1
|
Gonzalez‐Martinez E, Saem S(K, Beganovic NE, Moran‐Mirabal J. Fabrication of microstructured electrodes via electroless metal deposition onto polydopamine‐coated polystyrene substrates and thermal shrinking. NANO SELECT 2021. [DOI: 10.1002/nano.202100022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
| | | | - Nadine E. Beganovic
- Department of Chemistry and Chemical Biology McMaster University Hamilton Canada
| | - Jose Moran‐Mirabal
- Department of Chemistry and Chemical Biology McMaster University Hamilton Canada
| |
Collapse
|
2
|
Wan M, Zhao H, Peng L, Zou X, Zhao Y, Sun L. Loading of Au/Ag Bimetallic Nanoparticles within and Outside of the Flexible SiO 2 Electrospun Nanofibers as Highly Sensitive, Stable, Repeatable Substrates for Versatile and Trace SERS Detection. Polymers (Basel) 2020; 12:E3008. [PMID: 33339343 PMCID: PMC7766957 DOI: 10.3390/polym12123008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022] Open
Abstract
In this paper, we propose a facile and cost-effective electrospinning technique to fabricate surface-enhanced Raman scattering (SERS) substrates, which is appropriate for multiple analytes detection. First of all, HAuCl4∙3H2O was added into the TEOS/PVP precursor solution, and flexible SiO2 nanofibers incorporated with gold nanoparticles (SiO2@Au) were prepared by electrospinning and calcination. Subsequently, the nanofibrous membranes were immersed in the tannic acid and 3-aminopropyltriethoxysilane solution for surface modification through Michael addition reaction. Finally, the composite nanofibers (Ag@T-A@SiO2@Au) were obtained by the in-situ growth of Ag nanoparticles on the surfaces of nanofibers with tannic acid as a reducing agent. Due to the synergistic enhancement of Au and Ag nanoparticles, the flexible and self-supporting composite nanofibrous membranes have excellent SERS properties. Serving as SERS substrates, they are extremely sensitive to the detection of 4-mercaptophenol and 4-mercaptobenzoic acid, with an enhancement factor of 108. Moreover, they could be utilized to detect analytes such as pesticide thiram at a low concentration of 10-8 mol/L, and the substrates retain excellent Raman signals stability during the durability test of 60 days. Furthermore, the as-fabricated substrates, as a versatile SERS platform, could be used to detect bacteria of Staphylococcus aureus without a specific and complicated bacteria-aptamer conjugation procedure, and the detection limit is up to 103 colony forming units/mL. Meanwhile, the substrates also show an excellent repeatability of SERS response for S. aureus organelles. Briefly, the prime novelty of this work is the fabrication of Au/Ag bimetallic synergetic enhancement substrates as SERS platform for versatile detection with high sensitivity and stability.
Collapse
Affiliation(s)
| | | | - Lichao Peng
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China; (M.W.); (H.Z.); (X.Z.); (Y.Z.)
| | | | | | - Lei Sun
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China; (M.W.); (H.Z.); (X.Z.); (Y.Z.)
| |
Collapse
|
3
|
Song Y, Ma Z, Fang H, Zhang Q, Zhou Q, Chen Z, Yang H, Wang F. Au Sputtered Paper Chromatography Tandem Raman Platform for Sensitive Detection of Heavy Metal Ions. ACS Sens 2020; 5:1455-1464. [PMID: 32349471 DOI: 10.1021/acssensors.0c00395] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Surface-enhanced Raman scattering (SERS) is a powerful technique for sensitive detection, but it normally has difficulty in multicomponent detection in a complex system, especially for simultaneous analysis of mixture of heavy metal ions. In this work, a simple paper chromatography tandem SERS (PC-SERS) separation/detection platform is proposed by ion-sputtering gold on a filter paper. Based on SEM results, the great electromagnetic field inside nanogaps of Au nanoislands on the paper surface is evaluated with FDTD simulation. It is found that the PC-SERS platform has good uniformity (RSD = 10.12%) and long-time stability. The as-prepared PC-SERS platform was applied to efficiently separate and detect a mixture of pesticides (MG, MB, and CV) in pond water without any pretreatment process, and the limits of detection (LODs) were down to 10 nM. As a crucial application for food safety, several heavy metal ions such as Cd2+, Cu2+, and Ni2+ in grinded rice were successfully detected by the PC-SERS method taking advantage of the sandwich structure based on 4-mercaptobenzoic acid (4-MBA) molecules, which were modified onto sputtering the Au filter paper and gold nanoparticles (Au NPs) to link metal ions and acted as Raman signal molecules. All the LODs for metal ions were down to 1 μM. Due to the easiness of fabrication, good reproducibility, and simple pretreatment step, the PC-SERS platform holds promise in multicomponent detection in a real sample.
Collapse
Affiliation(s)
- Yuqi Song
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Zhiyuan Ma
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Huichao Fang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Qiong Zhang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Qinghai Zhou
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Zhihong Chen
- College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Haifeng Yang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Feng Wang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, P.R. China
| |
Collapse
|
4
|
Zhang L, Liu J, Zhou G, Zhang Z. Controllable In-Situ Growth of Silver Nanoparticles on Filter Paper for Flexible and Highly Sensitive SERS Sensors for Malachite Green Residue Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E826. [PMID: 32357438 PMCID: PMC7712161 DOI: 10.3390/nano10050826] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 11/17/2022]
Abstract
In this work, a series of highly flexible and sensitive surface-enhanced Raman scattering (SERS) substrates were fabricated by the in-situ growth of silver nanoparticles (AgNPs) on polydopamine (PDA) templated filter papers (FPs), based on mussel-inspired surface chemistry. The obtained FP@PDA@AgNPs strips exhibited high sensitivity and reproducibility with Rhodamine 6G (R6G) probe molecules, with a calculated detection limit of approximately 10-10 M. More critically, these FP@PDA@AgNPs strips could be used as outstanding flexible SERS sensors to quickly collect and detect malachite green (MG) residues on fish scales, crab shells and shrimp skins by a swabbing extraction method. The detection limits for MG residues were calculated to be approximately as low as 0.04635 pg/cm2, 0.06952 pg/cm2 and 0.09270 pg/cm2, respectively. This facile and efficient strategy could to be utilized as a universal approach to fabricating a variety of flexible, cheap and portable SERS sensors for surface contamination analysis, and has great potential in the environmental scientific analysis and food safety monitoring fields.
Collapse
Affiliation(s)
- Lingzi Zhang
- Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (L.Z.); (G.Z.)
| | - Jun Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- School of Light Industry Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Guowei Zhou
- Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (L.Z.); (G.Z.)
| | - Zhiliang Zhang
- Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (L.Z.); (G.Z.)
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
5
|
Song Y, Jiang H, Wang B, Kong Y, Chen J. Silver-Incorporated Mussel-Inspired Polydopamine Coatings on Mesoporous Silica as an Efficient Nanocatalyst and Antimicrobial Agent. ACS APPLIED MATERIALS & INTERFACES 2018; 10:1792-1801. [PMID: 29303548 DOI: 10.1021/acsami.7b18136] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
To tackle severe environmental pollution, a search for materials by economical and eco-friendly preparations is demanding for public health. In this study, a novel in situ method to form silver nanoparticles under mild conditions was developed using biomimetic reducing agents of polydopamine coated on the rodlike mesoporous silica of SBA-15. The synthesized SBA-15/polydopamine (PDA)/Ag nanocomposites were characterized by a combination of physicochemical and electrochemical methods. 4-Nitrophenol (4-NP) and methylene blue (MB) were used as models for the evaluation of the prepared nanocatalysts of SBA-15/PDA/Ag in which the composite exhibited enhanced catalytic performance toward degrading 4-NP in solution and MB on the membrane, respectively. Additionally, compared with that of solid core-shell SiO2/PDA/Ag, tubular SBA-15/PDA/Ag showed the prolonged inhibitory effect on microbial growth as typified by Escherichia coli (60 h), Staphylococcus aureus (36 h), and Aspergillus fumigatus (60 h), which demonstrated efficient control of silver nanoparticles release from the mesopores. The constructed dual-functional SBA-15/PDA/Ag as the long-term antimicrobial agent and the catalyst of industrial products provides an integrated nanoplatform to deal with environmental concerns.
Collapse
Affiliation(s)
| | | | - Bangbang Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University , 210009 Nanjing, China
| | - Yan Kong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University , 210009 Nanjing, China
| | | |
Collapse
|
6
|
Cai J, Huang J, Ge M, Iocozzia J, Lin Z, Zhang KQ, Lai Y. Immobilization of Pt Nanoparticles via Rapid and Reusable Electropolymerization of Dopamine on TiO 2 Nanotube Arrays for Reversible SERS Substrates and Nonenzymatic Glucose Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13. [PMID: 28296083 DOI: 10.1002/smll.201604240] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 01/27/2017] [Indexed: 05/05/2023]
Abstract
Inspired by mussel-adhesion phenomena in nature, polydopamine (PDA) coatings are a promising route to multifunctional platforms for decorating various materials. The typical self-polymerization process of dopamine is time-consuming and the coatings of PDA are not reusable. Herein, a reusable and time-saving strategy for the electrochemical polymerization of dopamine (EPD) is reported. The PDA layer is deposited on vertically aligned TiO2 nanotube arrays (NTAs). Owing to the abundant catechol and amine groups in the PDA layer, uniform Pt nanoparticles (NPs) are deposited onto the TiO2 NTAs and can effectively prevent the recombination of electron-hole pairs generated from photo-electrocatalysis and transfer the captured electrons to participate in the photo-electrocatalytic reaction process. Compared with pristine TiO2 NTAs, the as-prepared Pt@TiO2 NTA composites exhibit surface-enhanced Raman scattering sensitivity for detecting rhodamine 6G and display excellent UV-assisted self-cleaning ability, and also show promise as a nonenzymatic glucose biosensor. Furthermore, the mussel-inspired electropolymerization strategy and the fast EPD-reduced nanoparticle decorating process presented herein can be readily extended to various functional substrates, such as conductive glass, metallic oxides, and semiconductors. It is the adaptation of the established PDA system for a selective, robust, and generalizable sensing system that is the emphasis of this work.
Collapse
Affiliation(s)
- Jingsheng Cai
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, P. R. China
| | - Jianying Huang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, P. R. China
| | - Mingzheng Ge
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, P. R. China
| | - James Iocozzia
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Zhiqun Lin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, P. R. China
| | - Yuekun Lai
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
7
|
Choi GH, Rhee DK, Park AR, Oh MJ, Hong S, Richardson JJ, Guo J, Caruso F, Yoo PJ. Ag Nanoparticle/Polydopamine-Coated Inverse Opals as Highly Efficient Catalytic Membranes. ACS APPLIED MATERIALS & INTERFACES 2016; 8:3250-3257. [PMID: 26780371 DOI: 10.1021/acsami.5b11021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Polymeric three-dimensional inverse-opal (IO) structures provide unique structural properties useful for various applications ranging from optics to separation technologies. Despite vast needs for IO functionalization to impart additional chemical properties, this task has been seriously challenged by the intrinsic limitation of polymeric porous materials that do not allow for the easy penetration of waterborne moieties or precursors. To overcome this restriction, we present a robust and straightforward method of employing a dipping-based surface modification with polydopamine (PDA) inside the IO structures, and demonstrate their application to catalytic membranes via synthetic incorporation of Ag nanoparticles. The PDA coating offers simultaneous advantages of achieving the improved hydrophilicity required for the facilitated infiltration of aqueous precursors and successful creation of nucleation sites for a reduction of growth of the Ag nanoparticles. The resulting Ag nanoparticle-incorporated IO structures are utilized as catalytic membranes for the reduction of 4-nitrophenol to its amino derivatives in the presence of NaBH4. Synergistically combined characteristics of high reactivity of Ag nanoparticles along with a greatly enhanced internal surface area of IO structures enable the implementation of remarkably improved catalytic performance, exhibiting a good conversion efficiency greater than 99% while minimizing loss in the membrane permeability.
Collapse
Affiliation(s)
| | | | | | | | | | - Joseph J Richardson
- ARC Centre of Excellence in Convergent Bio-Nano Science, and Technology and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Junling Guo
- ARC Centre of Excellence in Convergent Bio-Nano Science, and Technology and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science, and Technology and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | | |
Collapse
|
8
|
Lengert E, Yashchenok AM, Atkin V, Lapanje A, Gorin DA, Sukhorukov GB, Parakhonskiy BV. Hollow silver alginate microspheres for drug delivery and surface enhanced Raman scattering detection. RSC Adv 2016. [DOI: 10.1039/c6ra02019d] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Multifunctional silver alginate hydrogel microspheres are assembled via a template assisted approach using calcium carbonate cores.
Collapse
Affiliation(s)
- Ekaterina Lengert
- Remote Controlled Theranostic Systems Lab
- Institute of Nanostructures and Biosystem
- Saratov State University
- Saratov
- Russia
| | - Alexey M. Yashchenok
- Remote Controlled Theranostic Systems Lab
- Institute of Nanostructures and Biosystem
- Saratov State University
- Saratov
- Russia
| | - Vsevolod Atkin
- Remote Controlled Theranostic Systems Lab
- Institute of Nanostructures and Biosystem
- Saratov State University
- Saratov
- Russia
| | - Ales Lapanje
- Remote Controlled Theranostic Systems Lab
- Institute of Nanostructures and Biosystem
- Saratov State University
- Saratov
- Russia
| | - Dmitry A. Gorin
- Remote Controlled Theranostic Systems Lab
- Institute of Nanostructures and Biosystem
- Saratov State University
- Saratov
- Russia
| | - Gleb B. Sukhorukov
- School of Engineering and Materials Science
- Queen Mary University of London
- London
- UK
| | - Bogdan V. Parakhonskiy
- Remote Controlled Theranostic Systems Lab
- Institute of Nanostructures and Biosystem
- Saratov State University
- Saratov
- Russia
| |
Collapse
|
9
|
Hu J, Wu S, Cao Q, Zhang W. Synthesis of core–shell structured alumina/Cu microspheres using activation by silver nanoparticles deposited on polydopamine-coated surfaces. RSC Adv 2016. [DOI: 10.1039/c6ra09106g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A facile and efficient approach to preparing alumina/Cu composite microspheres with silver-decorated polydopamine coating is proposed.
Collapse
Affiliation(s)
- Jiaxun Hu
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| | - Shuqing Wu
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| | - Qin Cao
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| | - Wenda Zhang
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| |
Collapse
|
10
|
Li Y, Hu Y, Ye S, Wu Y, Yang C, Wang L. Functional polyaniline-assisted decoration of polystyrene microspheres with noble metal nanoparticles and their enhanced catalytic properties. NEW J CHEM 2016. [DOI: 10.1039/c6nj02200f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A smart strategy is reported for depositing noble metal nanoparticles on polystyrene microspheres using a polyaniline coating as a functional linker.
Collapse
Affiliation(s)
- Yunxing Li
- The Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Yuhua Hu
- The Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Sunjie Ye
- School of Physics and Astronomy
- University of Leeds
- Leeds
- UK
| | - Yan Wu
- The Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Cheng Yang
- The Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Likui Wang
- The Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| |
Collapse
|
11
|
Chen J, Li Y, Huang K, Wang P, He L, Carter KR, Nugen SR. Nanoimprinted Patterned Pillar Substrates for Surface-Enhanced Raman Scattering Applications. ACS APPLIED MATERIALS & INTERFACES 2015; 7:22106-13. [PMID: 26402032 DOI: 10.1021/acsami.5b07879] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A pragmatic method to deposit silver nanoparticles on polydopamine-coated nanoimprinted pillars for use as surface-enhanced Raman scattering (SERS) substrates was developed. Pillar arrays consisting of poly(methyl methacrylate) (PMMA) that ranged in diameter from 300 to 500 nm were fabricated using nanoimprint lithography. The arrays had periodicities from 0.6 to 4.0 μm. A polydopamine layer was coated on the pillars in order to facilitate the reduction of silver ions to create silver nucleation sites during the electroless deposition of sliver nanoparticles. The size and density of silver nanoparticles were controlled by adjusting the growth time for the optimization of the SERS performance. The size of the surface-adhered nanoparticles ranged between 75 and 175 nm, and the average particle density was ∼30 particles per μm(2). These functionalized arrays had a high sensitivity and excellent signal reproducibility for the SERS-based detection of 4-methoxybenzoic acid. The substrates were also able to allow the SERS-based differentiation of three types of bacteriophages (λ, T3, and T7).
Collapse
Affiliation(s)
- Juhong Chen
- Department of Food Science, University of Massachusetts , 102 Holdsworth Way, Amherst, Massachusetts 01003, United States
| | - Yinyong Li
- Department of Polymer Science and Engineering, University of Massachusetts , 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Kang Huang
- Department of Food Science, University of Massachusetts , 102 Holdsworth Way, Amherst, Massachusetts 01003, United States
| | - Panxue Wang
- Department of Food Science, University of Massachusetts , 102 Holdsworth Way, Amherst, Massachusetts 01003, United States
| | - Lili He
- Department of Food Science, University of Massachusetts , 102 Holdsworth Way, Amherst, Massachusetts 01003, United States
| | - Kenneth R Carter
- Department of Polymer Science and Engineering, University of Massachusetts , 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Sam R Nugen
- Department of Food Science, University of Massachusetts , 102 Holdsworth Way, Amherst, Massachusetts 01003, United States
| |
Collapse
|