1
|
Yang JS, Wang XY, Li YY, Zhang FM, Zhang XM, Tu YQ. Catalytic Asymmetric 1,4-Hydrocarbonation of 1,3-Enynes via Photoredox/Cobalt/Chromium Triple Catalysis. Angew Chem Int Ed Engl 2025; 64:e202420563. [PMID: 39797407 DOI: 10.1002/anie.202420563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/13/2025]
Abstract
A synergistic photoredox/cobalt/chromium triple catalysis system for regioselective, enantioselective, and diastereoselective 1,4-hydrocarbonation of readily available 1,3-enyne precursors was explored, providing a modular synthetic platform for various trisubstituted axially chiral allenes bearing an extra central chirality. The protocol features a broad substrate scope, good functional group tolerance, excellent selectivity, and mild reaction conditions. Furthermore, a possible reaction mechanism is proposed based on numerous control experiments and density functional theory calculations.
Collapse
Affiliation(s)
- Ju-Song Yang
- School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, Shanghai key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai Minhang, 200240, China
| | - Xing-Yu Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yong-Yao Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiao-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yong-Qiang Tu
- School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, Shanghai key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai Minhang, 200240, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
2
|
Jayadev Nagtilak P, Rajeshbhai Hirapara D, Mane MV, Jain A, Kapur M. Palladium-Catalyzed, Regio-/Stereo- and Enantiospecific Anti-Carboxylation of Unactivated Internal Allenes. Angew Chem Int Ed Engl 2025; 64:e202419127. [PMID: 39564919 DOI: 10.1002/anie.202419127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/21/2024]
Abstract
We report herein a directing group-controlled, palladium-catalyzed, regio-, stereo-, and enantiospecific anti-carboxylation of unactivated, internal allenes enabled via the synergistic interplay of a rationally designed bidentate directing group, palladium catalyst, and a multifunctional acetate ligand. The corresponding trans allyl ester was obtained in excellent yields with exclusive δ-regioselectivity and anti-carboxypalladation stereocontrol. The acetate ligand of the palladium catalyst controls the regio-, stereo- and enantioselectivity in the desired transformation. The potential of this concept has been demonstrated by the development of the chiral version of this transformation by using axial-to-central chirality transfer with good yields and enantioselectivities. Detailed investigations, including kinetic studies, order studies, and DFT studies, were performed to validate the ligand-assisted nucleopalladation process and the rationale behind the observed racemization of chiral allenes. The studies also indicated that the anti-carboxypalladation step was the rate-limiting as well as the stereo- and enantiodetermining step.
Collapse
Affiliation(s)
- Prajyot Jayadev Nagtilak
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Deveen Rajeshbhai Hirapara
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Manoj V Mane
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore 562112, Karnataka, India
| | - Akshat Jain
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| |
Collapse
|
3
|
Borie-Guichot M, Lan Tran M, Garcia V, Oukhrib A, Rodriguez F, Turrin CO, Levade T, Génisson Y, Ballereau S, Dehoux C. Multivalent pyrrolidines acting as pharmacological chaperones against Gaucher disease. Bioorg Chem 2024; 146:107295. [PMID: 38513326 DOI: 10.1016/j.bioorg.2024.107295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
A concise asymmetric synthesis of clickable enantiomeric pyrrolidines was achieved using Crabbé-Ma allenation. The synthesized iminosugars were grafted by copper-free strain-promoted alkyne-azide cycloaddition onto phosphorus dendrimers. The hexavalent and dodecavalent pyrrolidines were evaluated as β-glucocerebrosidase inhibitors. The level of inhibition suggests that monofluorocyclooctatriazole group may contribute to the affinity for the protein leading to potent multivalent inhibitors. Docking studies were carried out to rationalize these results. Then, the iminosugars clusters were evaluated as pharmacological chaperones in Gaucher patients' fibroblasts. An increase in β-glucocerebrosidase activity was observed with hexavalent and dodecavalent pyrrolidines at concentrations as low as 1 µM and 0.1 µM, respectively. These iminosugar clusters constitute the first example of multivalent pyrrolidines acting as pharmacological chaperones against Gaucher disease.
Collapse
Affiliation(s)
- Marc Borie-Guichot
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, F-31062 Toulouse, France
| | - My Lan Tran
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Virginie Garcia
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université Paul Sabatier, France
| | | | - Frédéric Rodriguez
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Cédric-Olivier Turrin
- IMD-Pharma, 205 Route de Narbonne, 31077 Toulouse Cedex 4, France; Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099 31077 Toulouse CEDEX 4, France; LCC-CNRS, Université de Toulouse, CNRS 31013 Toulouse CEDEX 6, France
| | - Thierry Levade
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université Paul Sabatier, France; Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, F-31059 Toulouse, France
| | - Yves Génisson
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Stéphanie Ballereau
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Cécile Dehoux
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, F-31062 Toulouse, France.
| |
Collapse
|
4
|
Yu Y, Lin J, Qin A, Wang H, Wang J, Wang W, Wu G, Zhang Q, Qian H, Ma S. Relay Catalysis for Selective Aerobic Oxidative Esterification of Primary Alcohols with Methanol. Org Lett 2024. [PMID: 38619221 DOI: 10.1021/acs.orglett.4c01059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Esters are bulk and fine chemicals and ubiquitous in polymers, bioactive compounds, and natural products. Their traditional synthetic approach is the esterification of carboxylic acids or their activated derivatives with alcohols. Herein, a bimetallic relay catalytic protocol was developed for the aerobic esterification of one alcohol in the presence of a slowly oxidizing alcohol, which has been identified as methanol. A concise synthesis of phlomic acid was executed to demonstrate the practicality and potential of this reaction.
Collapse
Affiliation(s)
- Yibo Yu
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Jie Lin
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Anni Qin
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Huanan Wang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Jie Wang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Weiyi Wang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Guolin Wu
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Qian Zhang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Hui Qian
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| |
Collapse
|
5
|
Li C, Zhou Z, Ma S. A Pd-catalyzed highly selective three-component protocol for trisubstituted allenes. Chem Sci 2023; 14:7709-7715. [PMID: 37476716 PMCID: PMC10355113 DOI: 10.1039/d3sc01849k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
Herein we report the first example of a Pd-catalyzed highly selective three-component reaction of alkynyl-1,4-diol dicarbonates, organoboronic acids, and malonate anions for the efficient synthesis of trisubstituted 2,3-allenyl malonates not readily available by the known protocols. The reaction demonstrates an excellent regio- and chemo-selectivity for both the oxidative addition referring to the two C-O bonds and the subsequent coupling with the nucleophile with a remarkable functional group compatibility. A series of control experiments confirm a unique mechanism involving β-O elimination forming alka-1,2,3-triene and the subsequent insertion of its terminal C[double bond, length as m-dash]C bond into the Ar-Pd bond.
Collapse
Affiliation(s)
- Can Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhengnan Zhou
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shengming Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University 220 Handan Lu Shanghai 200433 P. R. China
| |
Collapse
|
6
|
Shen YB, Hu F, Li SS. Alkyl amines and ethers as traceless hydride donors in [1,5]-hydride transfer cascade reactions. Org Biomol Chem 2023; 21:700-714. [PMID: 36601772 DOI: 10.1039/d2ob02146c] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The use of alkyl amines and ethers as traceless hydride donors in [1,5]-hydride transfer cascade reactions represents a promising strategy that greatly enriches redox-neutral hydride transfer chemistry. This review summarizes the remarkable progress made in this field, and focuses on (1) alkyl amines as traceless hydride donors in cascade [1,5]-hydride transfer/elimination reactions and (2) alkyl ethers as traceless hydride donors in [1,5]-hydride transfer cascade reactions. The reaction mechanisms, features, scope, limitations, and synthetic applications are included, where appropriate. Importantly, its powerful ability in allene synthesis and the combination with [Re]-vinylidene and carbocation chemistries render this strategy attractive enough to inspire chemists to develop colorful reactions for building molecular complexity.
Collapse
Affiliation(s)
- Yao-Bin Shen
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| | - Fangzhi Hu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| | - Shuai-Shuai Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
7
|
Taniguchi T, Mutmainah, Takimoto S, Suzuki T, Watanabe S, Matsuda F, Umezawa T, Monde K. Scope and limitations of absolute configuration determination of allenic natural products using the CCC stretching VCD signal. Org Biomol Chem 2023; 21:569-574. [PMID: 36541676 DOI: 10.1039/d2ob01520j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The allene functional group in natural products isolated so far exists in a non-racemic form, but its axial chirality is difficult to elucidate. Allenes exhibit a characteristic antisymmetric CCC stretching mode at around 1950 cm-1, and their VCD properties have not been studied in detail. This work, for the first time, applied VCD spectroscopy to allenic natural products and allenic molecules with other asymmetric centers focusing on the antisymmetric CCC stretching mode. This vibrational mode yielded a negligibly weak VCD signal for several molecules, but in the presence of electron-withdrawing and/or conjugating substituents, it generated a stronger one. Its sign was found to be influenced by the nature of substituents. These findings should deepen the understanding of the VCD properties of the allene functional group and should be useful for future studies of chiral allenes.
Collapse
Affiliation(s)
- Tohru Taniguchi
- Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, North 21 West 11, Sapporo 001-0021, Japan.
| | - Mutmainah
- Graduate School of Life Science, Hokkaido University, North 21 West 11, Sapporo 001-0021, Japan
| | - Shu Takimoto
- Graduate School of Life Science, Hokkaido University, North 21 West 11, Sapporo 001-0021, Japan
| | - Takahiro Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, North 10 West 8, Sapporo 060-0810, Japan
| | - Soichiro Watanabe
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, North 13 West 8, Sapporo 060-8628, Japan
| | - Fuyuhiko Matsuda
- Division of Environmental Materials Science, Graduate School of Environmental Science, Hokkaido University, North 10 West 5, Sapporo 060-0810, Japan
| | - Taiki Umezawa
- Division of Environmental Materials Science, Graduate School of Environmental Science, Hokkaido University, North 10 West 5, Sapporo 060-0810, Japan
| | - Kenji Monde
- Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, North 21 West 11, Sapporo 001-0021, Japan.
| |
Collapse
|
8
|
Xu X, Wang M, Peng L, Guo C. Nickel-Catalyzed Asymmetric Propargylation for the Synthesis of Axially Chiral 1,3-Disubstituted Allenes. J Am Chem Soc 2022; 144:21022-21029. [DOI: 10.1021/jacs.2c10863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xianghong Xu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Mingxu Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Lingzi Peng
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Chang Guo
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
9
|
Zorba L, Egaña E, Gómez-Bengoa E, Vougioukalakis GC. Zinc Iodide Catalyzed Synthesis of Trisubstituted Allenes from Terminal Alkynes and Ketones. ACS OMEGA 2021; 6:23329-23346. [PMID: 34549133 PMCID: PMC8444324 DOI: 10.1021/acsomega.1c03092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/13/2021] [Indexed: 05/03/2023]
Abstract
A straightforward, user-friendly, efficient protocol for the one pot, ZnI2-catalyzed allenylation of terminal alkynes with pyrrolidine and ketones, toward trisubstituted allenes, is described. Trisubstituted allenes can be obtained under either conventional heating or microwave irradiation conditions, which significantly reduces the reaction time. A sustainable, widely available, and low-cost metal salt catalyst is employed, and the reactions are carried out under solvent-free conditions. Among others, synthetically valuable allenes bearing functionalities such as amide, hydroxyl, or phthalimide can be efficiently prepared. Mechanistic experiments, including kinetic isotope effect measurements and density functional theory (DFT) calculations, suggest a rate-determining [1,5]-hydride transfer during the transformation of the intermediate propargylamine to the final allene.
Collapse
Affiliation(s)
- Leandros
P. Zorba
- Laboratory
of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece
| | - Eunate Egaña
- Department
of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Enrique Gómez-Bengoa
- Department
of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Georgios C. Vougioukalakis
- Laboratory
of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece
| |
Collapse
|
10
|
Qin A, Zhang Q, Qian H, Han Y, Ma S. Rh‐Catalyzed
Kinetic
Resolution‐Based
Enantioselective [4+2]‐
Cycloaddition‐Isomerization
of Allene‐1,3‐dienes. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anni Qin
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University 220 Handan Lu Shanghai 200433 China
| | - Qian Zhang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University 220 Handan Lu Shanghai 200433 China
| | - Hui Qian
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University 220 Handan Lu Shanghai 200433 China
| | - Yulin Han
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University 220 Handan Lu Shanghai 200433 China
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University 220 Handan Lu Shanghai 200433 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
11
|
Castellan T, Garcia V, Rodriguez F, Fabing I, Shchukin Y, Tran ML, Ballereau S, Levade T, Génisson Y, Dehoux C. Concise asymmetric synthesis of new enantiomeric C-alkyl pyrrolidines acting as pharmacological chaperones against Gaucher disease. Org Biomol Chem 2020; 18:7852-7861. [PMID: 32975266 DOI: 10.1039/d0ob01522a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A concise and asymmetric synthesis of the enantiomeric pyrrolidines 2 and ent-2 are herein reported. Both enantiomers were assessed as β-GCase inhibitors. While compound ent-2 acted as a poor competitive inhibitor, its enantiomer 2 proved to be a potent non-competitive inhibitor. Docking studies were carried out to substantiate their respective protein binding mode. Both pyrrolidines were also able to enhance lysosomal β-GCase residual activity in N370S homozygous Gaucher fibroblasts. Notably, the non-competitive inhibitor 2 displayed an enzyme activity enhancement comparable to that of reference compounds IFG and NN-DNJ. This work highlights the impact of inhibitors chirality on their protein binding mode and shows that, beyond competitive inhibitors, the study of non-competitive ones can lead to the identification of new relevant parmacological chaperones.
Collapse
Affiliation(s)
- Tessa Castellan
- SPCMIB, UMR5068 CNRS-Université Paul Sabatier-Toulouse III, 118 Route de Narbonne, F-31062 Toulouse, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Li GW, Wang XJ, Cui DD, Zhang YF, Xu RY, Shi SH, Liu LT, Wang MC, Liu HM, Lei XX. Azaheterocyclic diphenylmethanol chiral solvating agents for the NMR chiral discrimination of alpha-substituted carboxylic acids. RSC Adv 2020; 10:34605-34611. [PMID: 35514411 PMCID: PMC9056771 DOI: 10.1039/d0ra06312f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/24/2020] [Indexed: 12/02/2022] Open
Abstract
A series of small-membered heterocycle probes, so-called azaheterocycle-containing diphenylmethanol chiral solvating agents (CSAs), have been developed for NMR enantiodiscrimination. These chiral sensors were readily synthesized were inexpensive and efficiently used for the chiral analysis of alpha-substituted carboxylic acids. The sensing method was operationally simple and the processing was straightforward. Notably, we propose (S)-aziridinyl diphenylmethanol as a promising CSA, which has excellent chiral discriminating properties and offers multiple detectable possibilities pertaining to the 1H NMR signals of diagnostic split protons (including 25 examples, up to 0.194 ppm, 77.6 Hz). Its ability to detect the molecular recognition of fluorinated carboxylic acids were further investigated, with a good level of discrimination via the 19F NMR spectroscopic analysis. In addition, an accurate enantiomeric excess (ee) analysis of the p-methoxyl-mandelic acid with different optical compositions have been calculated based on the integration of well-separated proton signals.
Collapse
Affiliation(s)
- Gao-Wei Li
- College of Chemistry and Chemical Engineering and Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, Shangqiu Normal University Shangqiu 476000 P. R. China
- School of Pharmaceutical Sciences, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Xiao-Juan Wang
- College of Chemistry and Chemical Engineering and Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, Shangqiu Normal University Shangqiu 476000 P. R. China
| | - Dan-Dan Cui
- College of Chemistry and Chemical Engineering and Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, Shangqiu Normal University Shangqiu 476000 P. R. China
| | - Yu-Fei Zhang
- College of Chemistry and Chemical Engineering and Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, Shangqiu Normal University Shangqiu 476000 P. R. China
| | - Rong-Yao Xu
- College of Chemistry and Chemical Engineering and Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, Shangqiu Normal University Shangqiu 476000 P. R. China
| | - Shuai-Hua Shi
- College of Chemistry and Chemical Engineering and Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, Shangqiu Normal University Shangqiu 476000 P. R. China
| | - Lan-Tao Liu
- College of Chemistry and Chemical Engineering and Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, Shangqiu Normal University Shangqiu 476000 P. R. China
| | - Min-Can Wang
- School of Pharmaceutical Sciences, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Xin-Xiang Lei
- School of Pharmaceutical Sciences, South-Central University for Nationalities Wuhan 430074 P. R. China
| |
Collapse
|
13
|
Affiliation(s)
- Shihua Song
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
| | - Shengming Ma
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
| |
Collapse
|
14
|
Bayeh-Romero L, Buchwald SL. Copper Hydride Catalyzed Enantioselective Synthesis of Axially Chiral 1,3-Disubstituted Allenes. J Am Chem Soc 2019; 141:13788-13794. [PMID: 31423768 PMCID: PMC6748664 DOI: 10.1021/jacs.9b07582] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Indexed: 11/29/2022]
Abstract
The general enantioselective synthesis of axially chiral disubstituted allenes from prochiral starting materials remains a long-standing challenge in organic synthesis. Here, we report an efficient enantio- and chemoselective copper hydride catalyzed semireduction of conjugated enynes to furnish 1,3-disubstituted allenes using water as the proton source. This protocol is sufficiently mild to accommodate an assortment of functional groups including keto, ester, amino, halo, and hydroxyl groups. Additionally, applications of this method for the selective synthesis of monodeuterated allenes and chiral 2,5-dihydropyrroles are described.
Collapse
Affiliation(s)
- Liela Bayeh-Romero
- Department of Chemistry, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stephen L. Buchwald
- Department of Chemistry, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
15
|
Huang C, Qian H, Zhang W, Ma S. Hydroxy group-enabled highly regio- and stereo-selective hydrocarboxylation of alkynes. Chem Sci 2019; 10:5505-5512. [PMID: 31293734 PMCID: PMC6544123 DOI: 10.1039/c8sc05743e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 04/16/2019] [Indexed: 12/12/2022] Open
Abstract
Hydrogen bonding-enabled highly regio- and stereo-selective hydrocarboxylation of alkynes has been successfully developed to afford 3-hydroxy-2(E)-alkenoates with up to 97% yield.
Here we present an example of utilizing hydroxy groups for regioselectivity control in the addition reaction of alkynes—a highly efficient Pd-catalyzed syn-hydrocarboxylation of readily available 2-alkynylic alcohols with CO in the presence of alcohols with an unprecedented regioselectivity affording 3-hydroxy-2(E)-alkenoates. The role of the hydroxy group has been carefully studied. The synthetic potential of the products has also been demonstrated.
Collapse
Affiliation(s)
- Chaofan Huang
- Research Center for Molecular Recognition and Synthesis , Department of Chemistry , Fudan University , 220 Handan Lu , Shanghai 200433 , P. R. China .
| | - Hui Qian
- Research Center for Molecular Recognition and Synthesis , Department of Chemistry , Fudan University , 220 Handan Lu , Shanghai 200433 , P. R. China .
| | - Wanli Zhang
- Research Center for Molecular Recognition and Synthesis , Department of Chemistry , Fudan University , 220 Handan Lu , Shanghai 200433 , P. R. China .
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis , Department of Chemistry , Fudan University , 220 Handan Lu , Shanghai 200433 , P. R. China . .,State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , P. R. China .
| |
Collapse
|
16
|
Abstract
So far, over 150 natural products and pharmaceuticals containing an allene moiety have been identified. During the last two decades, allenes have also been demonstrated as synthetically versatile starting materials in organic synthesis. In comparison to alkenes and alkynes, allenes are unique unsaturated hydrocarbons due to their axial chirality, which could be transformed to central chirality via chirality transfer to provide an irreplaceable entry to chiral molecules. Thus, methods for allene synthesis from readily available chemicals are of great interest. In 1979, Crabbé et al. reported the first CuBr-mediated allenation of terminal alkynes (ATA) reaction to form monosubstituted allenes from 1-alkynes and paraformaldehyde in the presence of diisopropylamine. During the following 30 years, the ATA reactions were limited to paraformaldehyde. This Account describes our efforts toward the development of ATA reactions in the last ten years. First, we improved the yields and scope greatly for the synthesis of monosubstituted allenes by modifying the original Crabbé recipe. Next we developed the ZnI2-promoted or CuI-catalyzed ATA reactions for the synthesis of 1,3-disubstituted allenes from terminal alkyne and normal aldehydes. Furthermore, we first realized the CdI2-promoted ATA reaction of ketones with pyrrolidine as the matched amine for the preparation of trisubstituted allenes. Due to the toxicity of CdI2, we also developed two alternative approaches utilizing CuBr/ZnI2 or CuI/ZnBr2/Ti(OEt)4. The asymmetric version of ATA reactions for the synthesis of optically active 1,3-disubstituted allenes has also been achieved in this group with two strategies. One is called "chiral ligand" strategy, using terminal alkynes, aldehydes, and nonchiral amine with the assistance of a proper chiral ligand. The other is the "chiral amine" strategy, applying terminal alkynes, aldehydes, and chiral amines such as ( S)- or ( R)-α,α-diphenylprolinol or ( S)- or ( R)-α,α-dimethylprolinol. Optically active 1,3-disubstituted allenes containing different synthetically useful functionalities such as alcohol, amide, sulfamide, malonate, carboxylate, and carbohydrate units could be prepared without protection with the newly developed CuBr2-catalyzed chiral amine strategy. Recently, we have applied these enantioselective allenation of terminal alkyne (EATA) reactions to the syntheses of some natural allenes such as laballenic acid, insect pheromone, methyl ( R)-8-hydroxyocta-5,6-dienoate, phlomic acid, and lamenallenic acid, as well as some non-allene natural γ-butyrolactones such as xestospongienes (E, F, G, and H), ( R)-4-tetradecalactone, ( S)-4-tetradecalactone, ( R)-γ-palmitolactone, and ( R)-4-decalactone.
Collapse
Affiliation(s)
- Xin Huang
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou, 310027 Zhejiang, People’s Republic of China
| | - Shengming Ma
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou, 310027 Zhejiang, People’s Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| |
Collapse
|
17
|
Han Y, Qin A, Ma S. One Stone for Three Birds‐Rhodium‐Catalyzed Highly Diastereoselective Intramolecular [4+2] Cycloaddition of Optically Active Allene‐1,3‐dienes. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yulin Han
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu Shanghai 200032 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Anni Qin
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, 220 Handan RoadFudan University Shanghai 200433 China
| | - Shengming Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu Shanghai 200032 China
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, 220 Handan RoadFudan University Shanghai 200433 China
| |
Collapse
|
18
|
Wei XF, Wakaki T, Itoh T, Li HL, Yoshimura T, Miyazaki A, Oisaki K, Hatanaka M, Shimizu Y, Kanai M. Catalytic Regio- and Enantioselective Proton Migration from Skipped Enynes to Allenes. Chem 2019. [DOI: 10.1016/j.chempr.2018.11.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Song S, Zhou J, Fu C, Ma S. Catalytic enantioselective construction of axial chirality in 1,3-disubstituted allenes. Nat Commun 2019; 10:507. [PMID: 30705274 PMCID: PMC6355870 DOI: 10.1038/s41467-018-07908-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/29/2018] [Indexed: 11/17/2022] Open
Abstract
Metal-catalyzed enantioselective construction of the loosening axial allene chirality spreading over three carbon atoms using a chiral ligand is still a significant challenge. In the literature, steric effect of the substrates is the major strategy applied for such a purpose. Herein, we present a general palladium-catalyzed asymmetrization of readily available racemic 2,3-allenylic carbonates with different types of non-substituted and 2-substituted malonates using (R)-(−)-DTBM-SEGPHOS as the preferred ligand to afford 1,3-disubstituted chiral allenes with 90~96% ee. This protocol has been applied to the first enantioselective synthesis of natural product, (R)-traumatic lactone. Control experiments showed that in addition to the chiral ligand, conducting this transformation via Procedure C, which excludes the extensive prior coordination of the allene unit in the starting allene with Pd forming a species without the influence of the chiral ligand, is crucial for the observed high enantioselectivity. Highly enantioselective synthesis of allenes has been relying, so far, on the steric hindrance of substrates. Here the authors achieve excellent stereocontrol in the synthesis of chiral allenes with a palladium-DTBM-SEGPHOS catalytic system in a non-substrate-dependent manner.
Collapse
Affiliation(s)
- Shihua Song
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, 310027, Hangzhou, Zhejiang, People's Republic of China
| | - Jing Zhou
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, 310027, Hangzhou, Zhejiang, People's Republic of China
| | - Chunling Fu
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, 310027, Hangzhou, Zhejiang, People's Republic of China
| | - Shengming Ma
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, 310027, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
20
|
Cui Y, Lin W, Ma S. A metal-catalyzed new approach for α-alkynylation of cyclic amines. Chem Sci 2018; 10:1796-1801. [PMID: 30842847 PMCID: PMC6369436 DOI: 10.1039/c8sc04115f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 11/24/2018] [Indexed: 01/05/2023] Open
Abstract
The first catalytic α-alkynylation of cyclic amines with the help of the N-propargylic group with an exclusive high E-stereoselectivity has been realized.
The first catalytic α-alkynylation of cyclic amines with the help of the N-propargylic group to afford 2-(1-alkynyl) N-allylic cyclic amines with an exclusive E-stereoselectivity for the in situ formed C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C bond has been realized. Based on mechanistic studies, it is proven that the reaction proceeds through metal-mediated anti-1,5-hydride transfer forming an iminonium intermediate, which accepts the addition of the in situ generated 1-alkynyl metal species. The synthetic application has also been demonstrated.
Collapse
Affiliation(s)
- Yifan Cui
- State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , P. R. China . .,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Weilong Lin
- State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , P. R. China . .,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Shengming Ma
- State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , P. R. China . .,Department of Chemistry , Fudan University , 220 Handan Lu , Shanghai 200433 , P. R. China
| |
Collapse
|
21
|
Catalytic asymmetric synthesis of chiral trisubstituted heteroaromatic allenes from 1,3-enynes. Commun Chem 2018. [DOI: 10.1038/s42004-018-0065-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
22
|
Zhang W, Huang C, Yuan Y, Ma S. Catalytic transient leaving group for atom-economic synthesis of allenes from 2-alkynols. Chem Commun (Camb) 2018; 53:12430-12433. [PMID: 29082989 DOI: 10.1039/c7cc06866b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An atom economic approach from readily available propargylic alcohols to allenes, the first carboxylation of propargylic alcohols, has been established. Through the cooperative binary catalysis of Pd and a phosphoric acid, the reaction afforded multi-substituted allenoates with a broad scope tolerating useful functional groups. The synthetic potential of the obtained products has been demonstrated.
Collapse
Affiliation(s)
- Wanli Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, College of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Lu, Shanghai, 200062, P. R. China
| | | | | | | |
Collapse
|
23
|
Lv Y, Pu W, Zhu X, Zhao T, Lin F. Copper-Catalyzed Cross-Coupling of Secondary α-Haloamides with Terminal Alkynes: Access to Diverse 2,3-Allenamides. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201701556] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Yunhe Lv
- College of Chemistry and Chemical Engineering; Anyang Normal University; Anyang 455000 People's Republic of China
- Henan Province Key Laboratory of New Opto-Electronic Functional Materials; Anyang 455000 People's Republic of China
| | - Weiya Pu
- College of Chemistry and Chemical Engineering; Anyang Normal University; Anyang 455000 People's Republic of China
| | - Xueli Zhu
- College of Chemistry and Chemical Engineering; Anyang Normal University; Anyang 455000 People's Republic of China
| | - Tiantian Zhao
- College of Chemistry and Chemical Engineering; Anyang Normal University; Anyang 455000 People's Republic of China
| | - Feifei Lin
- College of Chemistry and Chemical Engineering; Anyang Normal University; Anyang 455000 People's Republic of China
| |
Collapse
|
24
|
Han Y, Zhang X. Theoretical Studies of Allene Synthesis through Cadmium Iodide-Mediated Allenylation of Terminal Alkynes. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700389] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yulin Han
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Xue Zhang
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| |
Collapse
|
25
|
Schaarschmidt M, Wanner KT. Synthesis of Allene Substituted Nipecotic Acids by Allenylation of Terminal Alkynes. J Org Chem 2017; 82:8371-8388. [DOI: 10.1021/acs.joc.7b00630] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maren Schaarschmidt
- Department of Pharmacy, Center
for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, D-81377 Munich, Germany
| | - Klaus T. Wanner
- Department of Pharmacy, Center
for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, D-81377 Munich, Germany
| |
Collapse
|
26
|
Jiang Y, Diagne AB, Thomson RJ, Schaus SE. Enantioselective Synthesis of Allenes by Catalytic Traceless Petasis Reactions. J Am Chem Soc 2017; 139:1998-2005. [PMID: 28121128 PMCID: PMC5716636 DOI: 10.1021/jacs.6b11937] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Allenes are useful functional groups in synthesis as a result of their inherent chemical properties and established reactivity patterns. One property of chemical bonding renders 1,3-substituted allenes chiral, making them attractive targets for asymmetric synthesis. While there are many enantioselective methods to synthesize chiral allenes from chiral starting materials, fewer methods exist to directly synthesize enantioenriched chiral allenes from achiral precursors. We report here an asymmetric boronate addition to sulfonyl hydrazones catalyzed by chiral biphenols to access enantioenriched allenes in a traceless Petasis reaction. The resulting Mannich product from nucleophilic addition eliminates sulfinic acid, yielding a propargylic diazene that performs an alkyne walk to afford the allene. Two enantioselective approaches have been developed; alkynyl boronates add to glycolaldehyde imine to afford allylic hydroxyl allenes, and allyl boronates add to alkynyl imines to form 1,3-alkenyl allenes. In both cases, the products are obtained in high yields and enantioselectivities.
Collapse
Affiliation(s)
- Yao Jiang
- Center for Molecular Discovery, Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Abdallah B. Diagne
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Regan J. Thomson
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Scott E. Schaus
- Center for Molecular Discovery, Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
27
|
Jiang X, Xue Y, Ma S. Aerobic oxidation and EATA-based highly enantioselective synthesis of lamenallenic acid. Org Chem Front 2017. [DOI: 10.1039/c6qo00785f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly enantioselective synthesis of (−)-lamenallenic acid utilizing the recently developed EATA reaction and aerobic oxidation reaction has been accomplished.
Collapse
Affiliation(s)
- Xingguo Jiang
- State Key Laboratory of Organometallic Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- P. R. China
| | - Yufeng Xue
- State Key Laboratory of Organometallic Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- P. R. China
| | - Shengming Ma
- State Key Laboratory of Organometallic Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- P. R. China
| |
Collapse
|
28
|
Abstract
This minireview summarizes the recent advances in the synthesis of allenes with catalytic asymmetric methods.
Collapse
Affiliation(s)
- Wen-Dao Chu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province/College of Chemistry & Chemical Engineering
- China West Normal University
- Nanchong 637002
- China
- Beijing National Laboratory of Molecular Sciences (BNLMS)
| | - Yan Zhang
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| |
Collapse
|
29
|
Chu WD, Zhang L, Zhang Z, Zhou Q, Mo F, Zhang Y, Wang J. Enantioselective Synthesis of Trisubstituted Allenes via Cu(I)-Catalyzed Coupling of Diazoalkanes with Terminal Alkynes. J Am Chem Soc 2016; 138:14558-14561. [DOI: 10.1021/jacs.6b09674] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Wen-Dao Chu
- Beijing
National Laboratory of Molecular Sciences (BNLMS), Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
College of Chemistry, Peking University, Beijing 100871, China
| | - Lei Zhang
- Beijing
National Laboratory of Molecular Sciences (BNLMS), Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
College of Chemistry, Peking University, Beijing 100871, China
| | - Zhikun Zhang
- Beijing
National Laboratory of Molecular Sciences (BNLMS), Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
College of Chemistry, Peking University, Beijing 100871, China
| | - Qi Zhou
- Beijing
National Laboratory of Molecular Sciences (BNLMS), Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
College of Chemistry, Peking University, Beijing 100871, China
| | - Fanyang Mo
- Beijing
National Laboratory of Molecular Sciences (BNLMS), Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
College of Chemistry, Peking University, Beijing 100871, China
| | - Yan Zhang
- Beijing
National Laboratory of Molecular Sciences (BNLMS), Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
College of Chemistry, Peking University, Beijing 100871, China
| | - Jianbo Wang
- Beijing
National Laboratory of Molecular Sciences (BNLMS), Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
College of Chemistry, Peking University, Beijing 100871, China
- State
Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
30
|
Jiang X, Zhang J, Ma S. Iron Catalysis for Room-Temperature Aerobic Oxidation of Alcohols to Carboxylic Acids. J Am Chem Soc 2016; 138:8344-7. [DOI: 10.1021/jacs.6b03948] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xingguo Jiang
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Jiasheng Zhang
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Shengming Ma
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
- Department
of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| |
Collapse
|
31
|
Li G, Cao J, Zong W, Lei X, Tan R. Enantiodiscrimination of carboxylic acids using the diphenylprolinol NMR chiral solvating agents. Org Chem Front 2016. [DOI: 10.1039/c5qo00264h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Enantiopure diphenylprolinols have been developed as effective and practical NMR chiral solvating agents for the enantiodiscrimination of diverse α-carboxylic acids.
Collapse
Affiliation(s)
- Gaowei Li
- Institute of Functional Biomolecules
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Jiangming Cao
- Institute of Functional Biomolecules
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Wen Zong
- College of Chemistry & Materials Engineering
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - Xinxiang Lei
- College of Chemistry & Materials Engineering
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - Renxiang Tan
- Institute of Functional Biomolecules
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093
- P. R. China
| |
Collapse
|
32
|
Lim J, Choi J, Kim HS, Kim IS, Nam KC, Kim J, Lee S. Synthesis of Terminal Allenes via a Copper-Catalyzed Decarboxylative Coupling Reaction of Alkynyl Carboxylic Acids. J Org Chem 2015; 81:303-8. [DOI: 10.1021/acs.joc.5b02361] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jeongah Lim
- Department
of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jinseop Choi
- Department
of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Han-Sung Kim
- Department
of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - In Seon Kim
- Department
of Agricultural Chemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Kye Chun Nam
- Department
of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jimin Kim
- Department
of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sunwoo Lee
- Department
of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
33
|
Huang X, Xue C, Fu C, Ma S. A concise construction of carbohydrate-tethered axially chiral allenes via copper catalysis. Org Chem Front 2015. [DOI: 10.1039/c5qo00164a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we observed that CuBr2 may smoothly catalyze the highly diastereoselective three-component reaction of carbohydrates bearing a terminal alkyne unit, aliphatic or aromatic aldehydes, and (R) or (S)-α,α-diphenylprolinol, affording carbohydrates bearing the chiral 1,3-substituted allene entity in 94–99% de.
Collapse
Affiliation(s)
- Xin Huang
- Laboratory of Molecular Recognition and Synthesis
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- People's Republic of China
| | - Can Xue
- Laboratory of Molecular Recognition and Synthesis
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- People's Republic of China
| | - Chunling Fu
- Laboratory of Molecular Recognition and Synthesis
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- People's Republic of China
| | - Shengming Ma
- Laboratory of Molecular Recognition and Synthesis
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- People's Republic of China
| |
Collapse
|