding to AgNPs. Our results propose the possibility of developing MCL-silver nanoparticle conjugate with high stability and multiple properties in the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Roopa Kenoth
- Department of Chemistry, School of Advanced Sciences, VIT Vellore, 632014, TN, Vellore, India.
| | - Arya K Sreekumar
- Department of Chemistry, School of Advanced Sciences, VIT Vellore, 632014, TN, Vellore, India
| | - A Sukanya
- Department of Chemistry, School of Advanced Sciences, VIT Vellore, 632014, TN, Vellore, India
| | - A Anand Prabu
- Department of Chemistry, School of Advanced Sciences, VIT Vellore, 632014, TN, Vellore, India
| | - Ravi Kanth Kamlekar
- Department of Chemistry, School of Advanced Sciences, VIT Vellore, 632014, TN, Vellore, India.
| |
Collapse
|
6
|
Suvarna V, Sawant N, Desai N. A Review on Recent Advances in Mannose-Functionalized Targeted Nanocarrier Delivery Systems in Cancer and Infective Therapeutics. Crit Rev Ther Drug Carrier Syst 2023; 40:43-82. [PMID: 36734913 DOI: 10.1615/critrevtherdrugcarriersyst.2022041853] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Unmodified nanocarriers used in the chemotherapy of cancers and various infectious diseases exhibit prolonged blood circulation time, prevent enzymatic degradation and increase chemical stability of encapsulated therapeutics. However, off-target effect and lack of specificity associated with unmodified nanoparticles (NPs) limit their applications in the health care system. Mannose (Man) receptors with significant overexpression on antigen-presenting cells and macrophages are among the most admired targets for cancer and anti-infective therapeutics. Therefore, development of Man functionalized nanocarriers targeting Man receptors, for target specific drug delivery in the chemotherapy have been extensively studied. Present review expounds diverse Man-conjugated NPs with their potential for targeted drug delivery, improved biodistribution profiles and localization. Additionally, the review gives detailed account of the interactions of mannosylated NPs with various biological systems and their characterization not discussed in earlier published reports is discussed.
Collapse
Affiliation(s)
- Vasanti Suvarna
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400056, Maharashtra, India
| | - Niserga Sawant
- C.U. Shah College of Pharmacy, SNDT Women's University, Santacruz (W), Mumbai 400049, Maharashtra, India
| | - Namita Desai
- Department of Pharmaceutics, C. U. Shah College of Pharmacy, SNDT Women's University, Santacruz (W), Mumbai - 400049, Maharashtra, India
| |
Collapse
|
7
|
Martínez-Bailén M, Rojo J, Ramos-Soriano J. Multivalent glycosystems for human lectins. Chem Soc Rev 2023; 52:536-572. [PMID: 36545903 DOI: 10.1039/d2cs00736c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human lectins are involved in a wide variety of biological processes, both physiological and pathological, which have attracted the interest of the scientific community working in the glycoscience field. Multivalent glycosystems have been employed as useful tools to understand carbohydrate-lectin binding processes as well as for biomedical applications. The review shows the different scaffolds designed for a multivalent presentation of sugars and their corresponding binding studies to lectins and in some cases, their biological activities. We summarise this research by organizing based on lectin types to highlight the progression in this active field. The paper provides an overall picture of how these contributions have furnished relevant information on this topic to help in understanding and participate in these carbohydrate-lectin interactions.
Collapse
Affiliation(s)
- Macarena Martínez-Bailén
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| | - Javier Ramos-Soriano
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| |
Collapse
|
8
|
Ma Z, An R, Chen M, Wang X, Zhu M. Random versus Block Glycopolymers Bearing Betulin and Porphyrin for Enhanced Photodynamic Therapy. Biomacromolecules 2022; 23:5074-5083. [PMID: 36350056 DOI: 10.1021/acs.biomac.2c00922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Porphyrins and their derivatives, representing the second-generation photosensitizers, can generate reactive oxygen species (ROS) and kill tumors upon light irradiation. To compensate for the fluorescence quenching and reduced ROS production caused by aggregation and rigid inherent hydrophobicity of porphyrins, a series of comparable random and block glycopolymers bearing betulin and porphyrin were prepared via RAFT polymerization. Betulin was introduced into the copolymers to decrease aggregation-induced quenching of porphyrins and to improve the photodynamic therapy (PDT) efficiency of copolymers. The characteristics, self-assembly, and photophysical chemistry properties of these copolymers were systemically studied. The effect of polymer structure on photophysical chemistry properties and cellular interaction was investigated as well to demonstrate their potential targeting for PDT applications.
Collapse
Affiliation(s)
- Zhiyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai201620, China
| | - Ran An
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai201620, China
| | - Man Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai201620, China
| | - Xiao Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai201620, China
| |
Collapse
|
9
|
Gupta A, Gupta GS. Applications of mannose-binding lectins and mannan glycoconjugates in nanomedicine. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2022; 24:228. [PMID: 36373057 PMCID: PMC9638366 DOI: 10.1007/s11051-022-05594-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/12/2022] [Indexed: 06/01/2023]
Abstract
UNLABELLED Glycosylated nanoparticles (NPs) have drawn a lot of attention in the biomedical field over the past few decades, particularly in applications like targeted drug delivery. Mannosylated NPs and mannan-binding lectins/proteins (MBL/MBP) are emerging as promising tools for delivery of drugs, medicines, and enzymes to targeted tissues and cells as nanocarriers, enhancing their therapeutic benefits while avoiding the adverse effects of the drug. The occurrence of plenty of lectin receptors and their mannan ligands on cell surfaces makes them multifaceted carriers appropriate for specific delivery of bioactive drug materials to their targeted sites. Thus, the present review describes the tethering of mannose (Man) to several nanostructures, like micelles, liposomes, and other NPs, applicable for drug delivery systems. Bioadhesion through MBL-like receptors on cells has involvements applicable to additional arenas of science, for example gene delivery, tissue engineering, biomaterials, and nanotechnology. This review also focuses on the role of various aspects of drug/antigen delivery using (i) mannosylated NPs, (ii) mannosylated lectins, (iii) amphiphilic glycopolymer NPs, and (iv) natural mannan-containing polysaccharides, with most significant applications of MBL-based NPs as multivalent scaffolds, using different strategies. GRAPHICAL ABSTRACT Mannosylated NPs and/or MBL/MBP are coming up as viable and versatile tools as nanocarriers to deliver drugs and enzymes precisely to their target tissues or cells. The presence of abundant number of lectin receptors and their mannan ligands on cell surfaces makes them versatile carriers suitable for the targeted delivery of bioactive drugs.
Collapse
Affiliation(s)
- Anita Gupta
- Chitkara School of Health Sciences, Chitkara University, Punjab, India
| | - G. S. Gupta
- Department of Biophysics, Panjab University, Chandigarh, 160014 India
| |
Collapse
|
10
|
Demir Duman F, Monaco A, Foulkes R, Becer CR, Forgan RS. Glycopolymer-Functionalized MOF-808 Nanoparticles as a Cancer-Targeted Dual Drug Delivery System for Carboplatin and Floxuridine. ACS APPLIED NANO MATERIALS 2022; 5:13862-13873. [PMID: 36338327 PMCID: PMC9623548 DOI: 10.1021/acsanm.2c01632] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Codelivery of chemotherapeutics via nanomaterials has attracted much attention over the last decades due to improved drug delivery to tumor tissues, decreased systemic effects, and increased therapeutic efficacies. High porosities, large pore volumes and surface areas, and tunable structures have positioned metal-organic frameworks (MOFs) as promising drug delivery systems (DDSs). In particular, nanoscale Zr-linked MOFs such as MOF-808 offer notable advantages for biomedical applications such as high porosity, good stability, and biocompatibility. In this study, we report efficient dual drug delivery of floxuridine (FUDR) and carboplatin (CARB) loaded in MOF-808 nanoparticles to cancer cells. The nanoparticles were further functionalized by a poly(acrylic acid-mannose acrylamide) (PAAMAM) glycopolymer coating to obtain a highly selective DDS in cancer cells and enhance the therapeutic efficacy of chemotherapy. While MOF-808 was found to enhance the individual therapeutic effects of FUDR and CARB toward cancerous cells, combining FUDR and CARB was seen to cause a synergistic effect, further enhancing the cytotoxicity of the free drugs. Enhancement of CARB loading and therefore cytotoxicity of the CARB-loaded MOFs could be induced through a modified activation protocol, while coating of MOF-808 with the PAAMAM glycopolymer increased the uptake of the nanoparticles in cancer cells used in the study and offered a particularly significant selective drug delivery with high cytotoxicity in HepG2 human hepatocellular carcinoma cells. These results show how the enhancement of cytotoxicity is possible through both nanovector delivery and synergistic treatment, and that MOF-808 is a viable candidate for future drug delivery studies.
Collapse
Affiliation(s)
- Fatma Demir Duman
- WestCHEM,
School of Chemistry, University of Glasgow,
University Avenue, Glasgow G12 8QQ, U.K.
| | - Alessandra Monaco
- Department
of Chemistry, University of Warwick, CV4 7AL Coventry, U.K.
| | - Rachel Foulkes
- WestCHEM,
School of Chemistry, University of Glasgow,
University Avenue, Glasgow G12 8QQ, U.K.
| | - C. Remzi Becer
- Department
of Chemistry, University of Warwick, CV4 7AL Coventry, U.K.
| | - Ross S. Forgan
- WestCHEM,
School of Chemistry, University of Glasgow,
University Avenue, Glasgow G12 8QQ, U.K.
- E-mail:
| |
Collapse
|
11
|
da Silva DL, Cabrera MP, Cavalcanti IT, Coelho GR, Neto EB, Padilha RJR, da Silva CES, Correia MTDS, Pimenta DC, Junior LBDC. Magnetite-levan nanoparticles for lectin purification: a single-step strategy for protein isolation from the seeds extract of the plant Cratylia mollis. J Chromatogr A 2022; 1677:463292. [DOI: 10.1016/j.chroma.2022.463292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022]
|
12
|
Affiliation(s)
- Martina H. Stenzel
- Centre for Advanced Macromolecular Design, School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
13
|
Zhao T, Terracciano R, Becker J, Monaco A, Yilmaz G, Becer CR. Hierarchy of Complex Glycomacromolecules: From Controlled Topologies to Biomedical Applications. Biomacromolecules 2022; 23:543-575. [PMID: 34982551 DOI: 10.1021/acs.biomac.1c01294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbohydrates bearing a distinct complexity use a special code (Glycocode) to communicate with carbohydrate-binding proteins at a high precision to manipulate biological activities in complex biological environments. The level of complexity in carbohydrate-containing macromolecules controls the amount and specificity of information that can be stored in biomacromolecules. Therefore, a better understanding of the glycocode is crucial to open new areas of biomedical applications by controlling or manipulating the interaction between immune cells and pathogens in terms of trafficking and signaling, which would become a powerful tool to prevent infectious diseases. Even though a certain level of progress has been achieved over the past decade, synthetic glycomacromolecules are still lagging far behind naturally existing glycans in terms of complexity and precision because of insufficient and inefficient synthetic techniques. Currently, specific targeting at a cellular level using synthetic glycomacromolecules is still challenging. It is obvious that multidisciplinary collaborations are essential between different specialized disciplines to enhance the carbohydrate receptor-targeting paradigm for new biomedical applications. In this Perspective, recent developments in the synthesis of sophisticated glycomacromolecules are highlighted, and their biological and biomedical applications are also discussed in detail.
Collapse
Affiliation(s)
- Tieshuai Zhao
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Roberto Terracciano
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Jonas Becker
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Alessandra Monaco
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Gokhan Yilmaz
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - C Remzi Becer
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
14
|
Bhattacharya K, Kalita U, Singha NK. Tailor-made Glycopolymers via Reversible Deactivation Radical Polymerization: Design, Properties and Applications. Polym Chem 2022. [DOI: 10.1039/d1py01640g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Investigating the underlying mechanism of biological interactions using glycopolymer is becoming increasingly important owing to their unique recognition properties. The multivalent interactions between lectin and glycopolymer are significantly influenced by...
Collapse
|
15
|
Ershov АY, Martynenkov АА, Lagoda IV, Kopanitsa MA, Zarubaev VV, Slita AV, Buchkov EV, Panarin EF, Yakimansky АV. Gold Glyconanoparticles Based on Aldoses 6-Mercaptohexanoyl Hydrazones and Their Anti-Influenza Activity. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221090188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Narayan R, Gadag S, Mudakavi RJ, Garg S, Raichur AM, Nayak Y, Kini SG, Pai KSR, Nayak UY. Mesoporous silica nanoparticles capped with chitosan-glucuronic acid conjugate for pH-responsive targeted delivery of 5-fluorouracil. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
The Synthesis and Evaluation of Multivalent Glycopeptoids as Inhibitors of the Adhesion of Candida albicans. Pathogens 2021; 10:pathogens10050572. [PMID: 34066787 PMCID: PMC8151480 DOI: 10.3390/pathogens10050572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 01/12/2023] Open
Abstract
Multivalency is a strategy commonly used by medicinal carbohydrate chemists to increase the affinity of carbohydrate-based small molecules for their protein targets. Although this approach has been very successful in enhancing binding to isolated carbohydrate-binding proteins, anticipating the multivalent presentations that will improve biological activity in cellular assays remains challenging. In this work we investigate linear molecular scaffolds for the synthesis of a low valency presentation of a divalent galactoside 1, previously identified by us as an inhibitor of the adhesion of opportunistic fungal pathogen Candida albicans to buccal epithelial cells (BECs). Adhesion inhibition assays revealed that multivalent glycoconjugate 3 is more effective at blocking C. albicans adherence to BECs upon initial exposure to epithelial cells. Interestingly, 3 did not seem to have any effect when it was pre-incubated with yeast cells, in contrast to the original lead compound 1, which caused a 25% reduction of adhesion. In competition assays, where yeast cells and BECs were co-incubated, multivalent glycoconjugate 3 inhibited up to 49% C. albicans adherence in a dose-dependent manner. The combined effect of compound 1 towards both yeast cells and BECs allowed it to achieve over 60% inhibition of the adhesion of C. albicans to BECs in competition assays.
Collapse
|
18
|
Exosome-mediated diagnosis of pancreatic cancer using lectin-conjugated nanoparticles bound to selective glycans. Biosens Bioelectron 2021; 177:112980. [DOI: 10.1016/j.bios.2021.112980] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 12/21/2022]
|
19
|
Andrade RGD, Reis B, Costas B, Lima SAC, Reis S. Modulation of Macrophages M1/M2 Polarization Using Carbohydrate-Functionalized Polymeric Nanoparticles. Polymers (Basel) 2020; 13:polym13010088. [PMID: 33379389 PMCID: PMC7796279 DOI: 10.3390/polym13010088] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
Exploiting surface endocytosis receptors using carbohydrate-conjugated nanocarriers brings outstanding approaches to an efficient delivery towards a specific target. Macrophages are cells of innate immunity found throughout the body. Plasticity of macrophages is evidenced by alterations in phenotypic polarization in response to stimuli, and is associated with changes in effector molecules, receptor expression, and cytokine profile. M1-polarized macrophages are involved in pro-inflammatory responses while M2 macrophages are capable of anti-inflammatory response and tissue repair. Modulation of macrophages’ activation state is an effective approach for several disease therapies, mediated by carbohydrate-coated nanocarriers. In this review, polymeric nanocarriers targeting macrophages are described in terms of production methods and conjugation strategies, highlighting the role of mannose receptor in the polarization of macrophages, and targeting approaches for infectious diseases, cancer immunotherapy, and prevention. Translation of this nanomedicine approach still requires further elucidation of the interaction mechanism between nanocarriers and macrophages towards clinical applications.
Collapse
Affiliation(s)
- Raquel G. D. Andrade
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Bruno Reis
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (B.R.); (B.C.); (S.R.)
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), Universidade do Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal
| | - Benjamin Costas
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (B.R.); (B.C.); (S.R.)
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), Universidade do Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal
| | - Sofia A. Costa Lima
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- Correspondence:
| | - Salette Reis
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (B.R.); (B.C.); (S.R.)
| |
Collapse
|
20
|
Xu Y, Zhang H, Liu XW. Antimicrobial Carbohydrate-Based Macromolecules: Their Structures and Activities. J Org Chem 2020; 85:15827-15836. [DOI: 10.1021/acs.joc.0c01597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yuan Xu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Xue-Wei Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
21
|
de la Cruz N, Sousa-Herves A, Rojo J. Glyconanogels as a versatile platform for the multivalent presentation of carbohydrates: From monosaccharides to dendritic glycostructures. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Bhattacharya K, Banerjee SL, Kundu M, Mandal M, Singha NK. Glycopolymer ornamented octa-arm POSS based organic-inorganic hybrid star block copolymer as a lectin binding ligand. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111210. [PMID: 32806224 DOI: 10.1016/j.msec.2020.111210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/24/2020] [Accepted: 06/16/2020] [Indexed: 10/24/2022]
Abstract
In this study, a polyhedral oligomeric silsesquioxane-polycaprolactone (POSS-PCL)-cored octa-arm star-shaped glyco block copolymer (BCP), poly(ε-caprolactone)-b-poly(glucopyranose) (Star-POSS-PCL-b-PGlc) was successfully synthesized via the combination of ring opening polymerization (ROP) and MADIX (macromolecular design by interchange of xanthate) polymerization technique. Herein, initially octa(3-hydroxy-3-methylbutyl dimethylsiloxy) POSS (Star-POSS) was utilized to initiate the ROP of the ε-caprolactone to get octa-arm star-shaped Star-POSS-PCL. A successive bromination followed by xanthation of the synthesized Star-POSS-PCL polymer allowed us to further polymerize 3-O-acryloyl-1,2:5,6-di-O-isopropylidene-α-D-glucofuranose (AIpGlc) via MADIX polymerization. Formation of the star-shaped block copolymer (BCP) was characterized using 1H NMR, FT-IR and DSC analyses. The morphology and the aqueous solution behavior of the Star-POSS-PCL-b-PGlc were analyzed using FESEM, HRTEM and DLS analyses, respectively. The lectin-binding efficiency of the star-shaped BCP having different glycopolymer block length was studied using turbidimetry assay and fluorescence quenching titration (FQT) using photoluminescence spectroscopy (PL). Here, FITC labeled concanavalin A (FITC-Con A) was used as a model lectin. The cytotoxicity study of the star-shaped BCPs over the human fibroblast cells revealed the non-toxic nature of the BCPs which open up its great potential towards drug delivery vector.
Collapse
Affiliation(s)
- Koushik Bhattacharya
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Sovan Lal Banerjee
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Moumita Kundu
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Nikhil K Singha
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302, West Bengal, India; School of Nanoscience and Technology, Indian Institute of Technology, Kharagpur 721302, West Bengal, India.
| |
Collapse
|
23
|
Moffett S, Shiao TC, Mousavifar L, Mignani S, Roy R. Aberrant glycosylation patterns on cancer cells: Therapeutic opportunities for glycodendrimers/metallodendrimers oncology. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1659. [PMID: 32776710 DOI: 10.1002/wnan.1659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/25/2020] [Accepted: 06/07/2020] [Indexed: 01/29/2023]
Abstract
Despite exciting discoveries and progresses in drug design against cancer, its cure is still rather elusive and remains one of the humanities major challenges in health care. The safety profiles of common small molecule anti-cancer therapeutics are less than at acceptable levels and limiting deleterious side-effects have to be urgently addressed. This is mainly caused by their incapacity to differentiate healthy cells from cancer cells; hence, the use of high dosage becomes necessary. One possible solution to improve the therapeutic windows of anti-cancer agents undoubtedly resides in modern nanotechnology. This review presents a discussion concerning multivalent carbohydrate-protein interactions as this topic pertains to the fundamental aspects that lead glycoscientists to tackle glyconanoparticles. The second section describes the detailed properties of cancer cells and how their aberrant glycan surfaces differ from those of healthy cells. The third section briefly describes the immune systems, both innate and adaptative, because the numerous displays of cell surface protein receptors necessitate to be addressed from the multivalent angles, a strength full characteristic of nanoparticles. The next chapter presents recent advances in glyconanotechnologies, including glycodendrimers in particular, as they apply to glycobiology and carbohydrate-based cancer vaccines. This was followed by an overview of metallodendrimers and how this rapidly evolving field may contribute to our arsenal of therapeutic tools to fight cancer. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
| | | | | | | | - René Roy
- Glycovax Pharma Inc, Montreal, Quebec, Canada
| |
Collapse
|
24
|
Kveton F, Blsakova A, Kasak P, Tkac J. Glycan Nanobiosensors. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1406. [PMID: 32707669 PMCID: PMC7408262 DOI: 10.3390/nano10071406] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/26/2022]
Abstract
This review paper comprehensively summarizes advances made in the design of glycan nanobiosensors using diverse forms of nanomaterials. In particular, the paper covers the application of gold nanoparticles, quantum dots, magnetic nanoparticles, carbon nanoparticles, hybrid types of nanoparticles, proteins as nanoscaffolds and various nanoscale-based approaches to designing such nanoscale probes. The article covers innovative immobilization strategies for the conjugation of glycans on nanoparticles. Summaries of the detection schemes applied, the analytes detected and the key operational characteristics of such nanobiosensors are provided in the form of tables for each particular type of nanomaterial.
Collapse
Affiliation(s)
- Filip Kveton
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia; (F.K.); (A.B.)
| | - Anna Blsakova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia; (F.K.); (A.B.)
| | - Peter Kasak
- Center for Advanced Materials, Qatar University, Doha 2713, Qatar
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia; (F.K.); (A.B.)
| |
Collapse
|
25
|
Balakrishnan B, Subramanian S, Mallia MB, Repaka K, Kaur S, Chandan R, Bhardwaj P, Dash A, Banerjee R. Multifunctional Core–Shell Glyconanoparticles for Galectin-3-Targeted, Trigger-Responsive Combination Chemotherapy. Biomacromolecules 2020; 21:2645-2660. [DOI: 10.1021/acs.biomac.0c00358] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Biji Balakrishnan
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India
| | - Suresh Subramanian
- Radiopharmaceuticals Division, BARC, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Madhava B. Mallia
- Radiopharmaceuticals Division, BARC, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | | | - Shahdeep Kaur
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India
| | - Rajeet Chandan
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India
| | - Prateek Bhardwaj
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India
| | - Ashutosh Dash
- Radiopharmaceuticals Division, BARC, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Rinti Banerjee
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India
| |
Collapse
|
26
|
Ribeiro JPM, Mendonça PV, Coelho JFJ, Matyjaszewski K, Serra AC. Glycopolymer Brushes by Reversible Deactivation Radical Polymerization: Preparation, Applications, and Future Challenges. Polymers (Basel) 2020; 12:E1268. [PMID: 32492977 PMCID: PMC7362234 DOI: 10.3390/polym12061268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/27/2022] Open
Abstract
The cellular surface contains specific proteins, also known as lectins, that are carbohydrates receptors involved in different biological events, such as cell-cell adhesion, cell recognition and cell differentiation. The synthesis of well-defined polymers containing carbohydrate units, known as glycopolymers, by reversible deactivation radical polymerization (RDRP) methods allows the development of tailor-made materials with high affinity for lectins because of their multivalent interaction. These polymers are promising candidates for the biomedical field, namely as novel diagnostic disease markers, biosensors, or carriers for tumor-targeted therapy. Although linear glycopolymers are extensively studied for lectin recognition, branched glycopolymeric structures, such as polymer brushes can establish stronger interactions with lectins. This specific glycopolymer topology can be synthesized in a bottlebrush form or grafted to/from surfaces by using RDRP methods, allowing a precise control over molecular weight, grafting density, and brush thickness. Here, the preparation and application of glycopolymer brushes is critically discussed and future research directions on this topic are suggested.
Collapse
Affiliation(s)
- Jessica P. M. Ribeiro
- Department of Chemical Engineering, Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal; (J.P.M.R.); (J.F.J.C.)
| | - Patrícia V. Mendonça
- Department of Chemical Engineering, Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal; (J.P.M.R.); (J.F.J.C.)
| | - Jorge F. J. Coelho
- Department of Chemical Engineering, Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal; (J.P.M.R.); (J.F.J.C.)
| | - Krzysztof Matyjaszewski
- Department of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA;
| | - Arménio C. Serra
- Department of Chemical Engineering, Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal; (J.P.M.R.); (J.F.J.C.)
| |
Collapse
|
27
|
Beyer VP, Monaco A, Napier R, Yilmaz G, Becer CR. Bottlebrush Glycopolymers from 2-Oxazolines and Acrylamides for Targeting Dendritic Cell-Specific Intercellular Adhesion Molecule-3-Grabbing Nonintegrin and Mannose-Binding Lectin. Biomacromolecules 2020; 21:2298-2308. [PMID: 32320219 DOI: 10.1021/acs.biomac.0c00246] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lectins are omnipresent carbohydrate binding proteins that are involved in a multitude of biological processes. Unearthing their binding properties is a powerful tool toward the understanding and modification of their functions in biological applications. Herein, we present the synthesis of glycopolymers with a brush architecture via a "grafting from" methodology. The use of a versatile 2-oxazoline inimer was demonstrated to open avenues for a wide range of 2-oxazoline/acrylamide bottle brush polymers utilizing aqueous Cu-mediated reversible deactivation radical polymerization (Cu-RDRP). The polymers in the obtained library were assessed for their thermal properties in aqueous solution and their binding toward the C-type animal lectins dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) and mannose-binding lectin (MBL) via surface plasmon resonance spectrometry. The encapsulation properties of a hydrophobic drug-mimicking compound demonstrated the potential use of glyco brush copolymers in biological applications.
Collapse
Affiliation(s)
- Valentin P Beyer
- Polymer Chemistry Laboratory, School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, United Kingdom.,Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Alessandra Monaco
- Polymer Chemistry Laboratory, School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, United Kingdom.,Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Richard Napier
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Gokhan Yilmaz
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - C Remzi Becer
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
28
|
Ma Z, Cunningham AJ, Zhu XX. Enzymatic Conversion of Galactose Polymers into Copolymers Containing Galactonic Acid by Glucose Oxidase. Biomacromolecules 2020; 21:2268-2275. [DOI: 10.1021/acs.biomac.0c00212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Zhiyuan Ma
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Alexander J. Cunningham
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - X. X. Zhu
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
29
|
Asgari S, Pourjavadi A, Licht TR, Boisen A, Ajalloueian F. Polymeric carriers for enhanced delivery of probiotics. Adv Drug Deliv Rev 2020; 161-162:1-21. [PMID: 32702378 DOI: 10.1016/j.addr.2020.07.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022]
Abstract
Probiotics are live microorganisms (usually bacteria), which are defined by their ability to confer health benefits to the host, if administered adequately. Probiotics are not only used as health supplements but have also been applied in various attempts to prevent and treat gastrointestinal (GI) and non-gastrointestinal diseases such as diarrhea, colon cancer, obesity, diabetes, and inflammation. One of the challenges in the use of probiotics is putative loss of viability by the time of administration. It can be due to procedures that the probiotic products go through during fabrication, storage, or administration. Biocompatible and biodegradable polymers with specific moieties or pH/enzyme sensitivity have shown great potential as carriers of the bacteria for 1) better viability, 2) longer storage times, 3) preservation from the aggressive environment in the stomach and 4) topographically targeted delivery of probiotics. In this review, we focus on polymeric carriers and the procedures applied for encapsulation of the probiotics into them. At the end, some novel methods for specific probiotic delivery, possibilities to improve the targeted delivery of probiotics and some challenges are discussed.
Collapse
|
30
|
Zhang Y, Bai L, Liu F, Zhang Y, Cheng Y, Zhang H, Ba X. A novel fluorescent glycopolymer for endogenous hydrogen peroxide imaging in living cells in a fully aqueous environment. Polym J 2019. [DOI: 10.1038/s41428-019-0290-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Glyco-nanoparticles: New drug delivery systems in cancer therapy. Semin Cancer Biol 2019; 69:24-42. [PMID: 31870939 DOI: 10.1016/j.semcancer.2019.12.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 12/24/2022]
Abstract
Cancer is known as one of the most common diseases that are associated with high mobility and mortality in the world. Despite several efforts, current cancer treatment modalities often are highly toxic and lack efficacy and specificity. However, the application of nanotechnology has led to the development of effective nanosized drug delivery systems which are highly selective for tumors and allow a slow release of active anticancer agents. Different Nanoparticles (NPs) such as the silicon-based nano-materials, polymers, liposomes and metal NPs have been designed to deliver anti-cancer drugs to tumor sites. Among different drug delivery systems, carbohydrate-functionalized nanomaterials, specially based on their multi-valent binding capacities and desirable bio-compatibility, have attracted considerable attention as an excellent candidate for controlled release of therapeutic agents. In addition, these carbohydrate functionalized nano-carriers are more compatible with construction of the intracellular delivery platforms like the carbohydrate-modified metal NPs, quantum dots, and magnetic nano-materials. In this review, we discuss recent research in the field of multifunctional glycol-nanoparticles (GNPs) intended for cancer drug delivery applications.
Collapse
|
32
|
Feng L, Zhong M, Zhang S, Wang M, Sun ZY, Chen Q. Synthesis of water-soluble fluorescent polymeric glycoconjugate for the detection of cholera toxin. Des Monomers Polym 2019; 22:150-158. [PMID: 31496925 PMCID: PMC6719259 DOI: 10.1080/15685551.2019.1654695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/01/2019] [Indexed: 01/10/2023] Open
Abstract
Considering inherence optical properties of adjoint polyfluorenes and special functions of water-soluble conjugated glycopolymers, a triazole chain glycoconjugate via one-pot method were rapidly synthesized to prepare a lactate ligand polyfluorene with a clear fluorescent label by a nickel-catalyzed Yamamoto coupling polymerization. The water solubility and biocompatibility of the glycoconjugated polymer were ameliorated when the lactose group introduced as the side chain of the conjugated polymer. As a fluorescent multivalent system of glycoconjugates containing pyranogalactose groups, the interaction between pyranogalactose group and cholera toxin B subunit was studied by fluorescence spectrophotometric titration. PF-Lac has a broad application prospect in the check of cholera toxin and the study of glycoprotein interaction.
Collapse
Affiliation(s)
- Lijuan Feng
- Department of Bioengineering, Zunyi Medical University (Zhuhai Compus), Zhuhai, China
| | - Mingjun Zhong
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Shizhen Zhang
- Institute for Interdisciplinary Research, Jianghan University, Wuhan, China
| | - Min Wang
- Department of Bioengineering, Zunyi Medical University (Zhuhai Compus), Zhuhai, China
| | - Zhi-Yong Sun
- Department of Bioengineering, Zunyi Medical University (Zhuhai Compus), Zhuhai, China
| | - Qi Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| |
Collapse
|
33
|
Dag A, Omurtag Ozgen PS, Atasoy S. Glyconanoparticles for Targeted Tumor Therapy of Platinum Anticancer Drug. Biomacromolecules 2019; 20:2962-2972. [DOI: 10.1021/acs.biomac.9b00528] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Pinar Sinem Omurtag Ozgen
- Department of Analytical Chemistry, School of Pharmacy, Istanbul Medipol University, İstanbul 34810, Turkey
| | | |
Collapse
|
34
|
de Castro CE, Ribeiro CAS, da Silva MCC, Gonçalves Dal-Bó A, Giacomelli FC. Sweetness Reduces Cytotoxicity and Enables Faster Cellular Uptake of Sub-30 nm Amphiphilic Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8060-8067. [PMID: 31117721 DOI: 10.1021/acs.langmuir.8b04200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Glycoconjugates are versatile entities used for the manufacturing of targeted drug delivery nanocontainers because of their outstanding capability to bind to lectins, which are proteins that can be found overexpressed in the membranes of unhealthy cells. The assisted attachment to pathological cells can further enable a more efficient intracellular delivery of loaded active agents, thereby reducing side effects that commonly compromise chemotherapies. In this framework, azide-terminated polyethylene oxide (PEO) chains coupled to a 22-carbon chain were synthesized (azide-PEO900-docosanoate). The resulting amphiphile was further functionalized by introducing different sugar moieties to the PEO chains via the click chemistry approach. Sub-30 nm, negatively charged, and spherical nanoparticles were prepared in water by self-assembly of the synthesized molecules using the straightforward nanoprecipitation protocol. The produced entities do not induce hemolysis in red blood cells at c ≤ 200 μg mL-1, and they are not cytotoxic to healthy cells [telomerase immortalized rhesus fibroblasts (Telo-RF)] at c ≤ 50 μg mL-1. The sugar-decorated nanoparticles are less cytotoxic compared with their naked counterparts at the concentration range assessed. The kinetics of cellular uptake of both entities into normal (Telo-RF) and tumor (HeLa) cells were monitored via fluorescence microscopy and flow cytometry. The nanoparticles are internalized faster in cancer cells than in normal cells, regardless of functionalization. Moreover, the functionalized nanoparticles are internalized faster in HeLa cells, while the reverse was observed in healthy Telo-RF cells. The distinct surface characteristics of the assemblies create an opportunity to expedite the uptake of nanoparticles particularly by tumor cells, and this accordingly can lead to a more effective intracellular delivery of therapeutic molecules loaded into nanoparticle's reservoirs.
Collapse
Affiliation(s)
- Carlos E de Castro
- Centro de Ciências Naturais e Humanas , Universidade Federal do ABC , 09210-580 Santo André , São Paulo , Brazil
| | - Caroline A S Ribeiro
- Centro de Ciências Naturais e Humanas , Universidade Federal do ABC , 09210-580 Santo André , São Paulo , Brazil
| | - Maria C C da Silva
- Centro de Ciências Naturais e Humanas , Universidade Federal do ABC , 09210-580 Santo André , São Paulo , Brazil
| | - Alexandre Gonçalves Dal-Bó
- Universidade do Extremo Sul Catarinense-UNESC , Av. Universitária 1105 , 88806-000 Criciúma , Santa Catarina , Brazil
| | - Fernando C Giacomelli
- Centro de Ciências Naturais e Humanas , Universidade Federal do ABC , 09210-580 Santo André , São Paulo , Brazil
| |
Collapse
|
35
|
Efficient Photodynamic Therapy of Prostate Cancer Cells through an Improved Targeting of the Cation-Independent Mannose 6-Phosphate Receptor. Int J Mol Sci 2019; 20:ijms20112809. [PMID: 31181759 PMCID: PMC6600508 DOI: 10.3390/ijms20112809] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 12/23/2022] Open
Abstract
The aim of the present work is the development of highly efficient targeting molecules to specifically address mesoporous silica nanoparticles (MSNs) designed for the photodynamic therapy (PDT) of prostate cancer. We chose the strategy to develop a novel compound that allows the improvement of the targeting of the cation-independent mannose 6-phosphate receptor, which is overexpressed in prostate cancer. This original sugar, a dimannoside-carboxylate (M6C-Man) grafted on the surface of MSN for PDT applications, leads to a higher endocytosis and thus increases the efficacy of MSNs.
Collapse
|
36
|
Zheng Y, Luo Y, Feng K, Zhang W, Chen G. High Throughput Screening of Glycopolymers: Balance between Cytotoxicity and Antibacterial Property. ACS Macro Lett 2019; 8:326-330. [PMID: 35650837 DOI: 10.1021/acsmacrolett.9b00091] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To search for synthetic agents with low cytotoxicity and good antibacterial activity is essential for antimicrobial applications. Here we report a high throughput technique that carried out in multiwell plates via recyclable-catalyst-aided, opened-to-air, and sunlight-photolyzed RAFT (ROS-RAFT) polymerization. By using this method, three key monomers (MAG the sugar unit, DMAPMA the positively charged monomer, and DEMAA the hydrophobic monomer) can be polymerized in a controlled manner to afford glycopolymers. This simple high throughput technology is used to synthesize glycopolymers with variable compositions. The bacterial adhesion/killing ability and cytotoxicity of synthesized polymers have been evaluated, and glycopolymers with certain composition can achieve a balance of low cytotoxic and good antibacterial activity.
Collapse
Affiliation(s)
- Yuqing Zheng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research and School of Physical Science and Technology, Soochow University, Suzhou 215006, People’s Republic of China
| | - Yan Luo
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Kai Feng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research and School of Physical Science and Technology, Soochow University, Suzhou 215006, People’s Republic of China
| | - Weidong Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research and School of Physical Science and Technology, Soochow University, Suzhou 215006, People’s Republic of China
| | - Gaojian Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research and School of Physical Science and Technology, Soochow University, Suzhou 215006, People’s Republic of China
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| |
Collapse
|
37
|
Tong Q, Schmidt MS, Wittmann V, Mecking S. Multivalent Carbohydrate-Functionalized Polymer Nanocrystals. Biomacromolecules 2019; 20:294-304. [PMID: 30512919 DOI: 10.1021/acs.biomac.8b01460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanoparticles with a covalently bound shell of carbohydrate or sulfate groups, respectively, and a polyethylene core were generated by Ni(II)-catalyzed aqueous copolymerization of ethylene with comonomers undec-10-en-1-yl sulfate, undec-10-en-1-yl β-d-glucoside or undec-10-en-1-yl α-d-mannoside, respectively. Via remote substituents of the catalyst, the degree of branching and consequently degree of crystallinity of the polyethylene core of the glyconanoparticles could be controlled. This in turn impacts particle shapes, from spherical to anisotropic platelets, as observed by cryo-transmission electron microscopy. Enzyme-linked lectin assays revealed the mannose-decorated nanocrystals to be efficient multivalent ligands for concavalin A.
Collapse
Affiliation(s)
- Qiong Tong
- Department of Chemistry , University of Konstanz , Universitätsstraße 10 , D-78457 Konstanz , Germany
| | - Magnus S Schmidt
- Department of Chemistry , University of Konstanz , Universitätsstraße 10 , D-78457 Konstanz , Germany
| | - Valentin Wittmann
- Department of Chemistry , University of Konstanz , Universitätsstraße 10 , D-78457 Konstanz , Germany
| | - Stefan Mecking
- Department of Chemistry , University of Konstanz , Universitätsstraße 10 , D-78457 Konstanz , Germany
| |
Collapse
|
38
|
Ma Z, Zhu XX. Copolymers containing carbohydrates and other biomolecules: design, synthesis and applications. J Mater Chem B 2019; 7:1361-1378. [DOI: 10.1039/c8tb03162b] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review highlights recent progress in random and block copolymers containing sugar and other biocompounds, including their design, synthesis, properties and selected applications.
Collapse
Affiliation(s)
- Zhiyuan Ma
- Département de Chimie
- Université de Montréal
- Montreal
- Canada
| | - X. X. Zhu
- Département de Chimie
- Université de Montréal
- Montreal
- Canada
| |
Collapse
|
39
|
Pramudya I, Chung H. Recent progress of glycopolymer synthesis for biomedical applications. Biomater Sci 2019; 7:4848-4872. [DOI: 10.1039/c9bm01385g] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Glycopolymers are an important class of biomaterials which include carbohydrate moieties in their polymer structure.
Collapse
Affiliation(s)
- Irawan Pramudya
- Department of Chemical and Biomedical Engineering
- Florida State University
- Tallahassee
- USA
| | - Hoyong Chung
- Department of Chemical and Biomedical Engineering
- Florida State University
- Tallahassee
- USA
| |
Collapse
|
40
|
|
41
|
Malakootikhah J, Rezayan AH, Negahdari B, Nasseri S, Rastegar H. Porous MnFe 2O 4@SiO 2 magnetic glycopolymer: A multivalent nanostructure for efficient removal of bacteria from aqueous solution. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:277-284. [PMID: 30273851 DOI: 10.1016/j.ecoenv.2018.09.086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 09/12/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
The focuses of this research is to prepare an efficient magnetic glycopolymer for bacteria removal from aqueous solution. To perform this idea; porous MnFe2O4@SiO2 was functionalized with glucose and or maltose as an anchors to adhere onto bacteria cell surface. Aminopropyltriethoxysilane was employed to link the saccharides on magnetic nanoparticle surface. The hybrid materials were characterized with XRD, VSM, FT-IR, FESEM, TEM, zeta potential measurement and elemental mapping. Microscopic image showed that MnFe2O4 is in cluster form composed from tiny nanoparticles. After saccharide functionalization hybrid composite generate hyper-crosslinked porous structure as a result of polysilicate formation due to hydrolysis of silica source. Escherichia coli and bacillus subtilis were selected as sample pathogens to evaluate the bacteria capturing ability of the magnetic glycopolymer. At the optimum conditions (pH = 6, time of 20 min, dosage of 15 mg) removal efficiency was more than 99% using both saccharide.
Collapse
Affiliation(s)
- Javad Malakootikhah
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Ali Hossein Rezayan
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran.
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Simin Nasseri
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Rastegar
- Cosmetic Products Research Center, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| |
Collapse
|
42
|
Mukwaya V, Wang C, Dou H. Saccharide-based nanocarriers for targeted therapeutic and diagnostic applications. POLYM INT 2018. [DOI: 10.1002/pi.5702] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Vincent Mukwaya
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering; Shanghai Jiao Tong University; Shanghai PR China
| | - Chenglong Wang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering; Shanghai Jiao Tong University; Shanghai PR China
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering; Shanghai Jiao Tong University; Shanghai PR China
| |
Collapse
|
43
|
Liu R, Becer CR, Screen HRC. Guided Cell Attachment via Aligned Electrospinning of Glycopolymers. Macromol Biosci 2018; 18:e1800293. [DOI: 10.1002/mabi.201800293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/17/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Renjie Liu
- Polymer Chemistry LaboratorySchool of Engineering and Materials ScienceQueen Mary University of London E1 4NS London UK
| | - Caglar Remzi Becer
- Polymer Chemistry LaboratorySchool of Engineering and Materials ScienceQueen Mary University of London E1 4NS London UK
| | - Hazel R. C. Screen
- Institute of BioengineeringSchool of Engineering and Materials ScienceQueen Mary University of London E1 4NS London UK
| |
Collapse
|
44
|
Quan J, Shen FW, Cai H, Zhang YN, Wu H. Galactose-Functionalized Double-Hydrophilic Block Glycopolymers and Their Thermoresponsive Self-Assembly Dynamics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10721-10731. [PMID: 30113172 DOI: 10.1021/acs.langmuir.8b01516] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Glycopolymers with large galactose units are attractive in biological processes because of their ability to selectively recognize lectin proteins. Recently, thermoresponsive double-hydrophilic block glycopolymers (TDHBGs) have been designed, which allow sugar residues to expose or hide via the lower critical solution temperature (LCST)-type phase transition. In this work, we first synthesize a new type of TDHBGs, composed of a thermoresponsive poly(di(ethylene glycol)methyl ether methacrylate) block and a galactose-functionalized, poly(6- O-vinyladipoyl-d-galactose) (POVNG) block. The LCST can be tuned by varying the size of the POVNG block. Then, we have systematically investigated their thermoresponsive self-assembly behavior, using static and dynamic light scattering techniques, combined with transmission electron microscopy (TEM) imaging. It is found that the TDHBGs possess both micellization and LCST-type transition, and there exist strong interactions between them, depending on the concentration and structure of the TDHBGs. It is particularly interesting that for the same type of TDHBGs under different conditions, such interactions result in rich morphologies of the formed micelles (or nanoparticles) such as spheres, hollow spheres, prolate ellipsoids, crystal-like, and so on, thus potentially enriching their biological applications by noting that they are hepatoma-targeting glycopolymers.
Collapse
Affiliation(s)
- Jing Quan
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, and College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Fa-Wei Shen
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, and College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Hao Cai
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, and College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Yi-Na Zhang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, and College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Hua Wu
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences , ETH Zurich , 8093 Zurich , Switzerland
| |
Collapse
|
45
|
Xu X, Hu F, Shuai Q. Click Chemistry-Assisted Synthesis of a β-d-Galactose-Targeted SiO 2@RC Shell-Core Structure as a Nanoplatform for Metal-Based Complex Delivery. Inorg Chem 2018; 57:10694-10701. [PMID: 30113819 DOI: 10.1021/acs.inorgchem.8b01335] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A facile reversed-phase microemulsion method was used to synthesize shell-core nanospheres of SiO2@RCs (SiO2-encapsuled rare-earth metal complexes). β-d-Galactose was then grafted onto the surfaces of the nanospheres through the copper(I)-catalyzed azide-alkyne cycloaddition click reaction for targeted delivery. The chemical characteristics and surface profiles of the nanocarriers were investigated by Fourier transform infrared spectroscopy, dynamic light scattering, transmission electron microscopy, and scanning electron microscopy. A high-efficiency microwave synthesis method was applied to prepare five complex cores by the reaction of different rare-earth metal salts with two isomeric ligands, o-CPA (2-chlorophenoxyacetic acid) and m-CPA (3-chlorophenoxyacetic acid). The crystal structures of the five synthesized RC cores were confirmed through X-ray diffraction, which revealed the formulas of five RCs, [Dy( o-CPA)3(H2O)]·H2O RC1, [Ho( o-CPA)3(H2O)]·H2O RC2, 2[Er( m-CPA)3(H2O)]·3H2O RC3, 2[Gd( m-CPA)3(H2O)]·3H2O RC4, and [Ce2( m-CPA)6(H2O)3]·2H2O RC5. An in vitro cell study revealed that all RCs exhibited certain anticancer activities. RC2, in particular, showed the strongest cytotoxicity against HepG2 cells. The enhanced cell permeability and drug retention considerably improved the cytotoxicity of all SiO2@RC2-gal relative to that of RC2. The selective uptake of the β-d-galactose-conjugated nanospheres by HepG2 cells through mechanisms mediated by cell surface receptors resulted in fewer side effects on extrahepatic tissues. Our contribution provides a novel design concept of a target SiO2@RCs-gal nanocarrier for delivering affordable antitumor complexes in cancer therapy.
Collapse
Affiliation(s)
- Xiuling Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
| | - Fan Hu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
| | - Qi Shuai
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
| |
Collapse
|
46
|
Ma Z, Zhu XX. Core Cross-linked Micelles Made of Glycopolymers Bearing Dopamine and Cholic Acid Pendants. Mol Pharm 2018; 15:2348-2354. [DOI: 10.1021/acs.molpharmaceut.8b00205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Zhiyuan Ma
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - X. X. Zhu
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
47
|
Abstract
Bio-imaging is a key technique in tracking and monitoring important biological processes and fundamental biomolecular interactions, however the interference of background autofluorescence with targeted fluorophores is problematic for many bio-imaging applications. This study reports on two novel methods for reducing interference with cellular autofluorescence for bio-imaging. The first method uses fluorescent nanodiamonds (FNDs), containing nitrogen vacancy centers. FNDs emit at near-infrared wavelengths typically higher than most cellular autofluorescence; and when appropriately functionalized, can be used for background-free imaging of targeted biomolecules. The second method uses europium-chelating tags with long fluorescence lifetimes. These europium-chelating tags enhance background-free imaging due to the short fluorescent lifetimes of cellular autofluorescence. In this study, we used both methods to target E-selectin, a transmembrane glycoprotein that is activated by inflammation, to demonstrate background-free fluorescent staining in fixed endothelial cells. Our findings indicate that both FND and Europium based staining can improve fluorescent bio-imaging capabilities by reducing competition with cellular autofluorescence. 30 nm nanodiamonds coated with the E-selectin antibody was found to enable the most sensitive detective of E-selectin in inflamed cells, with a 40-fold increase in intensity detected.
Collapse
|
48
|
Ma Z, Jia YG, Zhu XX. Glycopolymers Bearing Galactose and Betulin: Synthesis, Encapsulation, and Lectin Recognition. Biomacromolecules 2017; 18:3812-3818. [DOI: 10.1021/acs.biomac.7b01106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zhiyuan Ma
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Yong-Guang Jia
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - X. X. Zhu
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
49
|
Kutcherlapati SNR, Koyilapu R, Boddu UMR, Datta D, Perali RS, Swamy MJ, Jana T. Glycopolymer-Grafted Nanoparticles: Synthesis Using RAFT Polymerization and Binding Study with Lectin. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01265] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | | | | | - Debparna Datta
- School of Chemistry, University of Hyderabad, Hyderabad, India
| | | | - Musti J. Swamy
- School of Chemistry, University of Hyderabad, Hyderabad, India
| | - Tushar Jana
- School of Chemistry, University of Hyderabad, Hyderabad, India
| |
Collapse
|
50
|
Lonnecker AT, Lim YH, Wooley KL. Functional Polycarbonate of a d-Glucal-Derived Bicyclic Carbonate via Organocatalytic Ring-Opening Polymerization. ACS Macro Lett 2017; 6:748-753. [PMID: 35650856 DOI: 10.1021/acsmacrolett.7b00362] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Herein, we demonstrate the synthesis of a bicyclic carbonate monomer of a d-glucal derivative, which originated from the natural product d-glucose, in an efficient three-step procedure and its ring-opening polymerization (ROP), initiated by 4-methylbenzyl alcohol, via organocatalysis. The ROP behavior was studied as a function of time, catalyst type, and catalyst concentration by using size exclusion chromatography (SEC) and nuclear magnetic resonance (NMR) spectroscopy. Using a cocatalyst system of 1,8-diazabicyclo[5.4.0]undec-7-ene and 1-(3,5-bis(trifluoromethyl)phenyl)-3-cyclohexyl-2-thiourea (5 mol %) afforded poly(d-glucal-carbonate) (PGCC) with almost complete monomer conversion (ca. 99%) within 1 min, as analyzed by 1H NMR spectroscopy, and a monomodal SEC trace with dispersity of 1.13. The resulting PGCCs exhibited amorphous characteristics with a relatively high glass transition temperature at ca. 69 °C and onset decomposition temperature at ca. 190 °C, as analyzed by differential scanning calorimetry and thermogravimetric analysis, respectively. This new type of potentially degradable polymer system represents a reactive functional polymer architecture.
Collapse
Affiliation(s)
- Alexander T. Lonnecker
- Departments of Chemistry, Chemical Engineering, and Materials Science and Engineering, and Laboratory for Synthetic−Biologic Interactions, Texas A&M University, College Station, Texas 77842, United States
| | - Young H. Lim
- Departments of Chemistry, Chemical Engineering, and Materials Science and Engineering, and Laboratory for Synthetic−Biologic Interactions, Texas A&M University, College Station, Texas 77842, United States
| | - Karen L. Wooley
- Departments of Chemistry, Chemical Engineering, and Materials Science and Engineering, and Laboratory for Synthetic−Biologic Interactions, Texas A&M University, College Station, Texas 77842, United States
| |
Collapse
|