1
|
Xiong J, Zhang H, Qin L, Zhang S, Cao J, Jiang H. Magnetic Fluorescent Quantum Dots Nanocomposites in Food Contaminants Analysis: Current Challenges and Opportunities. Int J Mol Sci 2022; 23:ijms23084088. [PMID: 35456904 PMCID: PMC9028821 DOI: 10.3390/ijms23084088] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 12/16/2022] Open
Abstract
The presence of food contaminants can cause foodborne illnesses, posing a severe threat to human health. Therefore, a rapid, sensitive, and convenient method for monitoring food contaminants is eagerly needed. The complex matrix interferences of food samples and poor performance of existing sensing probes bring significant challenges to improving detection performances. Nanocomposites with multifunctional features provide a solution to these problems. The combination of the superior characteristics of magnetic nanoparticles (MNPs) and quantum dots (QDs) to fabricate magnetic fluorescent quantum dots (MNPs@QDs) nanocomposites are regarded as an ideal multifunctional probe for food contaminants analysis. The high-efficiency pretreatment and rapid fluorescence detection are concurrently integrated into one sensing platform using MNPs@QDs nanocomposites. In this review, the contemporary synthetic strategies to fabricate MNPs@QDs, including hetero-crystalline growth, template embedding, layer-by-layer assembly, microemulsion technique, and one-pot method, are described in detail, and their advantages and limitations are discussed. The recent advances of MNPs@QDs nanocomposites in detecting metal ions, foodborne pathogens, toxins, pesticides, antibiotics, and illegal additives are comprehensively introduced from the perspectives of modes and detection performances. The review ends with current challenges and opportunities in practical applications and prospects in food contaminants analysis, aiming to promote the enthusiasm for multifunctional sensing platform research.
Collapse
Affiliation(s)
- Jincheng Xiong
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, China; (J.X.); (H.Z.); (L.Q.); (S.Z.)
| | - Huixia Zhang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, China; (J.X.); (H.Z.); (L.Q.); (S.Z.)
| | - Linqian Qin
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, China; (J.X.); (H.Z.); (L.Q.); (S.Z.)
| | - Shuai Zhang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, China; (J.X.); (H.Z.); (L.Q.); (S.Z.)
| | - Jiyue Cao
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Haiyang Jiang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, China; (J.X.); (H.Z.); (L.Q.); (S.Z.)
- Correspondence: ; Tel.: +86-010-6273-4478; Fax: +86-010-6273-1032
| |
Collapse
|
2
|
Tran HV, Ngo NM, Medhi R, Srinoi P, Liu T, Rittikulsittichai S, Lee TR. Multifunctional Iron Oxide Magnetic Nanoparticles for Biomedical Applications: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:503. [PMID: 35057223 PMCID: PMC8779542 DOI: 10.3390/ma15020503] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 01/02/2023]
Abstract
Due to their good magnetic properties, excellent biocompatibility, and low price, magnetic iron oxide nanoparticles (IONPs) are the most commonly used magnetic nanomaterials and have been extensively explored in biomedical applications. Although magnetic IONPs can be used for a variety of applications in biomedicine, most practical applications require IONP-based platforms that can perform several tasks in parallel. Thus, appropriate engineering and integration of magnetic IONPs with different classes of organic and inorganic materials can produce multifunctional nanoplatforms that can perform several functions simultaneously, allowing their application in a broad spectrum of biomedical fields. This review article summarizes the fabrication of current composite nanoplatforms based on integration of magnetic IONPs with organic dyes, biomolecules (e.g., lipids, DNAs, aptamers, and antibodies), quantum dots, noble metal NPs, and stimuli-responsive polymers. We also highlight the recent technological advances achieved from such integrated multifunctional platforms and their potential use in biomedical applications, including dual-mode imaging for biomolecule detection, targeted drug delivery, photodynamic therapy, chemotherapy, and magnetic hyperthermia therapy.
Collapse
Affiliation(s)
- Hung-Vu Tran
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA; (H.-V.T.); (N.M.N.); (R.M.); (T.L.); (S.R.)
| | - Nhat M. Ngo
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA; (H.-V.T.); (N.M.N.); (R.M.); (T.L.); (S.R.)
| | - Riddhiman Medhi
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA; (H.-V.T.); (N.M.N.); (R.M.); (T.L.); (S.R.)
| | - Pannaree Srinoi
- Department of Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Tingting Liu
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA; (H.-V.T.); (N.M.N.); (R.M.); (T.L.); (S.R.)
| | - Supparesk Rittikulsittichai
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA; (H.-V.T.); (N.M.N.); (R.M.); (T.L.); (S.R.)
| | - T. Randall Lee
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA; (H.-V.T.); (N.M.N.); (R.M.); (T.L.); (S.R.)
| |
Collapse
|
3
|
Pham XH, Park SM, Ham KM, Kyeong S, Son BS, Kim J, Hahm E, Kim YH, Bock S, Kim W, Jung S, Oh S, Lee SH, Hwang DW, Jun BH. Synthesis and Application of Silica-Coated Quantum Dots in Biomedicine. Int J Mol Sci 2021; 22:10116. [PMID: 34576279 PMCID: PMC8468474 DOI: 10.3390/ijms221810116] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022] Open
Abstract
Quantum dots (QDs) are semiconductor nanoparticles with outstanding optoelectronic properties. More specifically, QDs are highly bright and exhibit wide absorption spectra, narrow light bands, and excellent photovoltaic stability, which make them useful in bioscience and medicine, particularly for sensing, optical imaging, cell separation, and diagnosis. In general, QDs are stabilized using a hydrophobic ligand during synthesis, and thus their hydrophobic surfaces must undergo hydrophilic modification if the QDs are to be used in bioapplications. Silica-coating is one of the most effective methods for overcoming the disadvantages of QDs, owing to silica's physicochemical stability, nontoxicity, and excellent bioavailability. This review highlights recent progress in the design, preparation, and application of silica-coated QDs and presents an overview of the major challenges and prospects of their application.
Collapse
Affiliation(s)
- Xuan-Hung Pham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (K.-M.H.); (B.S.S.); (J.K.); (E.H.); (Y.-H.K.); (S.B.); (W.K.); (S.J.)
| | - Seung-Min Park
- Department of Urology, School of Medicine, Stanford University, Stanford, CA 94305, USA;
| | - Kyeong-Min Ham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (K.-M.H.); (B.S.S.); (J.K.); (E.H.); (Y.-H.K.); (S.B.); (W.K.); (S.J.)
| | - San Kyeong
- School of Chemical and Biological Engineering, Seoul National University, Seoul 03080, Korea;
| | - Byung Sung Son
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (K.-M.H.); (B.S.S.); (J.K.); (E.H.); (Y.-H.K.); (S.B.); (W.K.); (S.J.)
| | - Jaehi Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (K.-M.H.); (B.S.S.); (J.K.); (E.H.); (Y.-H.K.); (S.B.); (W.K.); (S.J.)
| | - Eunil Hahm
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (K.-M.H.); (B.S.S.); (J.K.); (E.H.); (Y.-H.K.); (S.B.); (W.K.); (S.J.)
| | - Yoon-Hee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (K.-M.H.); (B.S.S.); (J.K.); (E.H.); (Y.-H.K.); (S.B.); (W.K.); (S.J.)
| | - Sungje Bock
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (K.-M.H.); (B.S.S.); (J.K.); (E.H.); (Y.-H.K.); (S.B.); (W.K.); (S.J.)
| | - Wooyeon Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (K.-M.H.); (B.S.S.); (J.K.); (E.H.); (Y.-H.K.); (S.B.); (W.K.); (S.J.)
| | - Seunho Jung
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (K.-M.H.); (B.S.S.); (J.K.); (E.H.); (Y.-H.K.); (S.B.); (W.K.); (S.J.)
| | - Sangtaek Oh
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Korea;
| | - Sang Hun Lee
- Department of Chemical and Biological Engineering, Hanbat National University, Daejeon 34158, Korea
| | - Do Won Hwang
- Department of Nuclear Medicine, College of Medicine, Seoul National University, Seoul 03080, Korea
- THERABEST, Co., Ltd., Seocho-daero 40-gil, Seoul 06657, Korea
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (K.-M.H.); (B.S.S.); (J.K.); (E.H.); (Y.-H.K.); (S.B.); (W.K.); (S.J.)
| |
Collapse
|
4
|
Antipin IS, Alfimov MV, Arslanov VV, Burilov VA, Vatsadze SZ, Voloshin YZ, Volcho KP, Gorbatchuk VV, Gorbunova YG, Gromov SP, Dudkin SV, Zaitsev SY, Zakharova LY, Ziganshin MA, Zolotukhina AV, Kalinina MA, Karakhanov EA, Kashapov RR, Koifman OI, Konovalov AI, Korenev VS, Maksimov AL, Mamardashvili NZ, Mamardashvili GM, Martynov AG, Mustafina AR, Nugmanov RI, Ovsyannikov AS, Padnya PL, Potapov AS, Selektor SL, Sokolov MN, Solovieva SE, Stoikov II, Stuzhin PA, Suslov EV, Ushakov EN, Fedin VP, Fedorenko SV, Fedorova OA, Fedorov YV, Chvalun SN, Tsivadze AY, Shtykov SN, Shurpik DN, Shcherbina MA, Yakimova LS. Functional supramolecular systems: design and applications. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5011] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
5
|
Surface Functionalization of Magnetic Nanoparticles Using a Thiol-Based Grafting-Through Approach. SURFACES 2020. [DOI: 10.3390/surfaces3010011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Here we describe a simple and straightforward synthesis of different multifunctional magnetic nanoparticles by using surface bound thiol-groups as transfer agents in a free radical polymerization process. The modification includes a first step of surface silanization with (3-mercaptopropyl)trimethoxysilane to obtain thiol-modified nanoparticles, which are further used as a platform for modification with a broad variety of polymers. The silanization was optimized in terms of shell thickness and particle size distribution, and the obtained materials were investigated by dynamic light scattering (DLS), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDX). Subsequently, the free radical polymerization of different monomers (tert-butyl acrylate (tBA), methyl methacrylate (MMA), styrene, 2-vinyl pyridine (2VP), and N-isopropylacrylamide (NIPAAm)) was examined in the presence of the thiol-modified nanoparticles. During the process, a covalently anchored polymeric shell was formed and the resulting core–shell hybrid materials were analyzed in terms of size (DLS, TEM), shell thickness (TGA, TEM), and the presence of functional groups (attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FT-IR)). Hereby, the shell leads to a different solution behavior of the particles and in some cases an increased stability towards acids. Moreover, we examined the influence of the nanoparticle concentration during polymerization and we found a significant influence on dispersity of the resulting polymers. Finally, we compared the characteristics of the surface bound polymer and polymer formed in solution for the case of polystyrene. The herein presented approach provides straightforward access to a wide range of core–shell nanocomposites.
Collapse
|
6
|
Choi E, Yoo W, Park JH, Kim S. Simultaneous Delivery of Electrostatically Complexed Multiple Gene-Targeting siRNAs and an Anticancer Drug for Synergistically Enhanced Treatment of Prostate Cancer. Mol Pharm 2018; 15:3777-3785. [PMID: 30028622 DOI: 10.1021/acs.molpharmaceut.8b00227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Simultaneous silencing of multiple apoptosis-related genes is an attractive approach to treat cancer. In this article, we present a multiple gene-targeting siRNA/drug delivery system for prostate cancer treatment with a high efficiency. Bcl-2, survivin, and androgen receptor genes involved in the cell apoptosis pathways were chosen as silencing targets with three different siRNAs. The colloidal nanocomplex delivery system (<10 nm in size) was formulated electrostatically between anionic siRNAs and a cationic drug (BZT), followed by encapsulation with the Pluronic F-68 polymer. The formulated nanocomplex system exhibited sufficient stability against nuclease-induced degradation, leading to successful intracellular delivery for the desired therapeutic performance. Silencing of targeted genes and apoptosis induction were evaluated in vitro on human prostate LNCaP-LN3 cancer cells by using various biological analysis tools (e.g., real-time PCR, MTT cell viability test, and flow cytometry). It was demonstrated that when the total loaded siRNA amounts were kept the same in the nanocomplexes, the simultaneous silencing of triple genes with co-loaded siRNAs (i.e., Bcl-2, survivin, and AR-targeting siRNAs) enhanced BZT-induced apoptosis of cancer cells more efficiently than the silencing of each single gene alone, offering a novel way of improving the efficacy of gene therapeutics including anticancer drug.
Collapse
Affiliation(s)
- Eunshil Choi
- Center for Theragnosis , Korea Institute of Science and Technology (KIST) , Seoul 136-791 , Korea
| | - Wonjae Yoo
- Center for Theragnosis , Korea Institute of Science and Technology (KIST) , Seoul 136-791 , Korea.,School of Chemical Engineering, College of Engineering , Sungkyunkwan Univeristy , Suwon 440-746 , Korea
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering , Sungkyunkwan Univeristy , Suwon 440-746 , Korea
| | - Sehoon Kim
- Center for Theragnosis , Korea Institute of Science and Technology (KIST) , Seoul 136-791 , Korea.,Division of Bio-Medical Science & Technology, KIST School , Korea University of Science and Technology (UST) , Seoul 136-791 , Korea
| |
Collapse
|
7
|
Jeong C, Kim HM, Park SY, Cha MG, Park SJ, Kyeong S, Pham XH, Hahm E, Ha Y, Jeong DH, Jun BH, Lee YS. Highly Sensitive Magnetic-SERS Dual-Function Silica Nanoprobes for Effective On-Site Organic Chemical Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E146. [PMID: 28608835 PMCID: PMC5485793 DOI: 10.3390/nano7060146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 06/07/2017] [Accepted: 06/09/2017] [Indexed: 01/17/2023]
Abstract
We report magnetic silver nanoshells (M-AgNSs) that have both magnetic and SERS properties for SERS-based detection. The M-AgNSs are composed of hundreds of Fe₃O₄ nanoparticles for rapid accumulation and bumpy silver shell for sensitive SERS detection by near-infrared laser excitation. The intensity of the SERS signal from the M-AgNSs was strong enough to provide single particle-level detection. We obtained much stronger SERS signal intensity from the aggregated M-AgNSs than from the non-aggregated AgNSs. 4-Fluorothiophenol was detected at concentrations as low as 1 nM, which corresponds to 0.16 ppb. The limit of detection for tetramethylthiuram disulfide was 10 μM, which corresponds to 3 ppm. The M-AgNSs can be used to detect trace amounts of organic molecules using a portable Raman system.
Collapse
Affiliation(s)
- Cheolhwan Jeong
- School of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Korea.
| | - Hyung-Mo Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea.
| | - So Yeon Park
- School of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Korea.
| | - Myeong Geun Cha
- Department of Chemistry Education, Seoul National University, Seoul 151-742, Korea.
| | - Sung-Jun Park
- School of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Korea.
| | - San Kyeong
- School of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Korea.
| | - Xuan-Hung Pham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea.
| | - Eunil Hahm
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea.
| | - Yuna Ha
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea.
| | - Dae Hong Jeong
- Department of Chemistry Education, Seoul National University, Seoul 151-742, Korea.
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea.
| | - Yoon-Sik Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Korea.
| |
Collapse
|
8
|
Li Y, Zhou Y, Li X, Sun J, Ren Z, Wen W, Yang X, Han G. A Facile Approach to Upconversion Crystalline CaF 2:Yb 3+,Tm 3+@mSiO 2 Nanospheres for Tumor Therapy. RSC Adv 2016; 6:38365-38370. [PMID: 27774143 PMCID: PMC5072527 DOI: 10.1039/c6ra04167a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new facile approach, namely chemical-assisted sol-gel growth (CASGG), was successfully developed to induce the formation of fine CaF2:Yb3+, Tm3+ nanocrytals within the pore channels of mesoporous silica (mSiO2) nanoparticles. A series of upconversion photoluminescent crystalline CaF2:Yb3+,Tm3+@mSiO2 nanospheres with controlled diameters from ~65 nm to ~290 nm were fabricated. All nanospheres presented sound cyto-compatibility and unique ratiometric spectral monitoring functionalities for drug release kinetics. The nanospheres with smallest dimension (UCNP-2.5, ~65nm) induced the most sustained DOX release kinetics. More importantly, the in-vitro study demonstrated that the DOX loaded UCNP-2.5 nanopheres presented the strongest anti-cancer efficacy to MCF-7 human breast cancer cells due to its stronger penetration ability to cell nuclei due to the size effect.
Collapse
Affiliation(s)
- Yangyang Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Yurong Zhou
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, P. R. China
| | - Xiang Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, P. R. China
| | - Zhaohui Ren
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Wengjian Wen
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Xiaoming Yang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, P. R. China
- Image-Guided Bio-Molecular Interventions Research, Department of Radiology, University of Washington School of Medicine, Seattle, Washington, 98109 USA
| | - Gaorong Han
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| |
Collapse
|
9
|
Sharma A, Kakkar A. Designing Dendrimer and Miktoarm Polymer Based Multi-Tasking Nanocarriers for Efficient Medical Therapy. Molecules 2015; 20:16987-7015. [PMID: 26393546 PMCID: PMC6332070 DOI: 10.3390/molecules200916987] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 11/28/2022] Open
Abstract
To address current complex health problems, there has been an increasing demand for smart nanocarriers that could perform multiple complimentary biological tasks with high efficacy. This has provoked the design of tailor made nanocarriers, and the scientific community has made tremendous effort in meeting daunting challenges associated with synthetically articulating multiple functions into a single scaffold. Branched and hyper-branched macromolecular architectures have offered opportunities in enabling carriers with capabilities including location, delivery, imaging etc. Development of simple and versatile synthetic methodologies for these nanomaterials has been the key in diversifying macromolecule based medical therapy and treatment. This review highlights the advancement from conventional "only one function" to multifunctional nanomedicine. It is achieved by synthetic elaboration of multivalent platforms in miktoarm polymers and dendrimers by physical encapsulation, covalent linking and combinations thereof.
Collapse
Affiliation(s)
- Anjali Sharma
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada.
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada.
| |
Collapse
|