1
|
Dogaris I, Pylypchuk I, Henriksson G, Abbadessa A. Polyelectrolyte complexes based on a novel and sustainable hemicellulose-rich lignosulphonate for drug delivery applications. Drug Deliv Transl Res 2024; 14:3452-3466. [PMID: 38530607 PMCID: PMC11499397 DOI: 10.1007/s13346-024-01573-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 03/28/2024]
Abstract
Polyelectrolyte complexes (PECs) are polymeric structures formed by the self-assembly of oppositely charged polymers. Novel biomaterials based on PECs are currently under investigation as drug delivery systems, among other applications. This strategy leverages the ability of PECs to entrap drugs under mild conditions and control their release. In this study, we combined a novel and sustainably produced hemicellulose-rich lignosulphonate polymer (EH, negatively charged) with polyethyleneimine (PEI) or chitosan (CH, positively charged) and agar for the development of drug-releasing PECs. A preliminary screening demonstrated the effect of several parameters (polyelectrolyte ratio, temperature, and type of polycation) on PECs formation. From this, selected formulations were further characterized in terms of thermal properties, surface morphology at the microscale, stability, and ability to load and release methylene blue (MB) as a model drug. EH/PEI complexes had a more pronounced gel-like behaviour compared to the EH/CH complexes. Differential scanning calorimetry (DSC) results supported the establishment of polymeric interactions during complexation. Overall, PECs' stability was positively affected by low pH, ratios close to 1:1, and the addition of agar. PECs with higher EH content showed a higher MB loading, likely promoted by stronger electrostatic interactions. The EH/CH formulation enriched with agar showed the best sustained release profile of MB during the first 30 h in a pH-dependent environment simulating the gastrointestinal tract. Overall, we defined the conditions to formulate novel PECs based on a sustainable hemicellulose-rich lignosulphonate for potential applications in drug delivery, which promotes the valuable synergy between sustainability and the biomedical field.
Collapse
Affiliation(s)
- Ioannis Dogaris
- Department of Fiber and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology, and Health, Royal Institute of Technology, Teknikringen 56-58, Stockholm, SE-100 44, Sweden
| | - Ievgen Pylypchuk
- Department of Fiber and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology, and Health, Royal Institute of Technology, Teknikringen 56-58, Stockholm, SE-100 44, Sweden
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, Stockholm, 10691, Sweden
| | - Gunnar Henriksson
- Department of Fiber and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology, and Health, Royal Institute of Technology, Teknikringen 56-58, Stockholm, SE-100 44, Sweden
| | - Anna Abbadessa
- Department of Fiber and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology, and Health, Royal Institute of Technology, Teknikringen 56-58, Stockholm, SE-100 44, Sweden.
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), IDIS Research Institute, Universidade de Santiago de Compostela, Avenida Barcelona s/n, Santiago de Compostela, 15782, Spain.
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela, Spain.
| |
Collapse
|
2
|
Chaudhary HK, Singh P, Niveria K, Yadav M, Malik A, Verma AK. Microcrystalline cellulose and itaconic acid pH sensitive semi-interpenetrating network hydrogel for oral insulin delivery. Int J Biol Macromol 2024; 282:136804. [PMID: 39447806 DOI: 10.1016/j.ijbiomac.2024.136804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Diabetes mellitus is one of the important causes of death worldwide. Generally, a subcutaneous route is used for insulin administration, but has showen low patient compliance. Extensive research has been conducted to identify molecules capable of delivering insulin orally, for this hydrogel based on microcrystalline cellulose and itaconic acid have been produced and explored. Free radical polymerization as a technique was employed for manufacturing the hydrogels using potassium persulphate as initiator and N, N'-methylene bisacrylamide (NNMBA) as a crosslinker. These pH-sensitive exhibited a swelling capacity of up to 20.38 g/g in distilled water and also revealed stronger swelling in glucose solutions than saline solutions. The pH sensitivity of the hydrogels was confirmed by studying the swelling in different pH solutions. Alkaline solutions showed higher swelling than acidic solutions. SEM established the porous nature, and the structure was examined by FTIR analysis. Thermal degradation was examined using TGA. In-vitro release study was done by Bradford assay at 595 nm. The result was further confirmed by in-vivo investigations on male Wistar adult rats and hence is an excellent vehicle for oral insulin administration.
Collapse
Affiliation(s)
- Harish Kumar Chaudhary
- Department of Chemistry, Dyal Singh College, University of Delhi, 110003 New Delhi, India.
| | - Priyanka Singh
- Nanobiotech lab, Department of Zoology, Kirori Mal College, University of Delhi, Delhi 110007, India
| | - Karishma Niveria
- Nanobiotech lab, Department of Zoology, Kirori Mal College, University of Delhi, Delhi 110007, India
| | - Monika Yadav
- Nanobiotech lab, Department of Zoology, Kirori Mal College, University of Delhi, Delhi 110007, India
| | - Amita Malik
- Department of Chemistry, Dyal Singh College, University of Delhi, 110003 New Delhi, India.
| | - Anita Kamra Verma
- Nanobiotech lab, Department of Zoology, Kirori Mal College, University of Delhi, Delhi 110007, India; Fellow, Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi 11007, India.
| |
Collapse
|
3
|
Cook-Chennault K, Anaokar S, Medina Vázquez AM, Chennault M. Influence of High Strain Dynamic Loading on HEMA-DMAEMA Hydrogel Storage Modulus and Time Dependence. Polymers (Basel) 2024; 16:1797. [PMID: 39000653 PMCID: PMC11244401 DOI: 10.3390/polym16131797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 07/17/2024] Open
Abstract
Hydrogels have been extensively studied for biomedical applications such as drug delivery, tissue-engineered scaffolds, and biosensors. There is a gap in the literature pertaining to the mechanical properties of hydrogel materials subjected to high-strain dynamic-loading conditions even though empirical data of this type are needed to advance the design of innovative biomedical designs and inform numerical models. For this work, HEMA-DMAEMA hydrogels are fabricated using a photopolymerization approach. Hydrogels are subjected to high-compression oscillatory dynamic mechanical loading at strain rates equal to 50%, 60%, and 70%, and storage and loss moduli are observed over time, e.g., 72 h and 5, 10, and 15 days. As expected, the increased strains resulted in lower storage and loss moduli, which could be attributed to a breakdown in the hydrogel network attributed to several mechanisms, e.g., increased network disruption, chain scission or slippage, and partial plastic deformation. This study helps to advance our understanding of hydrogels subjected to high strain rates to understand their viscoelastic behavior, i.e., strain rate sensitivity, energy dissipation mechanisms, and deformation kinetics, which are needed for the accurate modeling and prediction of hydrogel behavior in real-world applications.
Collapse
Affiliation(s)
- Kimberly Cook-Chennault
- Mechanical and Aerospace Engineering Department, Rutgers University, Piscataway, NJ 08854-5750, USA
- Biomedical Engineering Department, Rutgers University, Piscataway, NJ 08554-5750, USA
| | - Sharmad Anaokar
- Mechanical and Aerospace Engineering Department, Rutgers University, Piscataway, NJ 08854-5750, USA
| | | | - Mizan Chennault
- STEM Academy, Stuart Country Day School, Princeton, NJ 08540-1234, USA;
| |
Collapse
|
4
|
Atakpa EO, Zhou H, Jiang L, Zhang D, Li Y, Zhang W, Zhang C. Co-culture of Acinetobacter sp. and Scedosporium sp. immobilized beads for optimized biosurfactant production and degradation of crude oil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122365. [PMID: 37572849 DOI: 10.1016/j.envpol.2023.122365] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/14/2023]
Abstract
The widespread exploration and exploitation of crude oil has increased the prevalence of petroleum hydrocarbon pollution in the marine and coastal environment. Bioremediation of petroleum hydrocarbons using cell immobilization techniques is gaining increasing attention. In this study, the crude oil degradation performance of bacterial and fungal co-culture was optimized by entrapping both cells in sodium-alginate and polyvinyl alcohol composite beads. Results indicate that fungal cells remained active after entrapment and throughout the experiment, while bacterial cells were non-viable at the end of the experimental period in treatments with the bacterial-fungal ratio of 1:2. A remarkable decrease in surface tension from 72 mN/m to 36.51 mN/m was achieved in treatments with the bacterial-fungal ratio of 3:1. This resulted in a significant (P < 0.05) total petroleum hydrocarbon (TPH) removal rate of 89.4%, and the highest degradation of n-alkanes fractions (from 2129.01 mg/L to 118.53 mg/L), compared to the other treatments. Whereas PAHs removal was highest in treatments with the most fungal abundance (from 980.96 μg/L to 177.3 μg/L). Furthermore, enzymes analysis test revealed that catalase had the most effect on microbial degradation of the target substrate, while protease had no significant impact on the degradation process. High expression of almA and PAH-RHDa genes was achieved in the co-culture treatments, which correlated significantly (P < 0.05) with n-alkanes and PAHs removal, respectively. These results indicate that the application of immobilized bacterial and fungal cells in defined co-culture systems is an effective strategy for enhanced biodegradation of petroleum hydrocarbons in aqueous systems.
Collapse
Affiliation(s)
- Edidiong Okokon Atakpa
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Hanghai Zhou
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Lijia Jiang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Dongdong Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Yanhong Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Wenjie Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Chunfang Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China.
| |
Collapse
|
5
|
Fadeev M, Davidson-Rozenfeld G, Li Z, Willner I. Stimuli-Responsive DNA-Based Hydrogels on Surfaces for Switchable Bioelectrocatalysis and Controlled Release of Loads. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37011-37025. [PMID: 37477942 PMCID: PMC10401574 DOI: 10.1021/acsami.3c06230] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023]
Abstract
The assembly of enzyme [glucose oxidase (GOx)]-loaded stimuli-responsive DNA-based hydrogels on electrode surfaces, and the triggered control over the stiffness of the hydrogels, provides a means to switch the bioelectrocatalytic functions of the hydrogels. One system includes the assembly of GOx-loaded, pH-responsive, hydrogel matrices cross-linked by two cooperative nucleic acid motives comprising permanent duplex nucleic acids and "caged" i-motif pH-responsive duplexes. Bioelectrocatalyzed oxidation of glucose leads to the formation of gluconic acid that acidifies the hydrogel resulting in the separation of the i-motif constituents and lowering the hydrogel stiffness. Loading of the hydrogel matrices with insulin results in the potential-triggered, glucose concentration-controlled, switchable release of insulin from the hydrogel-modified electrodes. The switchable bioelectrocatalyzed release of insulin is demonstrated in the presence of ferrocenemethanol as a diffusional electron mediator or by applying an electrically wired integrated matrix that includes ferrocenyl-modified GOx embedded in the hydrogel. The second GOx-loaded, stimuli-responsive, DNA-based hydrogel matrix associated with the electrode includes a polyacrylamide hydrogel cooperatively cross-linked by duplex nucleic acids and "caged" G-quadruplex-responsive duplexes. The hydrogel matrix undergoes K+-ions/crown ether-triggered stiffness changes by the cyclic K+-ion-stimulated formation of G-quadruplexes (lower stiffness) and the crown ether-induced separation of the G-quadruplexes (higher stiffness). The hydrogel matrices demonstrate switchable bioelectrocatalytic functions guided by the stiffness properties of the hydrogels.
Collapse
Affiliation(s)
- Michael Fadeev
- The Institute of Chemistry, The Center
for Nanoscience and Nanotechnology, The
Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Gilad Davidson-Rozenfeld
- The Institute of Chemistry, The Center
for Nanoscience and Nanotechnology, The
Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Zhenzhen Li
- The Institute of Chemistry, The Center
for Nanoscience and Nanotechnology, The
Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- The Institute of Chemistry, The Center
for Nanoscience and Nanotechnology, The
Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
6
|
Rana VS, Sharma N. Adsorption profile of anionic and cationic dyes through Fe 3O 4 embedded oxidized Sterculia gum/Gelatin hybrid gel matrix. Int J Biol Macromol 2023; 232:123098. [PMID: 36681219 DOI: 10.1016/j.ijbiomac.2022.12.317] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/12/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023]
Abstract
Hazardous effluents from textile industries being major contributors of water pollution and impose potential adverse effects on environment. In present study, Fe3O4 embedded oxidized Sterculia gum/Gelatin hybrid matrix have been fabricated and evaluated for enrichment of methyl orange (MO) and methylene blue (MB). Newly synthesized matrix was characterized through powdered XRD, FTIR, FESEM, TEM and TGA. Integrated nanoparticles improved dye enrichment and facilitated removal of matrix from the aqueous solution under the influence of magnetic field. Influence of various reaction parameters viz.: contact time, adsorbent dose, initial dye concentration, temperature & pH of the adsorption medium on dye enrichment have been evaluated. Maximum adsorption (90 % and 88 % for MO and MB respectively) has been achieved. Langmuir, Freundlich and Tempkin adsorption isotherms have been evaluated. Experimental results validate well fitted Freundlich isotherm for MO and Temkin isotherm for MB. Adsorption kinetics has been analyzed through Pseudo first order, second order kinetic and intra particle diffusion models. Adsorption of both dyes was best explained via pseudo second order kinetic model. Negative value of Gibb's free energy change (-26.487 KJ mol -1 and - 24.262 KJ mol -1) for MB and MO at 303 K was an indication of spontaneity of the reaction.
Collapse
Affiliation(s)
- Vikrant Singh Rana
- Department of Physical Sciences, Sant Baba Bhag Singh University, Jalandhar, Punjab 144030, India; Department of Chemistry, S.G.G.S. Khalsa College, Mahilpur, District Hoshiarpur, Punjab 146105, India
| | - Nisha Sharma
- Department of Physical Sciences, Sant Baba Bhag Singh University, Jalandhar, Punjab 144030, India.
| |
Collapse
|
7
|
Liu Q, Wang Y, Sun S, Tang F, Chen H, Chen S, Zhao C, Li L. A novel chitosan-biochar immobilized microorganism strategy to enhance bioremediation of crude oil in soil. CHEMOSPHERE 2023; 313:137367. [PMID: 36427578 DOI: 10.1016/j.chemosphere.2022.137367] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
The chitosan-biochar composite is a clean and environmentally friendly immobilized microorganisms carrier. In this study, the chitosan-biochar composite as a carrier to immobilize a compound microbial agent contained Pseudomonas aeruginosa and Bacillus licheniformis, and investigated its role in the remediation of oil-contaminated soil. When using 1% (v/v) acetic acid, 3% (m/v) chitosan solution, 0.1% biochar, 4% (v/v) NaOH solution, freeze-drying 6 h, the optimal chitosan-biochar composite material could be obtained. The specific surfacearea of the material increased to 1.725 m2/g and the average pore size also increased from 130.2260 nm to 165.2980 nm after the addition of biochar through the analysis of specific surface area and pore size, which enlarged the contact area of microorganisms and crude oil with the material. SEM showed that the bacterial successfully adhered to the surface and internal of the material. Using FTIR, the results showed that the synthesis of composite carrier material was the covalent combination of -NH2 on chitosan and -COOH on biochar, forming a new chemical bond -NH-CO-. After 60 days of remediation of oil-contaminated soil, the removal rate of crude oil by chitosan-biochar composite immobilized microorganism method was 45.82%, which was 21.26% higher than that of natural remediation. Simultaneously, several oil-degrading bacteria increased at genus level, including Nocardioides (26.79%-33.09%), Bacillus (3.01%-4.10%), Dietzia (1.84%-5.56%), Pseudomonas (0-0.78%), among which Pseudomonas belongs to exogenous bacteria. The results indicated that the chitosan-biochar composite material has high application value in removing crude oil, and further provides a new strategy for bioremediation of oil-contaminated soil.
Collapse
Affiliation(s)
- Qiyou Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China.
| | - Yaru Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Shuo Sun
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Fang Tang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Hongxu Chen
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Shuiquan Chen
- College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Chaocheng Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Lin Li
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| |
Collapse
|
8
|
Hotton C, Ducouret G, Sirieix-Plénet J, Bizien T, Porcar L, Malikova N. Tuning Structure and Rheological Properties of Polyelectrolyte-Based Hydrogels through Counterion-Specific Effects. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c01565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Claire Hotton
- Laboratory of Physical Chemistry of Electrolytes and Interfacial Nanosystems (PHENIX), Sorbonne Université, CNRS, 75005Paris, France
| | - Guylaine Ducouret
- Laboratory of Soft Matter Sciences and Engineering (SIMM), ESPCI Paris, PSL Research University, CNRS, F-75005Paris, France
| | - Juliette Sirieix-Plénet
- Laboratory of Physical Chemistry of Electrolytes and Interfacial Nanosystems (PHENIX), Sorbonne Université, CNRS, 75005Paris, France
| | - Thomas Bizien
- Synchrotron SOLEIL, l’Orme des Merisiers, Saint-Aubin - BP 48, 91192Gif-sur-Yvette, CEDEX, France
| | - Lionel Porcar
- Large Scale Structures, Institut Laue Langevin, GrenobleF-38042, France
| | - Natalie Malikova
- Laboratory of Physical Chemistry of Electrolytes and Interfacial Nanosystems (PHENIX), Sorbonne Université, CNRS, 75005Paris, France
| |
Collapse
|
9
|
Singh A, Agarwal A, Chakraborty A, Bhardwaj R, Sutradhar S, Kumar Mittal A, Kumar Rajput S, Gupta M, Ray D, Mukherjee M. Click chemistry tailored benzimidazole functionalized triazole block-co-polymer for emergence of exotic chimaeric nano-crystalsomes. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Li Z, Zhou Y, Li T, Zhang J, Tian H. Stimuli‐responsive hydrogels: Fabrication and biomedical applications. VIEW 2022. [DOI: 10.1002/viw.20200112] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Ziyuan Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai China
| | - Yanzi Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai China
| | - Tianyue Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai China
| | - Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai China
| |
Collapse
|
11
|
El-Husseiny HM, Mady EA, Hamabe L, Abugomaa A, Shimada K, Yoshida T, Tanaka T, Yokoi A, Elbadawy M, Tanaka R. Smart/stimuli-responsive hydrogels: Cutting-edge platforms for tissue engineering and other biomedical applications. Mater Today Bio 2022; 13:100186. [PMID: 34917924 PMCID: PMC8669385 DOI: 10.1016/j.mtbio.2021.100186] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/14/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023] Open
Abstract
Recently, biomedicine and tissue regeneration have emerged as great advances that impacted the spectrum of healthcare. This left the door open for further improvement of their applications to revitalize the impaired tissues. Hence, restoring their functions. The implementation of therapeutic protocols that merge biomimetic scaffolds, bioactive molecules, and cells plays a pivotal role in this track. Smart/stimuli-responsive hydrogels are remarkable three-dimensional (3D) bioscaffolds intended for tissue engineering and other biomedical purposes. They can simulate the physicochemical, mechanical, and biological characters of the innate tissues. Also, they provide the aqueous conditions for cell growth, support 3D conformation, provide mechanical stability for the cells, and serve as potent delivery matrices for bioactive molecules. Many natural and artificial polymers were broadly utilized to design these intelligent platforms with novel advanced characteristics and tailored functionalities that fit such applications. In the present review, we highlighted the different types of smart/stimuli-responsive hydrogels with emphasis on their synthesis scheme. Besides, the mechanisms of their responsiveness to different stimuli were elaborated. Their potential for tissue engineering applications was discussed. Furthermore, their exploitation in other biomedical applications as targeted drug delivery, smart biosensors, actuators, 3D and 4D printing, and 3D cell culture were outlined. In addition, we threw light on smart self-healing hydrogels and their applications in biomedicine. Eventually, we presented their future perceptions in biomedical and tissue regeneration applications. Conclusively, current progress in the design of smart/stimuli-responsive hydrogels enhances their prospective to function as intelligent, and sophisticated systems in different biomedical applications.
Collapse
Affiliation(s)
- Hussein M. El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
| | - Eman A. Mady
- Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
| | - Lina Hamabe
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| | - Amira Abugomaa
- Faculty of Veterinary Medicine, Mansoura University, Mansoura, Dakahliya, 35516, Egypt
| | - Kazumi Shimada
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
- Division of Research Animal Laboratory and Translational Medicine, Research and Development Center, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Tomohiko Yoshida
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| | - Takashi Tanaka
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| | - Aimi Yokoi
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| | - Mohamed Elbadawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
| | - Ryou Tanaka
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| |
Collapse
|
12
|
Mittal AK, Bhardwaj R, Arora R, Singh A, Mukherjee M, Rajput SK. Acceleration of Wound Healing in Diabetic Rats through Poly Dimethylaminoethyl Acrylate-Hyaluronic Acid Polymeric Hydrogel Impregnated with a Didymocarpus pedicellatus Plant Extract. ACS OMEGA 2020; 5:24239-24246. [PMID: 33015440 PMCID: PMC7528192 DOI: 10.1021/acsomega.0c02040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/31/2020] [Indexed: 05/08/2023]
Abstract
Wound is the major health problem associated with skin damages and arises because of various types of topical injuries. Furthermore, wounds in patients with diabetes take a relatively long time to heal. Currently, herbal medicines have been extensively used for wound care and management. Here, we engineered polymeric hybrid hydrogel of dimethylaminoethyl acrylate and hyaluronic acid (pDMAEMA-HA), which was impregnated with a herbal extract of Didymocarpus pedicellatus. The developed polymeric hybrid hydrogel system can be used for effective therapy of incurable wounds. Therefore, the development of D. pedicellatus-impregnated pDMAEMA-HA (pDPi-DMAEMA-HA) hybrid hydrogel was accomplished by the synthesis of pDMAEMA-HA hydrogel via the optimization of various reaction parameters followed by impregnation of herbal drugs D. pedicellatus. The developed hydrogel composite was well characterized via various techniques, and swelling kinetics was performed to analyze the water uptake property. The swelling ratio was found to be 1600% in both types of hydrogels. To evaluate the wound healing of these polymeric hydrogels, the Wistar rats full-thickness excision wound model was utilized. The healing strength of hydrogels was determined using measurement of wound contraction and histopathological study. The results of wound healing by these polymeric hydrogels revealed that animals treated with the pDPi-DMAEMA-HA hybrid hydrogel group were found to have a higher level of wound closure as compared to marketed formulation as well as polymeric hybrid hydrogel. The histopathologic examinations implied that pDPi-DMAEMA-HA hybrid hydrogel and polymeric hybrid hydrogel-treated groups exhibited enhanced cutaneous wound repair as well as high level of cellular repair and maintenance compared to the standard group because of hyaluronic acid roles in various stages of wound repair.
Collapse
Affiliation(s)
- Amit K. Mittal
- Amity
Institute of Pharmacy (AIP), Amity University-Uttar
Pradesh, Sector-125, Noida, Uttar Pradesh 201301, India
- Amity
Institute of Indian System of Medicine (AIISM), Amity University-Uttar Pradesh, Sector-125, Noida, Uttar
Pradesh 201301, India
| | - Rohit Bhardwaj
- Amity
Institute of Pharmacy (AIP), Amity University-Uttar
Pradesh, Sector-125, Noida, Uttar Pradesh 201301, India
| | - Riya Arora
- Amity
Institute of Pharmacy (AIP), Amity University-Uttar
Pradesh, Sector-125, Noida, Uttar Pradesh 201301, India
| | - Aarti Singh
- Amity
Amity Institute of Click Chemistry Research and Studies (AICCRS), Amity University-Uttar Pradesh, Sector-125, Noida, Uttar Pradesh 201301, India
| | - Monalisa Mukherjee
- Amity
Amity Institute of Click Chemistry Research and Studies (AICCRS), Amity University-Uttar Pradesh, Sector-125, Noida, Uttar Pradesh 201301, India
| | - Satyendra K. Rajput
- Amity
Institute of Pharmacy (AIP), Amity University-Uttar
Pradesh, Sector-125, Noida, Uttar Pradesh 201301, India
- Amity
Institute of Indian System of Medicine (AIISM), Amity University-Uttar Pradesh, Sector-125, Noida, Uttar
Pradesh 201301, India
- . Phone: 0120-4735655
| |
Collapse
|
13
|
Vázquez-González M, Willner I. Stimuli-Responsive Biomolecule-Based Hydrogels and Their Applications. Angew Chem Int Ed Engl 2020; 59:15342-15377. [PMID: 31730715 DOI: 10.1002/anie.201907670] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/10/2019] [Indexed: 12/16/2022]
Abstract
This Review presents polysaccharides, oligosaccharides, nucleic acids, peptides, and proteins as functional stimuli-responsive polymer scaffolds that yield hydrogels with controlled stiffness. Different physical or chemical triggers can be used to structurally reconfigure the crosslinking units and control the stiffness of the hydrogels. The integration of stimuli-responsive supramolecular complexes and stimuli-responsive biomolecular units as crosslinkers leads to hybrid hydrogels undergoing reversible triggered transitions across different stiffness states. Different applications of stimuli-responsive biomolecule-based hydrogels are discussed. The assembly of stimuli-responsive biomolecule-based hydrogel films on surfaces and their applications are discussed. The coating of drug-loaded nanoparticles with stimuli-responsive hydrogels for controlled drug release is also presented.
Collapse
Affiliation(s)
| | - Itamar Willner
- Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
14
|
Vázquez‐González M, Willner I. Stimuliresponsive, auf Biomolekülen basierende Hydrogele und ihre Anwendungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201907670] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Itamar Willner
- Institute of Chemistry Hebrew University of Jerusalem Jerusalem 91904 Israel
| |
Collapse
|
15
|
Lavanya K, Chandran SV, Balagangadharan K, Selvamurugan N. Temperature- and pH-responsive chitosan-based injectable hydrogels for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110862. [DOI: 10.1016/j.msec.2020.110862] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/08/2020] [Accepted: 03/16/2020] [Indexed: 01/05/2023]
|
16
|
Follmann HD, Oliveira ON, Martins AC, Lazarin-Bidóia D, Nakamura CV, Rubira AF, Silva R, Asefa T. Nanofibrous silica microparticles/polymer hybrid aerogels for sustained delivery of poorly water-soluble camptothecin. J Colloid Interface Sci 2020; 567:92-102. [DOI: 10.1016/j.jcis.2020.01.110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 02/06/2023]
|
17
|
Versatile poly(vinyl alcohol)/clay physical hydrogels with tailorable structure as potential candidates for wound healing applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110395. [DOI: 10.1016/j.msec.2019.110395] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/20/2019] [Accepted: 11/04/2019] [Indexed: 01/07/2023]
|
18
|
Mehrotra T, Zaman MN, Prasad BB, Shukla A, Aggarwal S, Singh R. Rapid immobilization of viable Bacillus pseudomycoides in polyvinyl alcohol/glutaraldehyde hydrogel for biological treatment of municipal wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:9167-9180. [PMID: 31916147 DOI: 10.1007/s11356-019-07296-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 12/04/2019] [Indexed: 05/16/2023]
Abstract
A new approach for easy synthesis of Bacillus pseudomycoides immobilized polyvinyl alcohol (PVA)/glutaraldehyde (GA) hydrogel for application in a wastewater treatment system is reported. Optimization studies revealed that GA/PVA mass ratio of 0.03 and acidic pH of 2 were required for hydrogel synthesis and eventually for bacterial cell immobilization. The synthesized crosslinked matrix possessed a pore size suitable for microbial cell entrapment while maintaining cell accessibility to external environment for bioremediation. Possible crosslinking and bacterial cell immobilization in the hydrogel were evidenced by FTIR, XRD, and SEM studies, respectively. Further, the extent of crosslinking of GA with PVA was investigated and confirmed by transmittance and permeability experiments. The viability and proliferation of hydrogel embedded cells (after 25 days) was confirmed by confocal fluorescence microscopy which also indicated that acidic pH of polymer solution did not affect the immobilized live cells. B. pseudomycoides immobilized hydrogel were demonstrated to be effective for treatment of municipal wastewater and reduced biochemical oxygen demand (BOD), chemical oxygen demand (COD), and protein content below the recommended levels. Overall, the results from this bench-scale work show that employing bacteria-embedded PVA/GA hydrogel for the treatment of municipal wastewater yield promising results which should be further explored in pilot/field-scale studies.
Collapse
Affiliation(s)
- Tithi Mehrotra
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201313, India
| | - Mohammad Nawaid Zaman
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201313, India
| | - Bhim Bali Prasad
- Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Anuradha Shukla
- Central Road Research Institute (CSIR-CRRI), New Delhi, 110025, India
| | - Srijan Aggarwal
- Department of Civil and Environmental Engineering, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA.
| | - Rachana Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
19
|
Shakeel A, Bhattacharya R, Jeevanandham S, Kochhar D, Singh A, Mehra L, Ghufran M, Garg P, Sangam S, Biswas S, Tyagi A, Kalyanasundaram D, Chakrabarti S, Mukherjee M. Graphene Quantum Dots in the Game of Directing Polymer Self-Assembly to Exotic Kagome Lattice and Janus Nanostructures. ACS NANO 2019; 13:9397-9407. [PMID: 31381848 DOI: 10.1021/acsnano.9b04188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Graphene quantum dots (GQDs) are the harbingers of a paradigm shift that revitalize self-assembly of the colloidal puzzle by adding shape and size to the material-design palette. Although self-assembly is ubiquitous in nature, the extent to which these molecular legos can be engineered reminds us that we are still apprenticing polymer carpenters. In this quest to unlock exotic nanostructures ascending from eventual anisotropy, we have utilized different concentrations of GQDs as a filler in free-radical-mediated aqueous copolymerization. Extensive polymer grafting over the geometrically confined landscape of GQDs (0.05%) bolsters crystallization instilling a loom which steers interaction of polymeric cilia into interlaced equilateral triangles with high sophistication. Such two-dimensional (2D) assemblies epitomizing the planar tiling of "Star of David" forming a molecular kagome lattice (KL) without metal templation evoke petrichor. Interestingly, a higher percentage (0.3%) of GQDs allow selective tuning of the interfacial property of copolymers breaking symmetry due to surface energy incongruity, producing exotic Janus nanomicelles (JNMs). Herein, with the help of a suite of characterizations, we delineate the mechanism behind the formation of the KL and JNMs which forms a depot of heightened drug accretion with targeted delivery of 5-fluorouracil in the colon as validated by gamma scintigraphy studies.
Collapse
Affiliation(s)
- Adeeba Shakeel
- Amity Institute of Biotechnology , Amity University , Noida 201303 , India
| | - Rohan Bhattacharya
- Amity Institute of Biotechnology , Amity University , Noida 201303 , India
- Amity Institute of Click Chemistry Research and Studies , Amity University , Noida 201303 , India
| | - Sampathkumar Jeevanandham
- Amity Institute of Click Chemistry Research and Studies , Amity University , Noida 201303 , India
- Amity Institute of Nanotechnology , Amity University , Noida 201303 , India
| | - Dakshi Kochhar
- Amity Institute of Biotechnology , Amity University , Noida 201303 , India
| | - Aarti Singh
- Amity Institute of Click Chemistry Research and Studies , Amity University , Noida 201303 , India
| | - Lalita Mehra
- Institute of Nuclear Medicine and Allied Sciences , Defence Research & Development Organisation , Timarpur , Delhi 110054 , India
| | - Maryam Ghufran
- Amity Institute of Molecular Medicine and Stem Cell Research , Amity University , Noida 201303 , India
| | - Piyush Garg
- Amity Institute of Biotechnology , Amity University , Noida 201303 , India
| | - Sujata Sangam
- Amity Institute of Biotechnology , Amity University , Noida 201303 , India
| | - Subhrajit Biswas
- Amity Institute of Molecular Medicine and Stem Cell Research , Amity University , Noida 201303 , India
| | - Amit Tyagi
- Institute of Nuclear Medicine and Allied Sciences , Defence Research & Development Organisation , Timarpur , Delhi 110054 , India
| | - Dinesh Kalyanasundaram
- Centre for Biomedical Engineering , Indian Institute of Technology Delhi , Hauz Khas, New Delhi 110016 , India
| | - Sandip Chakrabarti
- Amity Institute of Nanotechnology , Amity University , Noida 201303 , India
| | - Monalisa Mukherjee
- Amity Institute of Biotechnology , Amity University , Noida 201303 , India
- Amity Institute of Click Chemistry Research and Studies , Amity University , Noida 201303 , India
| |
Collapse
|
20
|
Gull N, Khan SM, Butt MTZ, Zia S, Khalid S, Islam A, Sajid I, Khan RU, King MW. Hybrid cross‐linked hydrogels as a technology platform for
in
vitro
release of cephradine. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4688] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Nafisa Gull
- Department of Polymer Engineering and TechnologyUniversity of the Punjab Lahore Pakistan
| | - Shahzad Maqsood Khan
- Department of Polymer Engineering and TechnologyUniversity of the Punjab Lahore Pakistan
| | | | - Saba Zia
- Department of Polymer Engineering and TechnologyUniversity of the Punjab Lahore Pakistan
| | - Syed Khalid
- Research Center of Materials ScienceBeijing Institute of Technology Beijing P. R. China
| | - Atif Islam
- Department of Polymer Engineering and TechnologyUniversity of the Punjab Lahore Pakistan
| | - Imran Sajid
- Department of MicroBiology and Molecular GeneticsUniversity of the Punjab Lahore Pakistan
| | - Rafi Ullah Khan
- Department of Polymer Engineering and TechnologyUniversity of the Punjab Lahore Pakistan
| | | |
Collapse
|
21
|
Ghosh SK, Das A, Basu A, Halder A, Das S, Basu S, Abdullah MF, Mukherjee A, Kundu S. Semi-interpenetrating hydrogels from carboxymethyl guar gum and gelatin for ciprofloxacin sustained release. Int J Biol Macromol 2018; 120:1823-1833. [DOI: 10.1016/j.ijbiomac.2018.09.212] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 11/16/2022]
|
22
|
Fellin CR, Adelmund SM, Karis DG, Shafranek RT, Ono RJ, Martin CG, Johnston TG, DeForest CA, Nelson A. Tunable temperature‐ and shear‐responsive hydrogels based on poly(alkyl glycidyl ether)s. POLYM INT 2018. [DOI: 10.1002/pi.5716] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Steven M Adelmund
- Department of Chemical Engineering University of Washington Seattle WA USA
| | - Dylan G Karis
- Department of Chemistry University of Washington Seattle WA USA
| | | | - Robert J Ono
- Department of Chemistry University of Washington Seattle WA USA
| | | | | | - Cole A DeForest
- Department of Chemical Engineering University of Washington Seattle WA USA
| | - Alshakim Nelson
- Department of Chemistry University of Washington Seattle WA USA
| |
Collapse
|
23
|
Berardi A, Bisharat L, Cespi M, Basheti IA, Bonacucina G, Pavoni L, AlKhatib HS. Controlled release properties of zein powder filled into hard gelatin capsules. POWDER TECHNOL 2017. [DOI: 10.1016/j.powtec.2017.07.093] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Hibbins AR, Kumar P, Choonara YE, Kondiah PPD, Marimuthu T, Du Toit LC, Pillay V. Design of a Versatile pH-Responsive Hydrogel for Potential Oral Delivery of Gastric-Sensitive Bioactives. Polymers (Basel) 2017; 9:polym9100474. [PMID: 30965777 PMCID: PMC6418787 DOI: 10.3390/polym9100474] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 11/30/2022] Open
Abstract
A pH-responsive hydrogel system was prepared by free radical polymerization of acrylamide and methyl acrylic acid in the presence of N-N′-methylene bisacrylamide. Sodium bicarbonate was further applied as a blowing agent, which afforded a porous hydrogel structure. The hydrogel system achieved a constant super swelling rate within simulated intestinal buffer (~4%/min) and remained relatively static within simulated gastric buffer (~0.8%/min). The hydrogel system was able to achieve matrix resilience greater than 30% under a relatively high strain of 40%. In addition, the hydrogel system demonstrated significant swelling properties in response to simulated intestinal environmental over 24 h, with contrasting characteristics in simulated gastric buffer. The hydrogel demonstrated type IV isotherm porosity characteristics, with remarkable MRI and SEM variations in gastric and intestinal simulated fluids. Drug loading was observed to be greater than 98% using theophylline as a prototype drug, evaluating its controlled release kinetics over 24 h. The hydrogel exhibited substantial pH-responsive activity, which could be used as a versatile platform for targeted release of gastric-sensitive therapeutics to the small intestine.
Collapse
Affiliation(s)
- Angus R Hibbins
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutics Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutics Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutics Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Pierre P D Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutics Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Thashree Marimuthu
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutics Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Lisa C Du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutics Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutics Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
25
|
Duan L, Wang Y, Zhang Y, Wang Z, Li Y, He P. pH/redox/thermo-stimulative nanogels with enhanced thermosensitivity via incorporation of cationic and anionic components for anticancer drug delivery. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1323215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Lanlan Duan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, People’s Republic of China
| | - Yifeng Wang
- The State Key Laboratory of Bioreactor Engineering and Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Yuhong Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, People’s Republic of China
| | - Zhiguo Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, People’s Republic of China
| | - Yulin Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, People’s Republic of China
- The State Key Laboratory of Bioreactor Engineering and Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People’s Republic of China
- CQM—Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, Funchal, Portugal
| | - Peixin He
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, People’s Republic of China
| |
Collapse
|
26
|
Shakeel A, Singh A, Das S, Suhag D, Sharma AK, Rajput SK, Mukherjee M. Synthesis and morphological insight of new biocompatible smart hydrogels. JOURNAL OF POLYMER RESEARCH 2017. [DOI: 10.1007/s10965-017-1267-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Abstract
This review summarizes pH-responsive monomers, polymers and their derivative nano- and micro-structures including micelles, cross-linked micelles, microgels and hydrogels.
Collapse
Affiliation(s)
- G. Kocak
- Department of Chemistry
- Faculty of Arts and Science
- Eskisehir Osmangazi University
- Eskisehir
- Turkey
| | - C. Tuncer
- Department of Chemistry
- Faculty of Arts and Science
- Eskisehir Osmangazi University
- Eskisehir
- Turkey
| | - V. Bütün
- Department of Chemistry
- Faculty of Arts and Science
- Eskisehir Osmangazi University
- Eskisehir
- Turkey
| |
Collapse
|
28
|
Longo GS, Olvera de la Cruz M, Szleifer I. Controlling swelling/deswelling of stimuli-responsive hydrogel nanofilms in electric fields. SOFT MATTER 2016; 12:8359-8366. [PMID: 27714330 DOI: 10.1039/c6sm01172a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The swelling/deswelling transition of pH-sensitive, electrode-grafted, hydrogel nanofilms when exposed to electric fields is studied by theoretical analysis. In acidic conditions, the response of these films to changes in pH is dominated by network-surface interactions, while intra-network electrostatic repulsions, which are highly modulated by the adsorption of salt ions, determine material response at a higher pH. Film thickness is a non-monotonic function of solution pH and displays a local maximum, a local minimum or both, depending on the salt concentration and the applied voltage. We suggest the use of these materials in the development of biosensors and control of enzyme activity.
Collapse
Affiliation(s)
- Gabriel S Longo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET, La Plata, Argentina.
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois, USA and Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| | - Igal Szleifer
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA and Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA and Department of Chemistry, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
29
|
Morris E, Chavez M, Tan C. Dynamic biomaterials: toward engineering autonomous feedback. Curr Opin Biotechnol 2016; 39:97-104. [PMID: 26974245 DOI: 10.1016/j.copbio.2016.02.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 12/31/2022]
Abstract
Dynamic biomaterials are biocompatible engineered systems capable of sensing and actively responding to their surrounding environment. They are of growing interest, both as models in basic research to understand complex cellular systems and in medical applications. Here, we review recent advances in nano-scale and micro-scale biomaterials, specifically artificial cells consisting of compartmentalized biochemical reactions and biologically compatible hydrogels. These dynamic biomaterials respond to stimuli through triggered reactions, reaction cascades, logic gates, and autonomous feedback loops. We outline the advances and remaining challenges in implementing such 'smart' biomaterials capable of autonomously responding to environmental stimuli.
Collapse
Affiliation(s)
- Eliza Morris
- Department of Biomedical Engineering, University of California Davis, Davis, USA
| | - Michael Chavez
- Department of Biomedical Engineering, University of California Davis, Davis, USA
| | - Cheemeng Tan
- Department of Biomedical Engineering, University of California Davis, Davis, USA.
| |
Collapse
|
30
|
Che Y, Li D, Liu Y, Ma Q, Tan Y, Yue Q, Meng F. Physically cross-linked pH-responsive chitosan-based hydrogels with enhanced mechanical performance for controlled drug delivery. RSC Adv 2016. [DOI: 10.1039/c6ra16746b] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel physically cross-linked pH-responsive hydrogel with enhanced mechanical performance was prepared from chitosan, acrylic acid and (2-dimethylamino) ethyl methacrylate via in situ free radical polymerization for controlled drug delivery.
Collapse
Affiliation(s)
- YuJu Che
- Marine College
- Shandong University
- Weihai 264209
- PR China
| | - Dongping Li
- Marine College
- Shandong University
- Weihai 264209
- PR China
| | - Yulong Liu
- Marine College
- Shandong University
- Weihai 264209
- PR China
| | - Qinglin Ma
- Marine College
- Shandong University
- Weihai 264209
- PR China
| | - Yebang Tan
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- PR China
| | - Qinyan Yue
- School of Environmental Science and Engineering
- Shandong University
- Jinan 250100
- PR China
| | - Fanjun Meng
- Marine College
- Shandong University
- Weihai 264209
- PR China
| |
Collapse
|