1
|
Hoang LTTT, Phan HVT, Nguyen NN, Dang TT, Tran TN, Nguyen VK, Dao MT. Utilization of dragon fruit ( Hylocereus undatus) peel-derived biochar for the adsorptive removal of tetracycline from aqueous solution. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2313-2324. [PMID: 39154231 DOI: 10.1080/15226514.2024.2389471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
The peel of Hylocereus undatus was employed in the preparation of biochar and firstly applied for tetracycline removal from aqueous solution. Based on different characterization techniques, the material was found to possess a variety of surface functional groups on a porous structure and a pH point of zero charge (pHpzc) of 9.3. Adsorption of tetracycline (TC) was conducted under varying conditions, revealing significant effects of carbonization temperature, solution pH, adsorbent dose, ionic strength, contact time and initial concentration of TC on the biochar adsorption capacity. Kinetic data on TC adsorption were best described using the Elovich kinetic model, with an initial adsorption rate of 167.3 mg g-1 min-1. Isotherm data on adsorption of the desired biochar showed the best fit with the Temkin isotherm model, followed by the Langmuir model, displaying maximum adsorption capacity at 12.4 mg g-1. The electrostatic interactions between the charged biochar surfaces and certain fractions of TC were proposed as the major mechanism, together with H-bonding, pore-filling effect and π-π interaction. This study demonstrates great potential of H. undatus peel as a starting material to prepare an effective and reusable adsorbent in the removal of TC.
Collapse
Affiliation(s)
- Le-Thuy-Thuy-Trang Hoang
- Laboratory of Advanced Materials Chemistry, Institute for Advanced Study in Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Hoang-Vinh-Truong Phan
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang, Vietnam
| | - Ngoc-Nhi Nguyen
- Department of Environmental Engineering, Thu Dau Mot University, Thu Dau Mot City, Binh Duong, Vietnam
| | - Thanh-Truc Dang
- Department of Environmental Engineering, Thu Dau Mot University, Thu Dau Mot City, Binh Duong, Vietnam
| | - Thanh-Nha Tran
- Department of Environmental Engineering, Thu Dau Mot University, Thu Dau Mot City, Binh Duong, Vietnam
| | - Van-Kieu Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang, Vietnam
| | - Minh-Trung Dao
- Department of Environmental Engineering, Thu Dau Mot University, Thu Dau Mot City, Binh Duong, Vietnam
| |
Collapse
|
2
|
Zhao Q, Wang J, Liu HB, Duan LH. Rhodamine derivative-functionalized mesoporous silica-Al 3+ hybrid material for fluorescence "turn-on" detection of tetracycline antibiotics in aqueous media. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123068. [PMID: 37393676 DOI: 10.1016/j.saa.2023.123068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/04/2023]
Abstract
The organic-inorganic hybrid material was prepared by embedding 2-amino-3',6'-bis(diethylamino)spiro[isoindoline-1,9'-xanthen]-3-one (RBH) onto mesoporous SBA-15 silica and coordinating it with Al3+ (RBH-SBA-15-Al3+). RBH-SBA-15-Al3+ was used for the selective and sensitive detection of tetracycline antibiotics (TAs) in aqueous media based on the binding site-signaling unit mechanism, in which Al3+ acted as the binding site and the fluorescence intensity at 586 nm as the response signal. The addition of TAs to RBH-SBA-15-Al3+ suspensions resulted in the formation of RBH-SBA-15-Al3+-TAs conjugates, which realized the electron transfer process and turned-on fluorescence signal at 586 nm. The detection limits for tetracycline (TC), oxytetracycline, and chlortetracycline were 0.06, 0.06, and 0.03 µM, respectively. Meanwhile, the detection of TC was feasible in real samples, such as tap water and honey. In addition, RBH-SBA-15 can operate as a TRANSFER logic gate by using Al3+ and TAs as input signals and the fluorescence intensity at 586 nm as output signal. This study proposes an efficient strategy for the selective detection of target analytes by introducing interaction sites (e.g. Al3+) with target analytes in the system.
Collapse
Affiliation(s)
- Qian Zhao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Jing Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China.
| | - Hai-Bo Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Long-Hui Duan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| |
Collapse
|
3
|
Meechai T, Poonsawat T, Limchoowong N, Laksee S, Chumkaeo P, Tuanudom R, Yatsomboon A, Honghernsthit L, Somsook E, Sricharoen P. One-pot synthesis of iron oxide - Gamma irradiated chitosan modified SBA-15 mesoporous silica for effective methylene blue dye removal. Heliyon 2023; 9:e16178. [PMID: 37223700 PMCID: PMC10200858 DOI: 10.1016/j.heliyon.2023.e16178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/25/2023] Open
Abstract
The development of adsorption technology and the processing of radiation have both been influenced by chitosan adsorbent (γ-chitosan), a raw material with unique features. The goal of the current work was to improve the synthesis of Fe-SBA-15 utilizing chitosan that has undergone gamma radiation (Fe-γ-CS-SBA-15) in order to investigate the removal of methylene blue dye in a single hydrothermal procedure. High-resolution transmission electron microscopy (HRTEM), High angle annular dark field scanning transmission electron microscopy (HAADF-STEM), small- and wide-angle X-ray powder diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR) and Energydispersive X-ray spectroscopy (EDS) were used to characterize γ-CS-SBA-15 that had been exposed to Fe. By using N2-physisorption (BET, BJH), the structure of Fe-γ-CS-SBA-15 was investigated. The study parameters also included the effect of solution pH, adsorbent dose and contact time on the methylene blue adsorption. The elimination efficiency of the methylene blue dye was compiled using a UV-VIS spectrophotometer. The results of the characterization show that the Fe-γ-CS-SBA-15 has a substantial pore volume of 504 m2 g-1 and a surface area of 0.88 cm3 g-1. Furthermore, the maximum adsorption capacity (Qmax) of the methylene blue is 176.70 mg/g. The γ-CS can make SBA-15 operate better. It proves that the distribution of Fe and chitosan (the C and N components) in SBA-15 channels is uniform.
Collapse
Affiliation(s)
- Titiya Meechai
- Department of Premedical Science, Faculty of Medicine, Bangkokthonburi University, Thawi Watthana, Bangkok 10170, Thailand
| | - Thinnaphat Poonsawat
- NANOCAST Laboratory, Center for Catalysis Science and Technology (CAST), Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, 272 Rama VI Rd., Ratchathewi, Bangkok 10400, Thailand
| | - Nunticha Limchoowong
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Sakchai Laksee
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok 26120, Thailand
| | - Peerapong Chumkaeo
- Department of Premedical Science, Faculty of Medicine, Bangkokthonburi University, Thawi Watthana, Bangkok 10170, Thailand
| | - Ranida Tuanudom
- Department of Premedical Science, Faculty of Medicine, Bangkokthonburi University, Thawi Watthana, Bangkok 10170, Thailand
| | - Artitaya Yatsomboon
- Department of Premedical Science, Faculty of Medicine, Bangkokthonburi University, Thawi Watthana, Bangkok 10170, Thailand
| | - Lalita Honghernsthit
- Department of Premedical Science, Faculty of Medicine, Bangkokthonburi University, Thawi Watthana, Bangkok 10170, Thailand
| | - Ekasith Somsook
- NANOCAST Laboratory, Center for Catalysis Science and Technology (CAST), Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, 272 Rama VI Rd., Ratchathewi, Bangkok 10400, Thailand
| | - Phitchan Sricharoen
- Department of Premedical Science, Faculty of Medicine, Bangkokthonburi University, Thawi Watthana, Bangkok 10170, Thailand
| |
Collapse
|
4
|
A green hydrothermal synthesis of polyacrylonitrile@carbon/MIL-101(Fe) composite nanofiber membrane for efficient selective removal of tetracycline. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
5
|
Zhang S, Malik S, Ali N, Khan A, Bilal M, Rasool K. Covalent and Non-covalent Functionalized Nanomaterials for Environmental Restoration. Top Curr Chem (Cham) 2022; 380:44. [PMID: 35951126 PMCID: PMC9372017 DOI: 10.1007/s41061-022-00397-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 06/07/2022] [Indexed: 12/07/2022]
Abstract
Nanotechnology has emerged as an extraordinary and rapidly developing discipline of science. It has remolded the fate of the whole world by providing diverse horizons in different fields. Nanomaterials are appealing because of their incredibly small size and large surface area. Apart from the naturally occurring nanomaterials, synthetic nanomaterials are being prepared on large scales with different sizes and properties. Such nanomaterials are being utilized as an innovative and green approach in multiple fields. To expand the applications and enhance the properties of the nanomaterials, their functionalization and engineering are being performed on a massive scale. The functionalization helps to add to the existing useful properties of the nanomaterials, hence broadening the scope of their utilization. A large class of covalent and non-covalent functionalized nanomaterials (FNMs) including carbons, metal oxides, quantum dots, and composites of these materials with other organic or inorganic materials are being synthesized and used for environmental remediation applications including wastewater treatment. This review summarizes recent advances in the synthesis, reporting techniques, and applications of FNMs in adsorptive and photocatalytic removal of pollutants from wastewater. Future prospects are also examined, along with suggestions for attaining massive benefits in the areas of FNMs.
Collapse
Affiliation(s)
- Shizhong Zhang
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National and Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Sumeet Malik
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National and Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National and Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University (HBKU), Qatar Foundation, P.O. Box 5824, Doha, Qatar.
| |
Collapse
|
6
|
Kumarage S, Munaweera I, Kottegoda N. Contemporary, Multidisciplinary Roles of Mesoporous Silica Nanohybrids/Nanocomposites. ChemistrySelect 2022. [DOI: 10.1002/slct.202200574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Senuri Kumarage
- Department of Chemistry Faculty of Applied Sciences University of Sri Jayewardenepura Gangodawila Nugegoda Sri Lanka
| | - Imalka Munaweera
- Department of Chemistry Faculty of Applied Sciences University of Sri Jayewardenepura Gangodawila Nugegoda Sri Lanka
| | - Nilwala Kottegoda
- Department of Chemistry Faculty of Applied Sciences University of Sri Jayewardenepura Gangodawila Nugegoda Sri Lanka
- Centre for Advanced Materials Research (CAMR) Faculty of Applied Sciences University of Sri Jayewardenepura Gangodawila Nugegoda Sri Lanka
| |
Collapse
|
7
|
Ghaffari Y, Beak S, Bae J, Kim S, Saifuddin M, Kim KS. One-step fabrication of novel ultra porous Mn2O3-Fe2O3 @ SiO2: A versatile material for removal of organic pollutants from industrial wastewater at neutral pH. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Li W, Chao S, Li Y, Bai F, Teng Y, Li X, Li L, Wang C. Dual-layered composite nanofiber membrane with Cu-BTC-modified electrospun nanofibers and biopolymeric nanofibers for the removal of uremic toxins and its application in hemodialysis. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Lu L, Liu M, Chen Y, Luo Y. Effective removal of tetracycline antibiotics from wastewater using practically applicable iron(III)-loaded cellulose nanofibres. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210336. [PMID: 34386251 PMCID: PMC8334843 DOI: 10.1098/rsos.210336] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
The non-toxic and completely biodegradable cellulose within bamboo is one of the most abundant agricultural polysaccharide wastes worldwide, and can be processed into cellulose nanofibres (CNFs). Iron(III)-loaded CNFs (Fe(III)@CNFs) derived from bamboo were prepared to improve the adsorption of tetracycline (TC), chlortetracycline (CTC) and oxytetracycline (OTC) from an aqueous solution. The preparation conditions of Fe(III)@CNFs suitable for the simultaneous adsorption of three tetracycline antibiotics (TCs) were investigated. Various analyses proved the abundance of oxygen-containing functional groups and the existence of Fe(III) active metal sites in Fe(III)@CNFs. In batch experiments, Fe(III)@CNFs were applied under a wide pH range and the maximum adsorption capacities were 294.12, 232.56 and 500.00 mg g-1 (for TC, CTC and OTC, respectively). In addition, different concentrations and types of coexisting anions have a weak effect on TCs adsorption. The original TCs adsorption capacities of Fe(III)@CNFs remained stable (greater than 92%) after five cycles when UV + H2O2 was used as the regeneration method. Four adsorption mechanisms (surface complexation, hydrogen bonding, electrostatic interaction and van der Waals force) were obtained for the endothermic adsorption of TCs, among which surface complexation between Fe(III) and TCs always dominates. The practically applicable Fe(III)@CNFs adsorbents are promising for TCs enrichment and remediation in engineering applications.
Collapse
Affiliation(s)
- Lanxin Lu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, People's Republic of China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, People's Republic of China
- Sino-German Centre for Water and Health Research, Chengdu 610065, People's Republic of China
| | - Ying Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, People's Republic of China
- Sino-German Centre for Water and Health Research, Chengdu 610065, People's Republic of China
| | - Ying Luo
- College of Architecture and Environment, Sichuan University, Chengdu 610065, People's Republic of China
| |
Collapse
|
10
|
Bhowmik M, Debnath A, Saha B. Effective Remediation of an Antibacterial Drug from Aqua Matrix Using CaFe2O4/ZrO2 Nanocomposite Derived via Inorganic Chemical Pathway: Statistical Modelling by Response Surface Methodology. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04465-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Kim S, Gupta NK, Bae J, Kim KS. Structural variations and generation of binding sites in Fe-loaded ZSM-5 and silica under the effect of UV-irradiation and their role in enhanced BTEX abatement from gas streams. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121274. [PMID: 31585279 DOI: 10.1016/j.jhazmat.2019.121274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/20/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
Here, we have investigated the effect of UV-pretreatment on the physicochemical properties of an adsorbent. The UV-irradiated Fe-incorporated ZSM-5 (UV-FZ5) showed structural and chemical changes arising due to UV-cleaving of framework bonds resulting in a decreased crystallinity and change in the local environment of Fe species. More visible modifications were observed for UV-irradiated iron-containing silica (UV-Fe/AS) where silica network reconfiguration, increased hydroxyl density, and change in the Fe coordination were estimated. A 0.5-81.2% increase in BTEX adsorption was recorded for UV-irradiated adsorbents. These hiked performances were attributed to the increased pore size, increased hydroxyl density, and formation of newer isolated Fe3+ framework species. For FZ5, adsorption occurred via size-selective diffusion followed by hydrogen bonding and cation-pi interaction, whereas, for Fe/AS, diffusion was followed by cation-pi interactions. Moreover, adsorbents retained their adsorption capacity for multiple cycles and were found economically suitable for treating VOCs-contaminated air.
Collapse
Affiliation(s)
- Suho Kim
- University of Science and Technology (UST), Daejeon, Republic of Korea; Department of Land, Water, and Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang, Republic of Korea
| | - Nishesh Kumar Gupta
- University of Science and Technology (UST), Daejeon, Republic of Korea; Department of Land, Water, and Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang, Republic of Korea
| | - Jiyeol Bae
- Department of Land, Water, and Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang, Republic of Korea
| | - Kwang Soo Kim
- University of Science and Technology (UST), Daejeon, Republic of Korea; Department of Land, Water, and Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang, Republic of Korea.
| |
Collapse
|
12
|
Removal of Tetracycline by Hydrous Ferric Oxide: Adsorption Kinetics, Isotherms, and Mechanism. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16224580. [PMID: 31752348 PMCID: PMC6888149 DOI: 10.3390/ijerph16224580] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/16/2022]
Abstract
The removal of tetracycline (TC) from solution is an important environmental issue. Here we prepared an adsorbent hydrous ferric oxide (HFO) by adjusting a FeCl3·6H2O solution to neutral pH. HFO was characterized by a surface area analyzer, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS), and was used to remove TC from solution. The influence of pH, solid-to-liquid ratio, ionic type, and strength on TC removal was investigated. Adsorption kinetics and isotherms were also determined. HFO after adsorption of TC was analyzed by FTIR and XPS to investigate the adsorption mechanism. The results showed that the adsorption of TC increased from 88.3% to 95% with increasing pH (3.0-7.0) and then decreased. K+ ions had little effect on TC adsorption by HFO. However, Ca2+ and Mg2+ reduced the adsorption of TC on HFO. When the concentrations of Ca2+ and Mg2+ were increased, the inhibitory effect was more obvious. Pseudo-second-order kinetics and the Langmuir model fitted the adsorption process well. The maximum adsorption capacity of TC on HFO reached 99.49 mg·g-1. The adsorption process was spontaneous, endothermic, and increasingly disordered. Combination analysis with FTIR and XPS showed that the mechanism between TC and HFO involved electrostatic interactions, hydrogen interactions, and complexation. Therefore, the environmental behavior of TC could be affected by HFO.
Collapse
|
13
|
Chao S, Li X, Li Y, Wang Y, Wang C. Preparation of polydopamine-modified zeolitic imidazolate framework-8 functionalized electrospun fibers for efficient removal of tetracycline. J Colloid Interface Sci 2019; 552:506-516. [PMID: 31152965 DOI: 10.1016/j.jcis.2019.05.078] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 12/22/2022]
Abstract
This work shows a simple and environmental friendly methodology to obtain a kind of polydopamine coating assisted preparation of zeolitic imidazolate framework-8 (ZIF-8) functionalized composite electrospun fiber (ZIF-8/PDA/PAN fibers) adsorbent. Characterization of the composite electrospun fiber was carried out and the tetracycline (TC) adsorption properties from water were also studied in detail. At the same time, principle adsorption mechanisms were thoroughly studied. The results show that the pseudo-second-order model can simulate sorption kinetics well, while sorption isotherms are able to significantly conform to the Freundlich model, and the adsorption capacity of the fibers can reach 478.18 mg/g at 298 K. In addition, the Weber-Morris model indicates that the processes of adsorption of ZIF-8/PDA/PAN fibers for TC involve surface adsorption as well as intraparticle diffusion, and the limit rate step is not only the intraparticle diffusion but also the binding of the sorbate to the sorbent. Moreover, the adsorption efficiency toward TC by ZIF-8/PDA/PAN fibers still reached over 85% of its initial adsorption capacity after five adsorption/desorption cycles, which signified that the adsorbents is stable and recyclable. This work indicates that the obtained ZIF-8/PDA/PAN fibers have practical application prospects in the field of antibiotic adsorption.
Collapse
Affiliation(s)
- Shen Chao
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xiang Li
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, PR China.
| | - Yanzi Li
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yuannan Wang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Ce Wang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, PR China
| |
Collapse
|
14
|
Cai W, Wei J, Li Z, Liu Y, Zhou J, Han B. Preparation of amino-functionalized magnetic biochar with excellent adsorption performance for Cr(VI) by a mild one-step hydrothermal method from peanut hull. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.11.062] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Guo Y, Chen B, Liu D, Huang W, Sun Y, Zhao Y. Removal of antibiotics from aqueous solution using silicon-based materials. An overview. ACTA ACUST UNITED AC 2018. [DOI: 10.1080/21622515.2018.1482374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yige Guo
- College of Environmental Science and Engineering, Nankai University, Tianjin, People’s Republic of China
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Nankai University, Tianjin, People’s Republic of China
| | - Bin Chen
- Xianyang City Center for Disease Control and Prevention, Xianyang, People’s Republic of China
| | - Dongfang Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin, People’s Republic of China
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Nankai University, Tianjin, People’s Republic of China
| | - Wenli Huang
- College of Environmental Science and Engineering, Nankai University, Tianjin, People’s Republic of China
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Nankai University, Tianjin, People’s Republic of China
| | - Yu Sun
- College of Environmental Science and Engineering, Nankai University, Tianjin, People’s Republic of China
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Nankai University, Tianjin, People’s Republic of China
| | - Ying Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, People’s Republic of China
| |
Collapse
|
16
|
|
17
|
The synergistic adsorption of pyrene and copper onto Fe(III) functionalized mesoporous silica from aqueous solution. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.01.056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
18
|
Li H, Zhang W, Zhang Z, Zhang X. Sorption of triclosan to carbon nanotubes: The combined effects of sonication, functionalization and solution chemistry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 580:1318-1326. [PMID: 28012658 DOI: 10.1016/j.scitotenv.2016.12.095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 06/06/2023]
Abstract
The sonication effect on the sorption behavior of carbon nanotubes (CNTs) with different functional groups has been poorly understood in previous studies, especially when combined with solution chemistry that may affect both the sorption and dispersion of CNTs. Our results show that sonication accelerated sorption of triclosan and increased the sorption capacities of CNTs with and without functionalizations at a neutral pH. Regardless of how sonication on CNTs was applied, the sorption decreased in the following order: pristine CNTs>CNTs-OH>CNTs-COOH. Sorption decreased with the increase of pH for all types of CNTs due to the electrostatic repulsion between triclosan and CNTs. The pH effect is greater for pristine CNTs than functionalized CNTs, while the sonication effect is greater for functionalized CNTs than pristine CNTs. Sonication increased sorption at a low pH (i.e., <9.5) but decreased sorption at a high pH (i.e., >9.5) for all types of CNTs, which may be due to the difference in the structure of CNTs at different pHs. Within 0.001-0.1M NaCl, sorption increased and then decreased for all types of CNTs with and without sonication, which can be explained by the balance between the salting-out effect and electrostatic screening effect.
Collapse
Affiliation(s)
- Haiyan Li
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Wenwen Zhang
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Ziyang Zhang
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Xiaoran Zhang
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| |
Collapse
|
19
|
Fan HT, Shi LQ, Shen H, Chen X, Xie KP. Equilibrium, isotherm, kinetic and thermodynamic studies for removal of tetracycline antibiotics by adsorption onto hazelnut shell derived activated carbons from aqueous media. RSC Adv 2016. [DOI: 10.1039/c6ra23346e] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hazelnut shell, an agricultural waste, was used to prepare activated carbons by phosphoric acid activation.
Collapse
Affiliation(s)
- Hong-Tao Fan
- College of Applied Chemistry
- Shenyang University of Chemical Technology
- Shenyang
- China
| | - Li-Qi Shi
- College of Applied Chemistry
- Shenyang University of Chemical Technology
- Shenyang
- China
| | - Hua Shen
- College of Applied Chemistry
- Shenyang University of Chemical Technology
- Shenyang
- China
| | - Xi Chen
- School of Life Science
- Liaoning Normal University
- Dalian
- China
| | - Kun-Peng Xie
- School of Life Science
- Liaoning Normal University
- Dalian
- China
| |
Collapse
|
20
|
Xie A, Dai J, He J, Sun J, Chang Z, Li C, Yan Y. Converting obsolete copy paper to porous carbon materials with preeminent adsorption performance for tetracycline antibiotic. RSC Adv 2016. [DOI: 10.1039/c5ra24707a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This work first reported the conversion of CP to PCMs. The ultrahigh adsorption amount, fast kinetics and great regeneration made the PCMs-850-4 as promising adsorbents for the low-cost, highly efficient and fast removal of organic pollutants.
Collapse
Affiliation(s)
- Atian Xie
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Jiangdong Dai
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Jinsong He
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Jun Sun
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Zhongshuai Chang
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Chunxiang Li
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Yongsheng Yan
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Ministry of Education)
| |
Collapse
|
21
|
Abstract
Partial pseudomorphic transformation of SBA-15 yields bimodal mesoporous silica with defined bottlenecks that restrict the access to the core of the particles.
Collapse
Affiliation(s)
- M. J. Reber
- Institute of Chemistry and Biological Chemistry
- Zürich University of Applied Sciences
- CH-8820 Wädenswil
- Switzerland
| | - D. Brühwiler
- Institute of Chemistry and Biological Chemistry
- Zürich University of Applied Sciences
- CH-8820 Wädenswil
- Switzerland
| |
Collapse
|