1
|
Giuri D, Barbalinardo M, Zanna N, Paci P, Montalti M, Cavallini M, Valle F, Calvaresi M, Tomasini C. Tuning Mechanical Properties of Pseudopeptide Supramolecular Hydrogels by Graphene Doping. Molecules 2019; 24:E4345. [PMID: 31795090 PMCID: PMC6930602 DOI: 10.3390/molecules24234345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/10/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022] Open
Abstract
Supramolecular hydrogels, obtained from small organic molecules, may be advantageous over polymeric ones for several applications, because these materials have some peculiar properties that differentiate them from the traditional polymeric hydrogels, such as elasticity, thixotropy, self-healing propensity, and biocompatibility. We report here the preparation of strong supramolecular pseudopeptide-based hydrogels that owe their strength to the introduction of graphene in the gelling mixture. These materials proved to be strong, stable, thermoreversible and elastic. The concentration of the gelator, the degree of graphene doping, and the nature of the trigger are crucial to get hydrogels with the desired properties, where a high storage modulus coexists with a good thixotropic behavior. Finally, NIH-3T3 cells were used to evaluate the cell response to the presence of the most promising hydrogels. The hydrogels biocompatibility remains good, if a small degree of graphene doping is introduced.
Collapse
Affiliation(s)
- Demetra Giuri
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via Selmi, 240126 Bologna, Italy; (D.G.); (N.Z.); (P.P.); (M.M.)
| | - Marianna Barbalinardo
- Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, (ISMN-CNR), Via P. Gobetti 101, 40129 Bologna, Italy; (M.B.); (M.C.); (F.V.)
| | - Nicola Zanna
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via Selmi, 240126 Bologna, Italy; (D.G.); (N.Z.); (P.P.); (M.M.)
| | - Paolo Paci
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via Selmi, 240126 Bologna, Italy; (D.G.); (N.Z.); (P.P.); (M.M.)
| | - Marco Montalti
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via Selmi, 240126 Bologna, Italy; (D.G.); (N.Z.); (P.P.); (M.M.)
| | - Massimiliano Cavallini
- Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, (ISMN-CNR), Via P. Gobetti 101, 40129 Bologna, Italy; (M.B.); (M.C.); (F.V.)
| | - Francesco Valle
- Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, (ISMN-CNR), Via P. Gobetti 101, 40129 Bologna, Italy; (M.B.); (M.C.); (F.V.)
| | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via Selmi, 240126 Bologna, Italy; (D.G.); (N.Z.); (P.P.); (M.M.)
| | - Claudia Tomasini
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via Selmi, 240126 Bologna, Italy; (D.G.); (N.Z.); (P.P.); (M.M.)
| |
Collapse
|
2
|
Geng L, Yu X, Wang Y, Li Y, Shen F, Ren J. Ultrasound-induced emission color and transmittance changes of organogel based on "trans-to-cis" isomerization. ULTRASONICS SONOCHEMISTRY 2019; 58:104659. [PMID: 31450314 DOI: 10.1016/j.ultsonch.2019.104659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/11/2019] [Accepted: 06/24/2019] [Indexed: 06/10/2023]
Abstract
Herein, instant and precise control of fluorescent emission color and transmittance could be carried out by ultrasound-promoted gel-to-gel transition of naphthalimide derivatives containing CN unit. It is proved that ultrasound triggered an irreversible and efficient configuration transformation of N1 from "trans to cis" form in gel state, which is stabilized by intermolecular hydrogen bonding interaction and not observed in the solution state.
Collapse
Affiliation(s)
- Lijun Geng
- College of Science and Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Xudong Yu
- College of Science and Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China.
| | - Yanqiu Wang
- College of Science and Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Yajuan Li
- College of Science and Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Fengjuan Shen
- College of Science and Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Jujie Ren
- College of Science and Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| |
Collapse
|
3
|
Giuri D, Zanna N, Tomasini C. Low Molecular Weight Gelators Based on Functionalized l-Dopa Promote Organogels Formation. Gels 2019; 5:E27. [PMID: 31091701 PMCID: PMC6630615 DOI: 10.3390/gels5020027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/10/2019] [Accepted: 05/11/2019] [Indexed: 12/03/2022] Open
Abstract
We prepared the small pseudopeptide Lau-l-Dopa(OBn)2-d-Oxd-OBn (Lau = lauric acid; l-Dopa = l-3,4-dihydroxyphenylalanine; d-Oxd = (4R,5S)-4-methyl-5-carboxyl-oxazolidin-2-one; Bn = benzyl) through a number of coupling reactions between lauric acid, protected l-Dopa and d-Oxd with an excellent overall yield. The ability of the product to form supramolecular organogels has been tested with different organic solvents of increasing polarity and compared with the results obtained with the small pseudopeptide Fmoc-l-Dopa(OBn)2-d-Oxd-OBn. The mechanical and rheological properties of the organogels demonstrated solvent-dependent properties, with a storage modulus of 82 kPa for the ethanol organogel. Finally, to have a preliminary test of the organogels' ability to adsorb pollutants, we treated a sample of the ethanol organogel with an aqueous solution of Rhodamine B (RhB) for 24 h. The water solution slowly lost its pink color, which became trapped in the organogel.
Collapse
Affiliation(s)
- Demetra Giuri
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via Selmi, 2, 40126 Bologna, Italy.
| | - Nicola Zanna
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via Selmi, 2, 40126 Bologna, Italy.
| | - Claudia Tomasini
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via Selmi, 2, 40126 Bologna, Italy.
| |
Collapse
|
4
|
Podder D, Chowdhury SR, Nandi SK, Haldar D. Tripeptide based super-organogelators: structure and function. NEW J CHEM 2019. [DOI: 10.1039/c8nj05578e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The peptide based super-gelators are highly soluble in non-toxic organic solvent ethanol, the solution is easy to handle and just by spraying the ethanol solution over an oil–water mixture it is able to form an organogel at room temperature.
Collapse
Affiliation(s)
- Debasish Podder
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur – 741246
- India
| | - Srayoshi Roy Chowdhury
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur – 741246
- India
| | - Sujay Kumar Nandi
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur – 741246
- India
| | - Debasish Haldar
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur – 741246
- India
| |
Collapse
|
5
|
Nandi S, Maji K, Haldar D. Self-Healing Hydrogel from a Dipeptide and HCl Sensing. ACS OMEGA 2018; 3:3744-3751. [PMID: 31458618 PMCID: PMC6641447 DOI: 10.1021/acsomega.8b00358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 03/22/2018] [Indexed: 05/03/2023]
Abstract
Ordered self-assembly of small organic molecules may induce novel properties in a supramolecular arrangement and can act as advance functional materials. This paper discusses the development of a new stimuli-responsive dipeptide hydrogelator containing l-phenylalanine and α-aminoisobutyric acid (Aib). The dipeptide Boc-Phe-Aib-OH, on addition with three equivalent of sodium hydroxide and water, transformed into a robust hydrogel. The transparent hydrogel is self-healing in nature. The instant gelation is highly selective toward sodium hydroxide and does not need any sonication or heating-cooling cycle. The thixotropic nature of the gel has been confirmed by rheological step-strain experiments at room temperature. Moreover, in the oil-water mixture, the compound exhibits phase-selective gelation. When the gel cylinder is cut into pieces, it does not conduct electricity, but once self-healing occurs, it conducts electricity. The diffusion of rhodamine 6G through the hydrogel indicates the dynamic nature. The hydrogel is highly sensitive toward HCl, that is, in the presence of HCl vapor, the gel becomes deformed.
Collapse
Affiliation(s)
- Sujay
Kumar Nandi
- Department of Chemical Sciences, Indian Institute of Science Education and Research
Kolkata, Mohanpur 741246, West Bengal, India
| | - Krishnendu Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research
Kolkata, Mohanpur 741246, West Bengal, India
| | - Debasish Haldar
- Department of Chemical Sciences, Indian Institute of Science Education and Research
Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
6
|
Zanna N, Focaroli S, Merlettini A, Gentilucci L, Teti G, Falconi M, Tomasini C. Thixotropic Peptide-Based Physical Hydrogels Applied to Three-Dimensional Cell Culture. ACS OMEGA 2017; 2:2374-2381. [PMID: 30023662 PMCID: PMC6044849 DOI: 10.1021/acsomega.7b00322] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/26/2017] [Indexed: 05/24/2023]
Abstract
Pseudopeptides containing the d-Oxd or the d-pGlu [Oxd = (4R,5S)-4-methyl-5-carboxyl-oxazolidin-2-one, pGlu = pyroglutamic acid] moiety and selected amino acids were used as low-molecular-weight gelators to prepare strong and thixotropic hydrogels at physiological pH. The addition of calcium chloride to the gelator solutions induces the formation of insoluble salts that get organized in fibers at a pH close to the physiological one. Physical characterization of hydrogels was carried out by morphologic evaluation and rheological measurements and demonstrated that the analyzed hydrogels are thixotropic, as they have the capability to recover their gel-like behavior. As these hydrogels are easily injectable and may be used for regenerative medicine, they were biologically assessed by cell seeding and viability tests. Human gingival fibroblasts were embedded in 2% hydrogels; all of the hydrogels allow the growth of encapsulated cells with a very good viability. The gelator toxicity may be correlated with their tendency to self-assemble and is totally absent when the hydrogel is formed.
Collapse
Affiliation(s)
- Nicola Zanna
- Dipartimento
di Chimica Ciamician, Alma Mater Studiorum
Università di Bologna, Via Selmi, 2, 40126 Bologna, Italy
| | - Stefano Focaroli
- Dipartimento
di Scienze Biomediche e Neuromotorie, Alma
Mater Studiorum Università di Bologna, Via Ugo Foscolo, 7, 40123 Bologna, Italy
| | - Andrea Merlettini
- Dipartimento
di Chimica Ciamician, Alma Mater Studiorum
Università di Bologna, Via Selmi, 2, 40126 Bologna, Italy
| | - Luca Gentilucci
- Dipartimento
di Chimica Ciamician, Alma Mater Studiorum
Università di Bologna, Via Selmi, 2, 40126 Bologna, Italy
| | - Gabriella Teti
- Dipartimento
di Scienze Biomediche e Neuromotorie, Alma
Mater Studiorum Università di Bologna, Via Ugo Foscolo, 7, 40123 Bologna, Italy
| | - Mirella Falconi
- Dipartimento
di Scienze Biomediche e Neuromotorie, Alma
Mater Studiorum Università di Bologna, Via Ugo Foscolo, 7, 40123 Bologna, Italy
| | - Claudia Tomasini
- Dipartimento
di Chimica Ciamician, Alma Mater Studiorum
Università di Bologna, Via Selmi, 2, 40126 Bologna, Italy
| |
Collapse
|
7
|
Pal KB, Mukhopadhyay B. Carbohydrate-BasedSafe Fuel Gel with Significant Self-healing Property. ChemistrySelect 2017. [DOI: 10.1002/slct.201601776] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kumar Bhaskar Pal
- Department of Chemical Sciences; Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia; 741246 India
- Centre for Analysis and Synthesis; Department of Chemistry; Lund University; Box 124 221 00 Lund Sweden
| | - Balaram Mukhopadhyay
- Department of Chemical Sciences; Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia; 741246 India
| |
Collapse
|
8
|
Debnath M, Sasmal S, Haldar D. Fabrication of egg shell-like nanovesicles from a thiocoumarin-based ε-amino ester: a potential carrier. J Mater Chem B 2017; 5:5450-5457. [DOI: 10.1039/c7tb00025a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A thiocoumarin-based ε-amino ester has been designed and synthesized and used to fabricate egg shell-like nanovesicles for sustained release of sulfamethoxazole antibiotic.
Collapse
Affiliation(s)
- Mintu Debnath
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur
- India
| | - Supriya Sasmal
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur
- India
| | - Debasish Haldar
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur
- India
| |
Collapse
|
9
|
Abstract
Nine amino acids with different chemical properties have been chosen to promote the formation of hydrogels based on the bolamphiphilic gelator A: three basic amino acids (arginine, histidine and lysine), one acidic amino acid (aspartic acid), two neutral aliphatic amino acids (alanine and serine) and three neutral aromatic amino acids (phenylalanine, tyrosine and tryptophan).
Collapse
Affiliation(s)
- Nicola Zanna
- Dipartimento di Chimica Ciamician
- Alma Mater Studiorum Università di Bologna
- 40126 Bologna
- Italy
| | - Andrea Merlettini
- Dipartimento di Chimica Ciamician
- Alma Mater Studiorum Università di Bologna
- 40126 Bologna
- Italy
| | - Claudia Tomasini
- Dipartimento di Chimica Ciamician
- Alma Mater Studiorum Università di Bologna
- 40126 Bologna
- Italy
| |
Collapse
|
10
|
Pramanik A, Paikar A, Das T, Maji K, Haldar D. Self-assembled peptide microspheres for sustainable release of sulfamethoxazole. RSC Adv 2016. [DOI: 10.1039/c6ra07095g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Porous peptide microspheres have been used for the loading and sustained release of the bacteriostatic antibiotic sulfamethoxazole.
Collapse
Affiliation(s)
- Apurba Pramanik
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur
- India
| | - Arpita Paikar
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur
- India
| | - Tanmay Das
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur
- India
| | - Krishnendu Maji
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur
- India
| | - Debasish Haldar
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur
- India
| |
Collapse
|