1
|
Gong SL, Tian Y, Sheng GP, Tian LJ. Dual-mode harvest solar energy for photothermal Cu 2-xSe biomineralization and seawater desalination by biotic-abiotic hybrid. Nat Commun 2024; 15:4365. [PMID: 38778052 PMCID: PMC11111681 DOI: 10.1038/s41467-024-48660-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Biotic-abiotic hybrid photocatalytic system is an innovative strategy to capture solar energy. Diversifying solar energy conversion products and balancing photoelectron generation and transduction are critical to unravel the potential of hybrid photocatalysis. Here, we harvest solar energy in a dual mode for Cu2-xSe nanoparticles biomineralization and seawater desalination by integrating the merits of Shewanella oneidensis MR-1 and biogenic nanoparticles. Photoelectrons generated by extracellular Se0 nanoparticles power Cu2-xSe synthesis through two pathways that either cross the outer membrane to activate periplasmic Cu(II) reduction or are directly delivered into the extracellular space for Cu(I) evolution. Meanwhile, photoelectrons drive periplasmic Cu(II) reduction by reversing MtrABC complexes in S. oneidensis. Moreover, the unique photothermal feature of the as-prepared Cu2-xSe nanoparticles, the natural hydrophilicity, and the linking properties of bacterium offer a convenient way to tailor photothermal membranes for solar water production. This study provides a paradigm for balancing the source and sink of photoelectrons and diversifying solar energy conversion products in biotic-abiotic hybrid platforms.
Collapse
Affiliation(s)
- Sheng-Lan Gong
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - YangChao Tian
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| | - Li-Jiao Tian
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
2
|
Zambonino MC, Quizhpe EM, Mouheb L, Rahman A, Agathos SN, Dahoumane SA. Biogenic Selenium Nanoparticles in Biomedical Sciences: Properties, Current Trends, Novel Opportunities and Emerging Challenges in Theranostic Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:424. [PMID: 36770385 PMCID: PMC9921003 DOI: 10.3390/nano13030424] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Selenium is an important dietary supplement and an essential trace element incorporated into selenoproteins with growth-modulating properties and cytotoxic mechanisms of action. However, different compounds of selenium usually possess a narrow nutritional or therapeutic window with a low degree of absorption and delicate safety margins, depending on the dose and the chemical form in which they are provided to the organism. Hence, selenium nanoparticles (SeNPs) are emerging as a novel therapeutic and diagnostic platform with decreased toxicity and the capacity to enhance the biological properties of Se-based compounds. Consistent with the exciting possibilities offered by nanotechnology in the diagnosis, treatment, and prevention of diseases, SeNPs are useful tools in current biomedical research with exceptional benefits as potential therapeutics, with enhanced bioavailability, improved targeting, and effectiveness against oxidative stress and inflammation-mediated disorders. In view of the need for developing eco-friendly, inexpensive, simple, and high-throughput biomedical agents that can also ally with theranostic purposes and exhibit negligible side effects, biogenic SeNPs are receiving special attention. The present manuscript aims to be a reference in its kind by providing the readership with a thorough and comprehensive review that emphasizes the current, yet expanding, possibilities offered by biogenic SeNPs in the biomedical field and the promise they hold among selenium-derived products to, eventually, elicit future developments. First, the present review recalls the physiological importance of selenium as an oligo-element and introduces the unique biological, physicochemical, optoelectronic, and catalytic properties of Se nanomaterials. Then, it addresses the significance of nanosizing on pharmacological activity (pharmacokinetics and pharmacodynamics) and cellular interactions of SeNPs. Importantly, it discusses in detail the role of biosynthesized SeNPs as innovative theranostic agents for personalized nanomedicine-based therapies. Finally, this review explores the role of biogenic SeNPs in the ongoing context of the SARS-CoV-2 pandemic and presents key prospects in translational nanomedicine.
Collapse
Affiliation(s)
- Marjorie C. Zambonino
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Ernesto Mateo Quizhpe
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Lynda Mouheb
- Laboratoire de Recherche de Chimie Appliquée et de Génie Chimique, Hasnaoua I, Université Mouloud Mammeri, BP 17 RP, Tizi-Ouzou 15000, Algeria
| | - Ashiqur Rahman
- Center for Midstream Management and Science, Lamar University, 211 Redbird Ln., Beaumont, TX 77710, USA
| | - Spiros N. Agathos
- Earth and Life Institute, Catholic University of Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Si Amar Dahoumane
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, QC H3C 3A7, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, 18, Ave Antonine-Maillet, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
3
|
Cruz DM, Mostafavi E, Vernet-Crua A, O’Connell CP, Barabadi H, Mobini S, Cholula-Díaz JL, Guisbiers G, García-Martín JM, Webster TJ. Green nanotechnology and nanoselenium for biomedical applications. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00001-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
4
|
Lian S, Fan S, Yang Y, Yu B, Dai C, Qu Y. Selenium nanoparticles with photocatalytic properties synthesized by residual activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151163. [PMID: 34699821 DOI: 10.1016/j.scitotenv.2021.151163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
The treatment and disposal of residual activated sludge is a worldwide problem and the research on its reuse is still only in the earliest stages. Selenite is a toxic pollutant, while selenium nanoparticles (SeNPs) are environmentally friendly and have promising application prospects. At present, the reduction mechanism of selenite under the complex system is still poorly understood. In order to explore the mechanism of SeNPs synthesis by activated sludge resource utilization, SeNPs were synthesized by activated sludge extracts of domestic sewage (DSeNPs) and coking sewage (CSeNPs), respectively. The synthesis process, zeta potential and morphology size of SeNPs were changed by pH value, extract concentration and extract composition. Under the same synthesis conditions, the morphologies of DSeNPs and CSeNPs were mainly spherical and pseudo-spherical, while CSeNPs also contained pseudo-rod shape particles. The sizes and crystal grains of CSeNPs were smaller than those of DSeNPs. Compared with DSeNPs, a specific protein (~35 kDa) was found on the surface of CSeNPs using SDS-PAGE. By analyzing the fluorescence images of the two SeNPs, it was found that the relative contents of proteins, α-d-glucopyranose polysaccharides, and β-d-glucopyranose polysaccharides on their surfaces were obviously different (P < 0.05). The present study demonstrated that proteins, polysaccharides, humic-like and fulvic acid-like substances cooperated in the formation and stabilization of SeNPs. Furthermore, CSeNPs (bandgap: 1.68 eV) had more desirable photocatalytic performance than DSeNPs (bandgap: 1.84 eV). Under the light condition, CSeNPs could degrade Rhodamine B faster without adding hydrogen peroxide. This experiment provided a new insight into the resource utilization of activated sludge and a reference for the synthesis of nanometer selenium with excellent performance.
Collapse
Affiliation(s)
- Shengyang Lian
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shuling Fan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ying Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Bin Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Chunxiao Dai
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
5
|
Enhanced peroxymonosulfate decomposition into OH and 1O2 for sulfamethoxazole degradation over Se doped g-C3N4 due to induced exfoliation and N vacancies formation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118664] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Date MK, Yang LH, Yang TY, Wang KY, Su TY, Wu DC, Cheuh YL. Three-Dimensional CuO/TiO 2 Hybrid Nanorod Arrays Prepared by Electrodeposition in AAO Membranes as an Excellent Fenton-Like Photocatalyst for Dye Degradation. NANOSCALE RESEARCH LETTERS 2020; 15:45. [PMID: 32072311 PMCID: PMC7028878 DOI: 10.1186/s11671-020-3266-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 01/20/2020] [Indexed: 05/12/2023]
Abstract
Three-dimensional (3D) CuO/TiO2 hybrid heterostructure nanorod arrays (NRs) with noble-metal-free composition, fabricated by template-assisted low-cost processes, were used as the photo-Fenton-like catalyst for dye degradation. Here, CuO NRs were deposited into anodic aluminum oxide templates by electrodeposition method annealed at various temperatures, followed by deposition of TiO2 thin films through E-gun evaporation, resulting in the formation of CuO/TiO2 p-n heterojunction. The distribution of elements and compositions of the CuO/TiO2 p-n heterojunction were analyzed by EDS mapping and EELS profiles, respectively. In the presence of H2O2, CuO/TiO2 hybrid structure performed more efficiently than CuO NRs for Rhodamine B degradation under the irradiation of 500-W mercury-xenon arc lamp. This study demonstrated the effect of length of CuO NRs, on the photo-degradation performance of CuO NRs as well as CuO/TiO2 heterostructure. The optimized CuO/TiO2 hybrid NR array structure exhibited the highest photo-degradation activity, and the mechanism and role of photo-Fenton acting as the catalyst in photo-degradation of dye was also investigated.
Collapse
Affiliation(s)
- Manisha Kondiba Date
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan
- Department of Physics, National Sun Yat-Sen University, Kaohsiung, 80424 Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013 Taiwan
| | - Li-Heng Yang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan
- Department of Physics, National Sun Yat-Sen University, Kaohsiung, 80424 Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013 Taiwan
| | - Tzu-Yi Yang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan
- Department of Physics, National Sun Yat-Sen University, Kaohsiung, 80424 Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013 Taiwan
| | - Kuang-ye Wang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan
- Department of Physics, National Sun Yat-Sen University, Kaohsiung, 80424 Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013 Taiwan
| | - Teng-Yu Su
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan
- Department of Physics, National Sun Yat-Sen University, Kaohsiung, 80424 Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013 Taiwan
| | - Ding-Chou Wu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan
- Department of Physics, National Sun Yat-Sen University, Kaohsiung, 80424 Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013 Taiwan
| | - Yu-Lun Cheuh
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan
- Department of Physics, National Sun Yat-Sen University, Kaohsiung, 80424 Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013 Taiwan
| |
Collapse
|
7
|
Rahut S, Basu SS, Basu JK. An electron trapping protocol of FePW 12O 40 microflowers with dual catalytic properties: visible light photodegradation of amphetamine and electrocatalytic oxygen evolution. Chem Commun (Camb) 2019; 55:4825-4828. [PMID: 30946389 DOI: 10.1039/c8cc09904a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We have demonstrated the development of a novel polyxometalate compound, FePW12O40, for photocatalytic degradation of amphetamine and electrocatalytic oxygen evolution. It showed robust optoelectronic properties, which can be attributed to numerous electron trapping sites created by atomic level defects in the microflower-like architecture.
Collapse
Affiliation(s)
- Sibsankar Rahut
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur-721302, India.
| | | | | |
Collapse
|
8
|
|
9
|
Dai C, Qing E, Li Y, Zhou Z, Yang C, Tian X, Wang Y. Novel MoSe2 hierarchical microspheres for applications in visible-light-driven advanced oxidation processes. NANOSCALE 2015; 7:19970-19976. [PMID: 26564990 DOI: 10.1039/c5nr06527e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Advanced oxidation processes as a green technology have been adopted by combining the semiconductor catalyst MoSe2 with H2O2 under visible radiation. And novel three-dimensional self-assembled molybdenum diselenide (MoSe2) hierarchical microspheres from nanosheets were produced by using organic, selenium cyanoacetic acid sodium (NCSeCH2COONa) as the source of Se. The obtained products possess good crystallinity and present hierarchical structures with the average diameter of 1 μm. The band gap of MoSe2 microspheres is 1.68 eV and they present excellent photocatalytic activity under visible light irradiation in the MoSe2-H2O2 system. This effective photocatalytic mechanism was investigated in this study and can be attributed to visible-light-driven advanced oxidation processes.
Collapse
Affiliation(s)
- Chu Dai
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China.
| | | | | | | | | | | | | |
Collapse
|