1
|
Taghizadeh A, Taghizadeh M, Yazdi MK, Zarrintaj P, Ramsey JD, Seidi F, Stadler FJ, Lee H, Saeb MR, Mozafari M. Mussel-inspired biomaterials: From chemistry to clinic. Bioeng Transl Med 2022; 7:e10385. [PMID: 36176595 PMCID: PMC9472010 DOI: 10.1002/btm2.10385] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/25/2022] [Accepted: 07/16/2022] [Indexed: 11/18/2022] Open
Abstract
After several billions of years, nature still makes decisions on its own to identify, develop, and direct the most effective material for phenomena/challenges faced. Likewise, and inspired by the nature, we learned how to take steps in developing new technologies and materials innovations. Wet and strong adhesion by Mytilidae mussels (among which Mytilus edulis-blue mussel and Mytilus californianus-California mussel are the most well-known species) has been an inspiration in developing advanced adhesives for the moist condition. The wet adhesion phenomenon is significant in designing tissue adhesives and surgical sealants. However, a deep understanding of engaged chemical moieties, microenvironmental conditions of secreted proteins, and other contributing mechanisms for outstanding wet adhesion mussels are essential for the optimal design of wet glues. In this review, all aspects of wet adhesion of Mytilidae mussels, as well as different strategies needed for designing and fabricating wet adhesives are discussed from a chemistry point of view. Developed muscle-inspired chemistry is a versatile technique when designing not only wet adhesive, but also, in several more applications, especially in the bioengineering area. The applications of muscle-inspired biomaterials in various medical applications are summarized for future developments in the field.
Collapse
Affiliation(s)
- Ali Taghizadeh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook UniversityCheonanRepublic of Korea
| | - Mohsen Taghizadeh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook UniversityCheonanRepublic of Korea
| | - Mohsen Khodadadi Yazdi
- Center of Excellence in ElectrochemistrySchool of Chemistry, College of Science, University of TehranTehranIran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State UniversityStillwaterOklahomaUSA
| | - Joshua D. Ramsey
- School of Chemical Engineering, Oklahoma State UniversityStillwaterOklahomaUSA
| | - Farzad Seidi
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjingChina
| | - Florian J. Stadler
- College of Materials Science and EngineeringShenzhen Key Laboratory of Polymer Science and TechnologyGuangdongChina
| | - Haeshin Lee
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of ChemistryGdańsk University of TechnologyGdańskPoland
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative MedicineIran University of Medical SciencesTehranIran
- Present address:
Lunenfeld‐Tanenbaum Research InstituteMount Sinai Hospital, University of TorontoToronto, ONCanada
| |
Collapse
|
2
|
Ren J, Yang H, Wu Y, Liu S, Ni K, Ran X, Zhou X, Gao W, Du G, Yang L. Dynamic reversible adhesives based on crosslinking network via Schiff base and Michael addition. RSC Adv 2022; 12:15241-15250. [PMID: 35693229 PMCID: PMC9116177 DOI: 10.1039/d2ra02299k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/12/2022] [Indexed: 11/21/2022] Open
Abstract
It is of practical interest to obtain polymers with complex material properties in a simplified synthetic manner for a broader range of practical applications. In this work, we constructed a dynamic reversible adhesive based on branched polyamine (PA) and p-formylphenyl acrylate (FPA) by simultaneously performing Michael addition reaction and Schiff base reaction. Branched polyamines provide a large number of amino groups as reaction sites that can react with both carbon-carbon double bonds and aldehyde groups. This enables the branched polymeric adhesive system to have a large number of Schiff base bonds within it, an important property of Schiff base bonds is that they are dynamically reversible. This allows us to prepare adhesives with hyperbranched crosslinking networks and recycling properties, and we have verified that FPA-PA adhesives do not exhibit significant fatigue after multiple recycling through the gluing-destruction-gluing process. The resulting FPA-PA adhesives produce tough bonding on multi-substrates such as steel, aluminum, glass, PVC, PTFE, birch and moso bamboo, which exhibited by lap shear strength of 2.4 MPa, 1.7 MPa, 1.4 MPa, 1.3 MPa, 0.4 MPa, 1.6 MPa, and 1.8 MPa, respectively. The feasibility of the synthesis idea of simultaneous Michael addition reaction and Schiff base reaction was demonstrated, as well as the excellent performance and great application potential of FPA-PA adhesives to be recyclable on multi-substrates.
Collapse
Affiliation(s)
- Junyu Ren
- International Joint Research Center for Biomass Materials, Yunnan Province Key Lab of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 China
| | - Hongxing Yang
- International Joint Research Center for Biomass Materials, Yunnan Province Key Lab of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 China
| | - Yingchen Wu
- International Joint Research Center for Biomass Materials, Yunnan Province Key Lab of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 China
| | - Sichen Liu
- International Joint Research Center for Biomass Materials, Yunnan Province Key Lab of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 China
| | - Kelu Ni
- International Joint Research Center for Biomass Materials, Yunnan Province Key Lab of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 China
| | - Xin Ran
- International Joint Research Center for Biomass Materials, Yunnan Province Key Lab of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 China
| | - Xiaojian Zhou
- International Joint Research Center for Biomass Materials, Yunnan Province Key Lab of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 China
| | - Wei Gao
- International Joint Research Center for Biomass Materials, Yunnan Province Key Lab of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 China
| | - Guanben Du
- International Joint Research Center for Biomass Materials, Yunnan Province Key Lab of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains, Ministry of Education, Southwest Forestry University Kunming 650224 China
| | - Long Yang
- International Joint Research Center for Biomass Materials, Yunnan Province Key Lab of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains, Ministry of Education, Southwest Forestry University Kunming 650224 China
| |
Collapse
|
3
|
Hou M, Wang X, Yue O, Zheng M, Zhang H, Liu X. Development of a multifunctional injectable temperature-sensitive gelatin-based adhesive double-network hydrogel. BIOMATERIALS ADVANCES 2022; 134:112556. [PMID: 35525757 DOI: 10.1016/j.msec.2021.112556] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Gelatin-based bioadhesives are suitable for the treatment of wounds due to their inherent biocompatibility, lack of immunogenicity, and potential for modification. However, common limitations with such adhesives include their adhesive strength and versatility. In the present study, a multifunctional injectable temperature-sensitive gelatin-based adhesive double-network hydrogel (DNGel) was engineered using facile dual-syringe methodology. An integrative crosslinking strategy utilized the complexation of catechol-Fe3+ and NIPAAm-methacryloyl. As anticipated, the DNGel exhibited multifunctional therapeutic properties, namely temperature-sensitivity, mechanical flexibility, good adhesive strength, injectability, self-healing capability, antibacterial activity, and the capability to enable hemostasis and wound healing. The bioinspired dynamic double-network was stabilized by a number of molecular interactions between components in the DNGel, providing multifunctional therapeutic performance. In addition, comprehensive in vitro and in vivo testing confirmed that the adhesive hydrogel exhibited effective antihemorrhagic properties and accelerated wound healing by the promotion of revascularization, representing considerable potential as a next-generation multifunctional smart adhesive patch.
Collapse
Affiliation(s)
- Mengdi Hou
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Wei Yang District, Xi'an 710021, Shaanxi, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Weiyang District, Xi'an, Shaanxi 710021, China
| | - Xuechuan Wang
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Weiyang District, Xi'an 710021, Shaanxi, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Weiyang District, Xi'an, Shaanxi 710021, China.
| | - Ouyang Yue
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Wei Yang District, Xi'an 710021, Shaanxi, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Weiyang District, Xi'an, Shaanxi 710021, China
| | - Manhui Zheng
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Weiyang District, Xi'an 710021, Shaanxi, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Weiyang District, Xi'an, Shaanxi 710021, China
| | - Huijie Zhang
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Weiyang District, Xi'an 710021, Shaanxi, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Weiyang District, Xi'an, Shaanxi 710021, China
| | - Xinhua Liu
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Weiyang District, Xi'an 710021, Shaanxi, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Weiyang District, Xi'an, Shaanxi 710021, China.
| |
Collapse
|
4
|
Lu D, Jin Y, Wang X, Xie L, Liu Q, Chen Y, Wang H, Lei Z. Heparin-like anticoagulant polypeptides with tunable activity: Synthesis, characterization, anticoagulative properties and clot solubilities in vitro. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112405. [PMID: 34579917 DOI: 10.1016/j.msec.2021.112405] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/05/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022]
Abstract
Due to the uncontrollable anticoagulant activity and limited source, Heparin, which is commonly used in clinical anticoagulation therapies, faces the risk of spontaneous bleeding and thrombocytopenia. Herein, a series of anionic poly(amino acid) s poly (l-Serine-ran-L-Glutamic acid-ran-L-Cysteine-SO3) (PSEC-SO3) were prepared by the controlled Ring Opening Polymerization (ROP) of N-Carboxyanhydrides (NCAs). The anticoagulant activities of PSEC-SO3 can be regulated by simply adjusting the feeding ratio of monomers. In vitro tests show that these polypeptides can effectively prolong the Activated Partical Thromboplastin Time (APTT) and inhibit Factor IIa and Factor Xa, but has no significant effect on Prothrombin Time (PT) and Thrombin Time (TT), which indicates that PSEC-SO3 mainly act on the intrinsic pathway. In summary, the activity-tunable heparin-like polypeptides are expected to have good application prospects in the anticoagulant field.
Collapse
Affiliation(s)
- Dedai Lu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Yuanyuan Jin
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xiangya Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Liyuan Xie
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Qianqian Liu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yamin Chen
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Hui Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ziqiang Lei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
5
|
Zhao J, Kirillova A, Kelly CN, Xu H, Koshut WJ, Yang F, Gall K, Wiley BJ. High-Strength Hydrogel Attachment through Nanofibrous Reinforcement. Adv Healthc Mater 2021; 10:e2001119. [PMID: 32940005 DOI: 10.1002/adhm.202001119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/05/2020] [Indexed: 01/08/2023]
Abstract
The repair of a cartilage lesion with a hydrogel requires a method for long-term fixation of the hydrogel in the defect site. Attachment of a hydrogel to a base that allows for integration with bone can enable long-term fixation of the hydrogel, but current methods of forming bonds to hydrogels have less than a tenth of the shear strength of the osteochondral junction. This communication describes a new method, nanofiber-enhanced sticking (NEST), for bonding a hydrogel to a base with an adhesive shear strength three times larger than the state-of-the-art. An example of NEST is described in which a nanofibrous bacterial cellulose sheet is bonded to a porous base with a hydroxyapatite-forming cement followed by infiltration of the nanofibrous sheet with hydrogel-forming polymeric materials. This approach creates a mineralized nanofiber bond that mimics the structure of the osteochondral junction, in which collagen nanofibers extend from cartilage into a mineralized region that anchors cartilage to bone.
Collapse
Affiliation(s)
- Jiacheng Zhao
- Department of Chemistry Duke University 124 Science Drive, Box 90354 Durham NC 27708 USA
| | - Alina Kirillova
- Department of Mechanical Engineering and Materials Science Duke University 144 Hudson Hall, Box 90300 Durham NC 27708 USA
| | - Cambre N. Kelly
- Department of Mechanical Engineering and Materials Science Duke University 144 Hudson Hall, Box 90300 Durham NC 27708 USA
| | - Heng Xu
- Department of Chemistry Duke University 124 Science Drive, Box 90354 Durham NC 27708 USA
| | - William J. Koshut
- Department of Mechanical Engineering and Materials Science Duke University 144 Hudson Hall, Box 90300 Durham NC 27708 USA
| | - Feichen Yang
- Department of Chemistry Duke University 124 Science Drive, Box 90354 Durham NC 27708 USA
| | - Ken Gall
- Department of Mechanical Engineering and Materials Science Duke University 144 Hudson Hall, Box 90300 Durham NC 27708 USA
| | - Benjamin J. Wiley
- Department of Chemistry Duke University 124 Science Drive, Box 90354 Durham NC 27708 USA
| |
Collapse
|
6
|
Kumar P, Liu B, Behl G. A Comprehensive Outlook of Synthetic Strategies and Applications of Redox‐Responsive Nanogels in Drug Delivery. Macromol Biosci 2019; 19:e1900071. [PMID: 31298803 DOI: 10.1002/mabi.201900071] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/03/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Parveen Kumar
- Laboratory of Functional Molecules and Materials School of Physics and Optoelectronic EngineeringShandong University of Technology Xincun West Road 266 Zibo 255000 China
| | - Bo Liu
- Laboratory of Functional Molecules and Materials School of Physics and Optoelectronic EngineeringShandong University of Technology Xincun West Road 266 Zibo 255000 China
| | - Gautam Behl
- Pharmaceutical and Molecular Biotechnology Research CentreDepartment of ScienceWaterford Institute of Technology Cork Road Waterford X91K0EK Republic of Ireland
| |
Collapse
|
7
|
Biomimetic chitosan-graft-polypeptides for improved adhesion in tissue and metal. Carbohydr Polym 2019; 215:20-28. [DOI: 10.1016/j.carbpol.2019.03.065] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 12/25/2022]
|
8
|
Pinnaratip R, Bhuiyan MSA, Meyers K, Rajachar RM, Lee BP. Multifunctional Biomedical Adhesives. Adv Healthc Mater 2019; 8:e1801568. [PMID: 30945459 PMCID: PMC6636851 DOI: 10.1002/adhm.201801568] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/07/2019] [Indexed: 12/21/2022]
Abstract
Currently available biomedical adhesives are mainly engineered to have one function (i.e., providing mechanical support for the repaired tissue). To improve the performance of existing bioadhesives and broaden their applications in medicine, numerous multifunctional bioadhesives are reported in the literature. These adhesives can be categorized as passive or active by design. Passive multifunctional bioadhesives contain inherent compositions and structural designs that can carry out additional functions without added external influences. These adhesives exhibit new functionalities such as antimicrobial properties, self-healing abilities, the ability to promote cellular ingrowth, and the ability to be reshaped. Conversely, active multifunctional bioadhesives respond to environmental changes (e.g., pH, temperature, electricity, light, and biomolecule concentration), which initiate a change in the adhesive to release encapsulated drugs or to activate or deactivate the bioadhesive for interfacial binding. This review article highlights recent advances in multifunctional bioadhesives.
Collapse
Affiliation(s)
- Rattapol Pinnaratip
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931
| | - Md. Saleh Akram Bhuiyan
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931
| | - Kaylee Meyers
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931
| | - Rupak M. Rajachar
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931
| | - Bruce P. Lee
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931
| |
Collapse
|
9
|
Luo Z, Jiang L, Ding C, Hu B, Loh XJ, Li Z, Wu Y. Surfactant Free Delivery of Docetaxel by Poly[(R)-3-hydroxybutyrate-(R)-3-hydroxyhexanoate]-Based Polymeric Micelles for Effective Melanoma Treatments. Adv Healthc Mater 2018; 7:e1801221. [PMID: 30398017 DOI: 10.1002/adhm.201801221] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/23/2018] [Indexed: 12/13/2022]
Abstract
Docetaxel (DTX) is a new semisynthetic chemical in the taxoid family and serves a wide spectrum of chemotherapeutics. Current commercial formulation of DTX is based on the addition of the nonionic surfactants (i.e., ethanol and Tween 80), which are reported to cause severe hemolysis, hypersensitivity reactions, or neurotoxic toxicity and greatly hinders patient tolerance or compliance. In this report, a novel low-toxic, biodegradable, and amphiphilic poly[(R)-3-hydroxybutyrate-(R)-3-hydroxyhexanoate] (PHBHx)-based polyurethane (a copolymer made of hydrophobic PHBHx with biocompatible D-3-hydroxybutyric acid as degradation product, thermosensitive polypropylene glycol (PPG), and hydrophilic polyethylene glycol (PEG) segments) with nanosized micelle formation ability to encapsulate DTX, as a surfactant free formulation, is reported. Interestingly, this DTX-loaded poly(PHBHx/PEG/PPG urethane) micelle formulation with >90% drug loading efficiency shows significantly improved DTX solubility in aqueous medium, reduced hemolysis for better blood compatibility, and increased drug uptake in A375 melanoma cells, which provides the possibility of systematic delivery of DTX. As a proof-of-concept, an A375 melanoma xenograft mouse model is established to verify the therapeutic effect of this DTX-loaded poly(PHBHx/PEG/PPG urethane) micelle formulation, indicating the promising application of PHBHx-based polymeric nanosized micelle as a surfactant free formulation of chemotherapeutics which might greatly be beneficial for controllable delivery of pharmaceutics and cancer therapy.
Collapse
Affiliation(s)
- Zheng Luo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress BiologySchool of Pharmaceutical SciencesXiamen University Xiamen 361102 P. R. China
| | - Lu Jiang
- Institute of Materials Research and EngineeringA*STAR (Agency for Science, Technology and Research) 2 Fusionopolis Way, Innovis, #08‐03 Singapore 138634 Singapore
| | - Chizhu Ding
- College of ScienceHuazhong Agricultural University Wuhan 430074 P. R. China
| | - Benhui Hu
- School of Biomedical Engineering and InformaticsNanjing Medical University Nanjing 211166 P. R. China
| | - Xian Jun Loh
- Institute of Materials Research and EngineeringA*STAR (Agency for Science, Technology and Research) 2 Fusionopolis Way, Innovis, #08‐03 Singapore 138634 Singapore
| | - Zibiao Li
- Institute of Materials Research and EngineeringA*STAR (Agency for Science, Technology and Research) 2 Fusionopolis Way, Innovis, #08‐03 Singapore 138634 Singapore
| | - Yun‐Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress BiologySchool of Pharmaceutical SciencesXiamen University Xiamen 361102 P. R. China
| |
Collapse
|
10
|
Polypeptides Micelles Composed of Methoxy-Poly(Ethylene Glycol)-Poly(l-Glutamic Acid)-Poly(l-Phenylalanine) Triblock Polymer for Sustained Drug Delivery. Pharmaceutics 2018; 10:pharmaceutics10040230. [PMID: 30428623 PMCID: PMC6321009 DOI: 10.3390/pharmaceutics10040230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/09/2018] [Accepted: 11/10/2018] [Indexed: 12/20/2022] Open
Abstract
Methoxy-poly(ethylene glycol)-poly(l-glutamic acid)-poly(l-phenylalanine) triblock polymers with different architecture were synthesized as drug carrier to obtain sustained and controlled release by tuning the composition. These triblock polymers were prepared by ring opening polymerization and poly(ethylene glycol) was used as an initiator. Polymerization was confirmed by 1H NMR, FT-IR and gel penetration chromatography. The polymers can self-assemble to form micelles in aqueous medium and their critical micelle concentrations values were examined. The micelles were spherical shape with size of 50–100 nm and especially can arranged in a regular manner. Sorafenib was selected as the model drug and the drug loading performance was dependent on the composition of the block copolymer. In vitro drug release indicated that the polymers can realize controlled and sustained drug release. Furthermore, in vitro cytotoxicity assay showed that the polymers were biocompatible and the drug-loaded micelles can increase toxicity towards tumor cells. Confocal fluorescence microscopy assays illustrated that the micelles can be uptaken quickly and release drug persistently to inhibit tumor cell growth.
Collapse
|
11
|
The Chemistry behind Catechol-Based Adhesion. Angew Chem Int Ed Engl 2018; 58:696-714. [DOI: 10.1002/anie.201801063] [Citation(s) in RCA: 325] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/12/2018] [Indexed: 11/07/2022]
|
12
|
Saiz-Poseu J, Mancebo-Aracil J, Nador F, Busqué F, Ruiz-Molina D. Die chemischen Grundlagen der Adhäsion von Catechol. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801063] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- J. Saiz-Poseu
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST; Campus UAB, Bellaterra 08193 Barcelona Spanien
| | - J. Mancebo-Aracil
- Instituto de Química del Sur-INQUISUR (UNS-CONICET); Universidad Nacional del Sur; Av. Alem 1253 8000 Bahía Blanca Buenos Aires Argentinien
| | - F. Nador
- Instituto de Química del Sur-INQUISUR (UNS-CONICET); Universidad Nacional del Sur; Av. Alem 1253 8000 Bahía Blanca Buenos Aires Argentinien
| | - F. Busqué
- Dpto. de Química (Unidad Química Orgánica); UniversidadAutónoma de Barcelona, Edificio C-Facultad de Ciencias; 08193 Cerdanyola del Vallès Barcelona Spanien
| | - D. Ruiz-Molina
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST; Campus UAB, Bellaterra 08193 Barcelona Spanien
| |
Collapse
|
13
|
Zhang H, Zhao T, Newland B, Liu W, Wang W, Wang W. Catechol functionalized hyperbranched polymers as biomedical materials. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2017.09.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
Wang B, Lee JS, Jeon YS, Kim J, Kim JH. Hydrophobicity-enhanced adhesion of novel biomimetic biocompatible polyaspartamide derivative glues. POLYM INT 2018. [DOI: 10.1002/pi.5544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Bo Wang
- Department of Chemical Engineering; Sungkyunkwan University; Suwon Republic of Korea
| | - Jae Sang Lee
- Department of Chemical Engineering; Sungkyunkwan University; Suwon Republic of Korea
| | - Young-Sil Jeon
- Department of Chemical Engineering; Sungkyunkwan University; Suwon Republic of Korea
| | - Jaeyun Kim
- Department of Chemical Engineering; Sungkyunkwan University; Suwon Republic of Korea
| | - Ji-Heung Kim
- Department of Chemical Engineering; Sungkyunkwan University; Suwon Republic of Korea
| |
Collapse
|
15
|
Lu D, Li Y, Wang X, Li T, Zhang Y, Guo H, Sun S, Wang X, Zhang Y, Lei Z. All-in-one hyperbranched polypeptides for surgical adhesives and interventional embolization of tumors. J Mater Chem B 2018; 6:7511-7520. [DOI: 10.1039/c8tb01015c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A series of hyperbranched, thermo-responsive and mussel-inspired polypeptides were synthesized and used for surgical adhesion, hemostasis and interventional embolization.
Collapse
Affiliation(s)
- Dedai Lu
- Key Laboratory of Eco-environment-related Polymer Materials Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Yunfei Li
- Key Laboratory of Eco-environment-related Polymer Materials Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Xiangya Wang
- Key Laboratory of Eco-environment-related Polymer Materials Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Ting’e Li
- Key Laboratory of Eco-environment-related Polymer Materials Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Yongyong Zhang
- Key Laboratory of Eco-environment-related Polymer Materials Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Hongyun Guo
- Institute of Gansu Medical Science Research
- Gansu Provincial Cancer Hospital
- Lanzhou
- P. R. China
| | - Shaobo Sun
- Gansu University of Chinese Medicine
- Lanzhou
- P. R. China
| | - Xiaoqi Wang
- Institute of Gansu Medical Science Research
- Gansu Provincial Cancer Hospital
- Lanzhou
- P. R. China
| | - Yongdong Zhang
- Institute of Gansu Medical Science Research
- Gansu Provincial Cancer Hospital
- Lanzhou
- P. R. China
| | - Ziqiang Lei
- Key Laboratory of Eco-environment-related Polymer Materials Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| |
Collapse
|
16
|
Li Q, Liu C, Wen J, Wu Y, Shan Y, Liao J. The design, mechanism and biomedical application of self-healing hydrogels. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.05.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Bhagat V, Becker ML. Degradable Adhesives for Surgery and Tissue Engineering. Biomacromolecules 2017; 18:3009-3039. [DOI: 10.1021/acs.biomac.7b00969] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Vrushali Bhagat
- Department
of Polymer Science and ‡Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Matthew L. Becker
- Department
of Polymer Science and ‡Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
18
|
Lu D, Wang H, Li T, Li Y, Dou F, Sun S, Guo H, Liao S, Yang Z, Wei Q, Lei Z. Mussel-Inspired Thermoresponsive Polypeptide-Pluronic Copolymers for Versatile Surgical Adhesives and Hemostasis. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16756-16766. [PMID: 28472883 DOI: 10.1021/acsami.6b16575] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Inspired by marine mussel adhesive proteins, polymers with catechol side groups have been extensively explored in industrial and academic research. Here, Pluronic L-31 alcoholate ions were used as the initiator to prepare a series of polypeptide-Pluronic-polypeptide triblock copolymers via ring-opening polymerization of l-DOPA-N-carboxyanhydride (DOPA-NCA), l-arginine-NCA (Arg-NCA), l-cysteine-NCA (Cys-NCA), and ε-N-acryloyl lysine-NCA (Ac-Lys-NCA). These copolymers demonstrated good biodegradability, biocompatibility, and thermoresponsive properties. Adhesion tests using porcine skin and bone as adherends demonstrated lap-shear adhesion strengths up to 106 kPa and tensile adhesion strengths up to 675 kPa. The antibleeding activity and tissue adhesive ability were evaluated using a rat model. These polypeptide-Pluronic copolymer glues showed superior hemostatic properties and superior effects in wound healing and osteotomy gaps. Complete healing of skin incisions and remodeling of osteotomy gaps were observed in all rats after 14 and 60 days, respectively. These copolymers have potential uses as tissue adhesives, antibleeding, and tissue engineering materials.
Collapse
Affiliation(s)
- Dedai Lu
- Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University , Lanzhou 730070, China
| | - Hongsen Wang
- Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University , Lanzhou 730070, China
| | - Ting'e Li
- Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University , Lanzhou 730070, China
| | - Yunfei Li
- Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University , Lanzhou 730070, China
| | - Fajuan Dou
- Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University , Lanzhou 730070, China
| | - Shaobo Sun
- School of Basic Medical Sciences, Gansu University of Chinese Medicine , Lanzhou 730000, China
| | - Hongyun Guo
- Institute of Gansu Medical Science Research, Gansu Provincial Cancer Hospital , Lanzhou 730050, China
| | - Shiqi Liao
- Institute of Gansu Medical Science Research, Gansu Provincial Cancer Hospital , Lanzhou 730050, China
| | - Zhiwang Yang
- Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University , Lanzhou 730070, China
| | - Qiangbing Wei
- Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University , Lanzhou 730070, China
| | - Ziqiang Lei
- Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University , Lanzhou 730070, China
| |
Collapse
|
19
|
Zhou J, Bhagat V, Becker ML. Poly(ester urea)-Based Adhesives: Improved Deployment and Adhesion by Incorporation of Poly(propylene glycol) Segments. ACS APPLIED MATERIALS & INTERFACES 2016; 8:33423-33429. [PMID: 27960413 DOI: 10.1021/acsami.6b09676] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The adhesive nature of mussels arises from the catechol moiety in the 3,4-dihydroxyphenylalanine (DOPA) amino acid, one of the many proteins that contribute to the unique adhesion properties of mussels. Inspired by these properties, many biomimetic adhesives have been developed over the past few years in an attempt to replace adhesives such as fibrin, cyanoacrylate, and epoxy glues. In the present work, we synthesized ethanol soluble but water insoluble catechol functionalized poly(ester urea) random copolymers that help facilitate delivery and adhesion in wet environments. Poly(propylene glycol) units incorporated into the polymer backbone impart ethanol solubility to these polymers, making them clinically relevant. A catechol to cross-linker ratio of 10:1 with a curing time of 4 h exceeded the performance of commercial fibrin glue (4.8 ± 1.4 kPa) with adhesion strength of 10.6 ± 2.1 kPa. These adhesion strengths are significant with the consideration that the adhesion studies were performed under wet conditions.
Collapse
Affiliation(s)
- Jinjun Zhou
- Department of Polymer Science, The University of Akron , Akron, Ohio 44325, United States
| | - Vrushali Bhagat
- Department of Polymer Science, The University of Akron , Akron, Ohio 44325, United States
| | - Matthew L Becker
- Department of Polymer Science, The University of Akron , Akron, Ohio 44325, United States
- Department of Biomedical Engineering, The University of Akron , Akron, Ohio 44325, United States
| |
Collapse
|