1
|
Ouyang J, Zhang Z, Li J, Wu C. Integrating Enzymes with Supramolecular Polymers for Recyclable Photobiocatalytic Catalysis. Angew Chem Int Ed Engl 2024; 63:e202400105. [PMID: 38386281 DOI: 10.1002/anie.202400105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 02/23/2024]
Abstract
Chemical modifications of enzymes excel in the realm of enzyme engineering due to its directness, robustness, and efficiency; however, challenges persist in devising versatile and effective strategies. In this study, we introduce a supramolecular modification methodology that amalgamates a supramolecular polymer with Candida antarctica lipase B (CalB) to create supramolecular enzymes (SupEnzyme). This approach features the straightforward preparation of a supramolecular amphiphilic polymer (β-CD@SMA), which was subsequently conjugated to the enzyme, resulting in a SupEnzyme capable of self-assembly into supramolecular nanoparticles. The resulting SupEnzyme nanoparticles can form micron-scale supramolecular aggregates through supramolecular and electrostatic interactions with guest entities, thus enhancing catalyst recycling. Remarkably, these aggregates maintain 80 % activity after seven cycles, outperforming Novozym 435. Additionally, they can effectively initiate photobiocatalytic cascade reactions using guest photocatalysts. As a consequence, our SupEnzyme methodology exhibits noteworthy adaptability in enzyme modification, presenting a versatile platform for various polymer, enzyme, and biocompatible catalyst pairings, with potential applications in the fields of chemistry and biology.
Collapse
Affiliation(s)
- Jingping Ouyang
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Zhenfang Zhang
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Changzhu Wu
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
- Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| |
Collapse
|
2
|
Almulaiky YQ, Alkabli J, El-Shishtawy RM. Sustainable Immobilization of β-Glucosidase onto Silver Ions and AgNPs-Loaded Acrylic Fabric with Enhanced Stability and Reusability. Polymers (Basel) 2023; 15:4361. [PMID: 38006085 PMCID: PMC10674166 DOI: 10.3390/polym15224361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Modified polymer design has attracted significant attention for enzyme immobilization, offering promising applications. In this study, amine-terminated polymers were synthesized by incorporating functional groups into polyacrylonitrile using hexamethylenediamine. This work highlights the successful enzyme immobilization strategy using modified polymers, offering improved stability and expanded operational conditions for potential biotechnological applications. The resulting amino groups were utilized to capture silver ions, which were subsequently converted to silver nanoparticles (AgNPs). The obtained materials, AgNPs@TA-HMDA (acrylic textiles coated silver nanoparticles AgNPs) and Ag(I)@TA-HMDA (acrylic textiles coated with Ag ion) were employed as supports for β-glucosidase enzyme immobilization. The highest immobilization yields (IY%) were achieved with AgNPs@TA-HMDA at 92%, followed by Ag(I)@TA-HMDA at 79.8%, resulting in activity yields (AY%) of 81% and 73%, respectively. Characterization techniques such as FTIR, FE-SEM, EDX, TG/DTG, DSC, and zeta potential were employed to investigate the structural composition, surface morphologies, elemental composition, thermal properties, and surface charge of the support materials. After 15 reuses, the preservation percentages decreased to 76% for AgNPs@TA-HMDA/β-Glu and 65% for Ag(I)@TA-HMDA/β-Glu. Storage stability revealed that the decrease in activity for the immobilized enzymes was smaller than the free enzyme. The optimal pH for the immobilized enzymes was broader (pH 5.5 to 6.5) compared to the free enzyme (pH 5.0), and the optimal temperature for the immobilized enzymes was 60 °C, slightly higher than the free enzyme's optimal temperature of 50 °C. The kinetic analysis showed a slight increase in Michaelis constant (Km) values for the immobilized enzymes and a decrease in maximum velocity (Vmax), turnover number (Kcat), and specificity constant (Kcat/Km) values compared to the free enzyme. Through extensive characterization, we gained valuable insights into the structural composition and properties of the modified polymer supports. This research significantly contributes to the development of efficient biotechnological processes by advancing the field of enzyme immobilization and offering valuable knowledge for its potential applications.
Collapse
Affiliation(s)
- Yaaser Q. Almulaiky
- Department of Chemistry, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21921, Saudi Arabia
| | - J. Alkabli
- Department of Chemistry, College of Science and Arts at Alkamil, University of Jeddah, Jeddah 23218, Saudi Arabia;
| | - Reda M. El-Shishtawy
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
3
|
Leng F, Li T, Li T, Xie C, Jiang X. Electron beam irradiation modified carboxymethyl chitin microsphere-based hemostatic materials with strong blood cell adsorption for hemorrhage control. Biomater Sci 2023; 11:5908-5917. [PMID: 37458611 DOI: 10.1039/d3bm00787a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Timely control of coagulopathy bleeding can effectively reduce the probability of wound infection and mortality. However, it is still a challenge for microsphere hemostatic agents to achieve timely control of coagulopathy bleeding. In this work, the CCM-g-AA@DA hemostatic agent based on carboxymethyl chitin microspheres, CCM, was synthesized using electron beam irradiation-induced grafting polymerization of acrylic acid and coupling with dopamine. Irradiation grafting endowed the microspheres with excellent adsorption performance and a rough surface. The microspheres showed a strong affinity to blood cells, especially red blood cells. The maximum adsorption of red blood cells is up to approximately 100 times that of the original microspheres, the CCM. The introduction of dopamine increased the tissue adhesion of the microspheres. At the same time, the microspheres still possessed good blood compatibility and biodegradability. Furthermore, the CCM-g-AA@DA with Fe3+ achieved powerful procoagulant effects in the rat anticoagulant bleeding model. The bleeding time and blood loss were both reduced by about 90% compared with the blank group, which was superior to that of the commercially available collagen hemostatic agent Avitene™. In summary, the CCM-g-AA@DA hemostatic agent shows promising potential for bleeding control in individuals with coagulation disorders.
Collapse
Affiliation(s)
- Fan Leng
- Department of Pharmacology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China.
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Taotao Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Tongfei Li
- Department of Pharmacology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China.
| | - Cong Xie
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-power Nuclear Technology Research and Development Center, Hubei University of Science and Technology, Xianning 437100, China.
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
4
|
Yu S, An SJ, Kim KJ, Lee JH, Chi WS. High-Loading Poly(ethylene glycol)-Blended Poly(acrylic acid) Membranes for CO 2 Separation. ACS OMEGA 2023; 8:2119-2127. [PMID: 36687074 PMCID: PMC9850465 DOI: 10.1021/acsomega.2c06143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Poly(ethylene glycol) (PEG) is an amorphous material of interest owing to its high CO2 affinity and potential usage in CO2 separation applications. However, amorphous PEG often has a low molecular weight, making it challenging to form into the membrane. The crystalline high average molar mass poly(ethylene oxide) (PEO) cannot exhibit CO2 separation characteristics. Thus, it is crucial to employ low molecular weight PEG in high molecular weight polymers to increase the CO2 affinity for CO2 separation membranes. In this work, poly(acrylic acid) (PAA)/PEG blend membranes with a PEG-rich phase were simply fabricated by physical mixing with an ethanol solvent. The carbonyl group of the PAA and the hydroxyl group of the PEG formed a hydrogen bond. Furthermore, the thermal stability, glass transition temperature, and surface hydrophilicity of PAA/PEG blend membranes with various PEG concentrations were further characterized. The PAA/PEG(1:9) blend membrane exhibited an improved CO2 permeability of 51 Barrer with high selectivities relative to the other gas species (H2, N2, and CH4; CO2/H2 = 6, CO2/N2 = 63, CO2/CH4 = 21) at 35 °C and 150 psi owing to the enhanced CO2 affinity with the amorphous PEG-rich phase. These PAA/PEG blend membrane permeation characteristics indicate a promising prospect for CO2 capture applications.
Collapse
Affiliation(s)
- Somi Yu
- Department
of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju61186, Republic
of Korea
| | - Seong Jin An
- Department
of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju61186, Republic
of Korea
| | - Ki Jung Kim
- Department
of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju61186, Republic
of Korea
| | - Jae Hun Lee
- Hydrogen
Research Department, Korea Institute of
Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon34129, Republic of Korea
| | - Won Seok Chi
- Department
of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju61186, Republic
of Korea
- School
of Polymer Science and Engineering, Chonnam
National University, 77 Yongbong-ro, Buk-gu, Gwangju61186, Republic of Korea
| |
Collapse
|
5
|
Quadrado RF, Vitoria HF, Ferreira DC, Krambrock K, Moreira KS, Burgo TA, Iglesias BA, Fajardo AR. Hybrid polymer aerogels containing porphyrins as catalysts for efficient photodegradation of pharmaceuticals in water. J Colloid Interface Sci 2022; 613:461-476. [DOI: 10.1016/j.jcis.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/13/2021] [Accepted: 01/01/2022] [Indexed: 10/19/2022]
|
6
|
Meléndez-Ortiz HI, Betancourt-Galindo R, Puente-Urbina B, Sánchez-Orozco JL, Ledezma A. Antimicrobial cotton gauzes modified with poly(acrylic acid-co-maltodextrin) hydrogel using chitosan as crosslinker. Int J Biol Macromol 2022; 198:119-127. [PMID: 34963627 DOI: 10.1016/j.ijbiomac.2021.12.083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/05/2022]
Abstract
Cotton gauzes were grafted with a hydrogel of maltodextrin (MD) and poly(acrylic acid) (PAAc) using N-maleyl chitosan as crosslinker to obtain materials with antimicrobial properties. Reaction parameters including monomer, crosslinker, and initiator concentrations were studied. The modification with the copolymer poly(acrylic acid)-co-maltodextrin (PAAc-co-MD) was corroborated by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The grafted gauzes (gauze-g-(PAAc-co-MD)) were able to load vancomycin and inhibit the growth of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria. In addition, the incorporation of chitosan as crosslinker showed a synergistic effect against these bacteria. The prepared gauze-g-(PAAc-co-MD) materials could be used in the biomedical area particularly as antimicrobial wound dressings.
Collapse
Affiliation(s)
- H Iván Meléndez-Ortiz
- CONACyT-Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo # 140, 25294 Saltillo, Mexico.
| | - Rebeca Betancourt-Galindo
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo # 140, 25294 Saltillo, Mexico
| | - Bertha Puente-Urbina
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo # 140, 25294 Saltillo, Mexico
| | - Jorge L Sánchez-Orozco
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo # 140, 25294 Saltillo, Mexico
| | - Antonio Ledezma
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo # 140, 25294 Saltillo, Mexico
| |
Collapse
|
7
|
Patil RS, Sancaktar E. Fabrication of pH-Responsive Polyimide Polyacrylic Acid Smart Gating Membranes: Ultrafast Method Using 248 nm Krypton Fluoride Excimer Laser. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24431-24441. [PMID: 34008949 DOI: 10.1021/acsami.1c01265] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
pH-responsive smart gating membranes were developed using a two-step fabricating process. In the first step, a porous polyimide (PI) support membrane with ordered, regular, and well-defined pores was obtained with a 248 nm KrF excimer laser using a lithography technique. The porous membranes were then grafted with poly(acrylic acid) (PAAc) hydrogel by free radical polymerization using the same excimer laser. The number of pulses and frequency could be varied to obtain a range of water permeabilities. Permeability of membrane changed significantly due to swelling and deswelling of PAAc inside the pores at pH 7 and pH 3, respectively. These hydrogel networks were firmly grafted inside pores and remained mechanically intact even after using high pressure during permeability studies. PAAc grafting was confirmed using ATR-FTIR. PAAc hydrogel distribution inside membrane pores was analyzed using SEM and fluorescence microscopy. To quantify the amount of polymer grafted, TGA studies were carried out. Diffusion studies were also carried out using caffeine as a drug molecule to evaluate the application of membrane in drug delivery devices. The linear drug release profile obtained from the study confirmed the potential application of membrane for drug delivery purposes. Results obtained also suggest that the fabrication method developed is fast, efficient, solvent-free, and economical.
Collapse
Affiliation(s)
- Renuka Subhash Patil
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Erol Sancaktar
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
8
|
Işık C, Doğaç Yİ, Deveci İ, Teke M. Zn
2+
‐Doped PVA Composite Electrospun Nanofiber for Upgrading of Enzymatic Properties of Acetylcholinesterase**. ChemistrySelect 2020. [DOI: 10.1002/slct.202004006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ceyhun Işık
- Chemistry Department Faculty of Science Muğla Sıtkı Koçman University Muğla 48000 Turkey
| | - Yasemin İspirli Doğaç
- Chemistry and Chemical Processing Technology Department Muğla Vocational School Muğla Sıtkı Koçman University Muğla 48000 Turkey
| | - İlyas Deveci
- Chemistry and Chemical Processing Technology Department Technical Sciences Vocational School Konya Technical University Konya 42100 Turkey
| | - Mustafa Teke
- Chemistry Department Faculty of Science Muğla Sıtkı Koçman University Muğla 48000 Turkey
| |
Collapse
|
9
|
Low-pressure driven electrospun membrane with tuned surface charge for efficient removal of polystyrene nanoplastics from water. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118470] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Smith S, Goodge K, Delaney M, Struzyk A, Tansey N, Frey M. A Comprehensive Review of the Covalent Immobilization of Biomolecules onto Electrospun Nanofibers. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2142. [PMID: 33121181 PMCID: PMC7692479 DOI: 10.3390/nano10112142] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 01/08/2023]
Abstract
Biomolecule immobilization has attracted the attention of various fields such as fine chemistry and biomedicine for their use in several applications such as wastewater, immunosensors, biofuels, et cetera. The performance of immobilized biomolecules depends on the substrate and the immobilization method utilized. Electrospun nanofibers act as an excellent substrate for immobilization due to their large surface area to volume ratio and interconnectivity. While biomolecules can be immobilized using adsorption and encapsulation, covalent immobilization offers a way to permanently fix the material to the fiber surface resulting in high efficiency, good specificity, and excellent stability. This review aims to highlight the various covalent immobilization techniques being utilized and their benefits and drawbacks. These methods typically fall into two categories: (1) direct immobilization and (2) use of crosslinkers. Direct immobilization techniques are usually simple and utilize the strong electrophilic functional groups on the nanofiber. While crosslinkers are used as an intermediary between the nanofiber substrate and the biomolecule, with some crosslinkers being present in the final product and others simply facilitating the reactions. We aim to provide an explanation of each immobilization technique, biomolecules commonly paired with said technique and the benefit of immobilization over the free biomolecule.
Collapse
Affiliation(s)
- Soshana Smith
- Department of Fiber Science and Apparel Design, Cornell University, Ithaca, NY 14853, USA; (K.G.); (N.T.); (M.F.)
| | - Katarina Goodge
- Department of Fiber Science and Apparel Design, Cornell University, Ithaca, NY 14853, USA; (K.G.); (N.T.); (M.F.)
| | - Michael Delaney
- Robert Frederick Smith School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; (M.D.); (A.S.)
| | - Ariel Struzyk
- Robert Frederick Smith School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; (M.D.); (A.S.)
| | - Nicole Tansey
- Department of Fiber Science and Apparel Design, Cornell University, Ithaca, NY 14853, USA; (K.G.); (N.T.); (M.F.)
| | - Margaret Frey
- Department of Fiber Science and Apparel Design, Cornell University, Ithaca, NY 14853, USA; (K.G.); (N.T.); (M.F.)
| |
Collapse
|
11
|
|
12
|
Ulu A, Birhanli E, Boran F, Köytepe S, Yesilada O, Ateş B. Laccase-conjugated thiolated chitosan-Fe3O4 hybrid composite for biocatalytic degradation of organic dyes. Int J Biol Macromol 2020; 150:871-884. [DOI: 10.1016/j.ijbiomac.2020.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 12/20/2022]
|
13
|
Tan HL, Sanira Putri MK, Idris SS, Hartikainen N, Abu Bakar NF, Keirouz A, Radacsi N. High‐throughput
fabrication of carbonized electrospun polyacrylonitrile/poly(acrylic acid) nanofibers with additives for enhanced electrochemical sensing. J Appl Polym Sci 2020. [DOI: 10.1002/app.49341] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Huey Ling Tan
- Faculty of Chemical EngineeringUniversiti Teknologi MARA Shah Alam Selangor Malaysia
| | - Maria Kana Sanira Putri
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, King's Buildings Edinburgh UK
| | - Siti Shawalliah Idris
- Faculty of Chemical EngineeringUniversiti Teknologi MARA Shah Alam Selangor Malaysia
| | - Niklas Hartikainen
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, King's Buildings Edinburgh UK
| | - Noor Fitrah Abu Bakar
- Faculty of Chemical EngineeringUniversiti Teknologi MARA Shah Alam Selangor Malaysia
| | - Antonios Keirouz
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, King's Buildings Edinburgh UK
| | - Norbert Radacsi
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, King's Buildings Edinburgh UK
| |
Collapse
|
14
|
Cacciotti I, Pallotto F, Scognamiglio V, Moscone D, Arduini F. Reusable optical multi-plate sensing system for pesticide detection by using electrospun membranes as smart support for acetylcholinesterase immobilisation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110744. [PMID: 32279763 DOI: 10.1016/j.msec.2020.110744] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 01/03/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023]
Abstract
Herein we report a multiplated and biopolymeric-based optical bioassay for organophosphate detection based on the use of acetylcholinesterase (AChE) as biocomponent and biopolymeric electrospun fibrous mats as eco-designed supports for AChE immobilisation. The principle of the detection relays on the decrease of enzymatic activity due to the capability of the organophosphorus pesticides to irreversibly inhibit AChE, which is optically detected using Ellman colorimetric method. The proposed bioassay consists in a novel, cost-effective, and multiplex-based 96-well system, in combination with customised biopolymeric membranes modified with AChE, with the aim to deliver a sustainable analytical tool. Indeed, the designed set-up should provide and guarantee several advantages, including: i) the re-use of plastic multi-plate with the only replacement of polymer dishes in the case of inhibition absence; ii) the exploiting of the properties of the immobilised enzyme, i.e. multiple analysis using the same amount of enzyme, reducing the AChE amount for analysis. In detail, three different biopolymers (i.e. polylactic acid (PLA), polycaprolactone (PCL), and poly-hydroxybutyrate-co-hydroxyvalerate (PHBV)) were investigated and morphologically characterised, as supports for enzyme immobilisation, to identify the optimal one. Among them, PHBV was selected as the best support to immobilise AChE by cross-linking method. The analytical features of the bioassay were then assessed by measuring standard solutions of paraoxon in a range of concentrations between 10 and 100 ppb, achieving a linear range up to 60 ppb and a detection limit of 10 ppb. Thus, the suitability of this sustainable bioassay to detect organophosphate at ppb level was demonstrated.
Collapse
Affiliation(s)
- Ilaria Cacciotti
- University of Rome "Niccolò Cusano", Department of Engineering, Via Don Carlo Gnocchi 3, 00166 Roma, Italy.
| | - Francesca Pallotto
- Università di Roma Tor Vergata, Department of Chemical Science and Technologies, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Viviana Scognamiglio
- Institute of Crystallography, National Research Council, Department of Chemical Sciences and Materials Technologies, Via Salaria Km 29.3, 00015, Monterotondo Scalo, Rome, Italy
| | - Danila Moscone
- Università di Roma Tor Vergata, Department of Chemical Science and Technologies, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Fabiana Arduini
- Università di Roma Tor Vergata, Department of Chemical Science and Technologies, Via della Ricerca Scientifica, 00133 Rome, Italy; SENSE4MED, s.r.l. via Renato Rascel 30, 00128 Rome, Italy
| |
Collapse
|
15
|
Nano‐CaCO
3
‐embodied polyacrylicacid/dextran nanocomposites for packaging applications. J Appl Polym Sci 2020. [DOI: 10.1002/app.48298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Ebadi SV, Semnani D, Fashandi H, Rezaei B. Synthesis and characterization of a novel polyurethane/polypyrrole‐p‐toluenesulfonate (PU/PPy‐pTS) electroactive nanofibrous bending actuator. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4655] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Seyed Vahid Ebadi
- Department of Textile EngineeringIsfahan University of Technology Isfahan 84156‐83111 Iran
| | - Dariush Semnani
- Department of Textile EngineeringIsfahan University of Technology Isfahan 84156‐83111 Iran
| | - Hossein Fashandi
- Department of Textile EngineeringIsfahan University of Technology Isfahan 84156‐83111 Iran
| | - Behzad Rezaei
- Department of ChemistryIsfahan University of Technology Isfahan 84156‐83111 Iran
| |
Collapse
|
17
|
Ismail I, Bakar NF, Ling T, Ideris N, Zain ZH, Radacsi N. Morphology and Conductivity Evaluation of Electrospun Polyacrylic Acid (PAA) Microfiber. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.matpr.2019.06.337] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
18
|
|
19
|
Koloti LE, Gule NP, Arotiba OA, Malinga SP. Laccase-immobilized dendritic nanofibrous membranes as a novel approach towards the removal of bisphenol A. ENVIRONMENTAL TECHNOLOGY 2018; 39:392-404. [PMID: 28278087 DOI: 10.1080/09593330.2017.1301570] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/24/2017] [Indexed: 06/06/2023]
Abstract
Laccase enzymes from Rhus vernificera were covalently bound on hyperbranched polyethyleneimine/polyethersulfone (HPEI/PES) electrospun nanofibrous membranes and used for the removal of bisphenol A (BPA) from water. The laccase enzyme was anchored on the dendritic membranes through the abundant peripheral amine groups on the HPEI using glutaraldehyde as a crosslinker. The membranes were characterized with attenuated total reflectance-Fourier transform infrared spectroscopy, scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDS) and ultraviolet-visible spectroscopy and correlative light and electron microscopy (CLEM). Furthermore, contact-angle analyses, pure water flux measurements and rejection analyses were carried out. CLEM showed that the enzymes were uniformly dispersed on the nanofibres while SEM analysis revealed that the nanofibres had an average diameter of 354 ± 37 nm. EDS showed the presence of Cu, which is the active entity in laccase enzymes. The laccase-modified membranes were hydrophilic (50°-53° contact angle) and exhibited high BPA rejection of 89.6% as compared to the 52.4% demonstrated by pristine PES. The laccase-modified membranes also maintained a constant permeate flux (7.07 ± 5.54 L/m2 h) throughout the filtration process. Recyclability studies indicated that the membranes still maintained a high BPA removal of up to 79% even after four filtration cycles.
Collapse
Affiliation(s)
- Lebohang E Koloti
- a Department of Applied Chemistry , University of Johannesburg , Johannesburg , South Africa
| | - Nonjabulo P Gule
- b Department of Polymer Science , Stellenbosch University , Stellenbosch , South Africa
| | - Omotayo A Arotiba
- a Department of Applied Chemistry , University of Johannesburg , Johannesburg , South Africa
- c Centre for Nanomaterials Science Research , University of Johannesburg , Johannesburg , South Africa
| | - Soraya P Malinga
- a Department of Applied Chemistry , University of Johannesburg , Johannesburg , South Africa
| |
Collapse
|
20
|
Çakıroğlu B, Çiğil AB, Ogan A, Kahraman MV, Demir S. Covalent immobilization of acetylcholinesterase on a novel polyacrylic acid-based nanofiber membrane. Eng Life Sci 2018; 18:254-262. [PMID: 32624904 DOI: 10.1002/elsc.201700130] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/05/2017] [Accepted: 01/03/2018] [Indexed: 11/06/2022] Open
Abstract
In this study, polyacrylic acid-based nanofiber (NF) membrane was prepared via electrospinning method. Acetylcholinesterase (AChE) from Electrophorus electricus was covalently immobilized onto polyacrylic acid-based NF membrane by demonstrating efficient enzyme immobilization, and immobilization capacity of polymer membranes was found to be 0.4 mg/g. The novel NF membrane was synthesized via thermally activated surface reconstruction, and activation with carbonyldiimidazole upon electrospinning. The morphology of the polyacrylic acid-based membrane was investigated by scanning electron microscopy, Fourier Transform Infrared Spectroscopy, and thermogravimetric analysis. The effect of temperature and pH on enzyme activity was investigated and maxima activities for free and immobilized enzyme were observed at 30 and 35°C, and pH 7.4 and 8.0, respectively. The effect of 1 mM Mn2+, Ni2+, Cu2+, Zn2+, Mg2+, Ca2+ ions on the stability of the immobilized AChE was also investigated. According to the Michaelis-Menten plot, AChE possessed a lower affinity to acetylthiocholine iodide after immobilization, and the Michaelis-Menten constant of immobilized and free AChE were found to be 0.5008 and 0.4733 mM, respectively. The immobilized AChE demonstrated satisfactory reusability, and even after 10 consecutive activity assay runs, AChE maintained ca. 87% of its initial activity. Free enzyme lost its activity completely within 60 days, while the immobilized enzyme retained approximately 70% of the initial activity under the same storage time. The favorable reusability of immobilized AChE enables the support to be employable to develop the AChE-based biosensors.
Collapse
Affiliation(s)
- Bekir Çakıroğlu
- Biomedical, Magnetic, and Semiconductor Materials Research Center (BIMAS-RC) Sakarya University Sakarya Turkey
| | - Aslı Beyler Çiğil
- Department of Chemistry Faculty of Arts and Sciences Marmara University Istanbul Turkey
| | - Ayşe Ogan
- Department of Chemistry Faculty of Arts and Sciences Marmara University Istanbul Turkey
| | - M Vezir Kahraman
- Department of Chemistry Faculty of Arts and Sciences Marmara University Istanbul Turkey
| | - Serap Demir
- Department of Chemistry Faculty of Arts and Sciences Marmara University Istanbul Turkey
| |
Collapse
|
21
|
Taghavian H, Ranaei-Siadat SO, Kalaee MR, Mazinani S. Investigation of the effects of starch on the physical and biological properties of polyacrylamide (PAAm)/starch nanofibers. Prog Biomater 2017; 6:85-96. [PMID: 28748480 PMCID: PMC5597571 DOI: 10.1007/s40204-017-0069-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/06/2017] [Indexed: 11/28/2022] Open
Abstract
Here, we report the development of a new polyacrylamide (PAAm)/starch nanofibers’ blend system and highlight its potential as substrate for efficient enzyme immobilization. PAAm was synthesized and blended with starch. The final blend was then electrospun into nanofibers. The response surface methodology was used to analyze the parameters that control nanofiber’s diameter. Electrospun mat was then modified either by cross-linking or phytase immobilization using silane coupling agent and glutaraldehyde chemistry. Physico-chemical properties of blends were investigated using spectroscopic and thermal studies. The evaluation of immobilized enzyme kinetics on both pure and the starch blended PAAm nanofibers was performed using Michaelis–Menten kinetic curves. Fourier transform infrared spectroscopy results along with differential scanning and X-ray diffraction confirmed that blending was successfully accomplished. TGA analysis also demonstrated that the presence of starch enhances the thermal degradability of PAAm nanofibers. Finally, it was shown that addition of starch to PAAm increases the efficacies of enzyme loading and, therefore, significantly enhances the activity as well as kinetics of the immobilized enzyme on electrospun blend mats.
Collapse
Affiliation(s)
- Hadi Taghavian
- Department of Polymer Engineering, Islamic Azad University, South Tehran Branch, Tehran, 1777613651, Iran
| | - Seyed-Omid Ranaei-Siadat
- Nanobiotechnology Engineering Laboratory, Department of Biotechnology, Faculty of Energy Engineering and New Technologies, Shahid Beheshti University, GC, Tehran, Iran
| | - Mohammad Reza Kalaee
- Department of Polymer Engineering, Islamic Azad University, South Tehran Branch, Tehran, 1777613651, Iran.
| | - Saeedeh Mazinani
- Amirkabir Nanotechnology Research Institute (ANTRI), Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
22
|
Liu C, Saeki D, Matsuyama H. A novel strategy to immobilize enzymes on microporous membranes via dicarboxylic acid halides. RSC Adv 2017. [DOI: 10.1039/c7ra10012d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A simple and efficient enzyme immobilization strategy on microporous membrane surfaces using dicarboxylic acid halides as a spacer offers a tool to design membranes used in enzymatic membrane reactors.
Collapse
Affiliation(s)
- Cuijing Liu
- Center for Membrane and Film Technology
- Department of Chemical Science and Engineering
- Kobe University
- Kobe
- Japan
| | - Daisuke Saeki
- Center for Membrane and Film Technology
- Department of Chemical Science and Engineering
- Kobe University
- Kobe
- Japan
| | - Hideto Matsuyama
- Center for Membrane and Film Technology
- Department of Chemical Science and Engineering
- Kobe University
- Kobe
- Japan
| |
Collapse
|
23
|
Razavi R, Zare Y, Rhee KY. A two-step model for the tunneling conductivity of polymer carbon nanotube nanocomposites assuming the conduction of interphase regions. RSC Adv 2017. [DOI: 10.1039/c7ra08214b] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This work develops a two-step model for the conductivity of polymer carbon nanotube (CNT) nanocomposites (PCNT) assuming the properties of tunneling and interphase regions.
Collapse
Affiliation(s)
- Razieh Razavi
- Department of Chemistry
- Faculty of Science
- University of Jiroft
- Jiroft
- Iran
| | - Yasser Zare
- Young Researchers and Elites Club
- Science and Research Branch
- Islamic Azad University
- Tehran
- Iran
| | - Kyong Yop Rhee
- Department of Mechanical Engineering
- College of Engineering
- Kyung Hee University
- Yongin 446-701
- Republic of Korea
| |
Collapse
|
24
|
Zare Y, Rhee KY. A simple methodology to predict the tunneling conductivity of polymer/CNT nanocomposites by the roles of tunneling distance, interphase and CNT waviness. RSC Adv 2017. [DOI: 10.1039/c7ra04034b] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this work, a simple methodology is presented that describes the main tunneling conductivity of polymer/CNT nanocomposites (PCNT) assuming the tunneling distance, interphase surrounding the CNT, and CNT waviness.
Collapse
Affiliation(s)
- Yasser Zare
- Young Researchers and Elites Club
- Science and Research Branch
- Islamic Azad University
- Tehran
- Iran
| | - Kyong Yop Rhee
- Department of Mechanical Engineering
- College of Engineering
- Kyung Hee University
- Yongin 446-701
- Republic of Korea
| |
Collapse
|
25
|
Zdarta J, Wysokowski M, Norman M, Kołodziejczak-Radzimska A, Moszyński D, Maciejewski H, Ehrlich H, Jesionowski T. Candida antarctica Lipase B Immobilized onto Chitin Conjugated with POSS ® Compounds: Useful Tool for Rapeseed Oil Conversion. Int J Mol Sci 2016; 17:E1581. [PMID: 27657054 PMCID: PMC5037846 DOI: 10.3390/ijms17091581] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 01/04/2023] Open
Abstract
A new method is proposed for the production of a novel chitin-polyhedral oligomeric silsesquioxanes (POSS) enzyme support. Analysis by such techniques as X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy confirmed the effective functionalization of the chitin surface. The resulting hybrid carriers were used in the process of immobilization of the lipase type b from Candida antarctica (CALB). Fourier transform infrared spectroscopy (FTIR) confirmed the effective immobilization of the enzyme. The tests of the catalytic activity showed that the resulting support-biocatalyst systems remain hydrolytically active (retention of the hydrolytic activity up to 87% for the chitin + Methacryl POSS® cage mixture (MPOSS) + CALB after 24 h of the immobilization), as well as represents good thermal and operational stability, and retain over 80% of its activity in a wide range of temperatures (30-60 °C) and pH (6-9). Chitin-POSS-lipase systems were used in the transesterification processes of rapeseed oil at various reaction conditions. Produced systems allowed the total conversion of the oil to fatty acid methyl esters (FAME) and glycerol after 24 h of the process at pH 10 and a temperature 40 °C, while the Methacryl POSS® cage mixture (MPOSS) was used as a chitin-modifying agent.
Collapse
Affiliation(s)
- Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznan 60965, Poland.
| | - Marcin Wysokowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznan 60965, Poland.
| | - Małgorzata Norman
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznan 60965, Poland.
| | - Agnieszka Kołodziejczak-Radzimska
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznan 60965, Poland.
| | - Dariusz Moszyński
- Institute of Chemical and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Pulaskiego 10, Szczecin 70322, Poland.
| | - Hieronim Maciejewski
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Umultowska 89b, Poznan 61614, Poland.
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, Rubiez 46, Poznan 61612, Poland.
| | - Hermann Ehrlich
- Institute of Experimental Physics, Technische Universität Bergakademie Freiberg, Leipziger Str. 23, Freiberg 09599, Germany.
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznan 60965, Poland.
| |
Collapse
|
26
|
Zare Y. A model for tensile strength of polymer/clay nanocomposites assuming complete and incomplete interfacial adhesion between the polymer matrix and nanoparticles by the average normal stress in clay platelets. RSC Adv 2016. [DOI: 10.1039/c6ra04132a] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this article, a model for tensile strength of polymer/clay nanocomposites (PCN) is suggested assuming perfect and imperfect interfacial adhesion between the polymer matrix and platelets by the average normal stress in clay platelets.
Collapse
Affiliation(s)
- Yasser Zare
- Young Researchers and Elites Club
- Science and Research Branch
- Islamic Azad University
- Tehran
- Iran
| |
Collapse
|
27
|
Zare Y. Assumption of interphase properties in classical Christensen–Lo model for Young's modulus of polymer nanocomposites reinforced with spherical nanoparticles. RSC Adv 2015. [DOI: 10.1039/c5ra19330c] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The significant reinforcement of polymer nanocomposites containing spherical nanoparticles which exceeds the predictions of classical models is commonly attributed to the formation of an interphase between polymer and nanoparticles.
Collapse
Affiliation(s)
- Yasser Zare
- Young Researchers and Elites Club
- Science and Research Branch
- Islamic Azad University
- Tehran
- Iran
| |
Collapse
|