1
|
Bannister KR, Prather KLJ. α-Substituted 3-hydroxy acid production from glucose in Escherichia coli. Metab Eng 2024; 86:124-134. [PMID: 39313110 DOI: 10.1016/j.ymben.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/28/2024] [Accepted: 09/15/2024] [Indexed: 09/25/2024]
Abstract
Polyhydroxyalkanoates (PHAs) are renewably-derived, microbial polyesters composed of hydroxy acids (HAs). Demand for sustainable plastics alternatives, combined with the unfavorable thermal properties exhibited by some PHAs, motivates the discovery of novel PHA-based materials. Incorporation of α-substituted HAs yields thermostable PHAs; however, the reverse β-oxidation (rBOX) pathway, the canonical pathway for HA production, is unable to produce these monomers because it utilizes thiolases with narrow substrate specificity. Here, we present a thiolase-independent pathway to two α-substituted HAs, 3-hydroxyisobutyric acid (3HIB) and 3-hydroxy-2-methylbutyric acid (3H2MB). This pathway involves the conversion of glucose to various branched acyl-CoAs and ultimately to 3HIB or 3H2MB. As proof of concept, we engineered Escherichia coli for the specific production of 3HIB and 3H2MB from glucose at titers as high as 66 ± 5 mg/L and 290 ± 40 mg/L, respectively. Optimizing this pathway for 3H2MB production via a novel byproduct recycle increased titer by 60%. This work illustrates the utility of novel pathway design HA production leading to PHAs with industrially relevant properties.
Collapse
Affiliation(s)
- K'yal R Bannister
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Kristala L J Prather
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| |
Collapse
|
2
|
Mierzati M, Miyahara Y, Curial B, Nomura CT, Taguchi S, Abe H, Tsuge T. Tacticity Characterization of Biosynthesized Polyhydroxyalkanoates Containing ( S)- and ( R)-3-Hydroxy-2-Methylpropionate Units. Biomacromolecules 2024; 25:444-454. [PMID: 38135668 DOI: 10.1021/acs.biomac.3c01069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Polyhydroxyalkanoates (PHAs), aliphatic polyesters synthesized by microorganisms, have gained considerable attention as biodegradable plastics. Recently, α-carbon-methylated PHAs have been shown to exhibit several interesting properties that differ from those of conventional PHAs, such as their crystallization behavior and material properties. This study investigated α-carbon methylated (S)- and (R)-3-hydroxy-2-methylpropionate (3H2MP) as new repeating units. 3H2MP units were homopolymerized or copolymerized with (R)-3-hydroxybutyrate (3HB) by manipulating the culture conditions of recombinant Escherichia coli LSBJ. Consequently, PHAs with 3H2MP units ranging from 5 to 100 mol % were synthesized by external addition of (R)- and (S)-enantiomers or the racemic form of 3H2MPNa. The (S)-3H2MP precursor supplemented into the culture medium was almost directly polymerized into PHA while maintaining its chirality. Therefore, a highly isotactic P(3H2MP) (R:S = 1:99) was synthesized, which displayed a melting temperature of 114-119 °C and a relatively high enthalpy of fusion (68 J/g). In contrast, in cultures supplemented with (R)-3H2MP, the precursor was racemized and polymerized into PHA, resulting in the synthesis of the amorphous polymer atactic P(3H2MP) (R:S = 40:60). However, racemization was not observed at a low concentration of the (R)-3H2MP precursor, thereby synthesizing P(3HB-co-8 mol % 3H2MP) with 100% (R)-3H2MP units. The thermogravimetric analysis revealed that the thermal degradation temperatures at 5% weight loss of P(3H2MP)s occurred at approximately 313 °C, independent of tacticity, which is substantially higher than that of P(3HB) (257 °C). This study demonstrates a new concept for controlling the physical properties of biosynthesized PHA by manipulating the polymers' tacticity using 3H2MP units.
Collapse
Affiliation(s)
- Maierwufu Mierzati
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502, Japan
| | - Yuki Miyahara
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502, Japan
| | - Blanche Curial
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502, Japan
| | - Christopher T Nomura
- Department of Biological Sciences, College of Science, University of Idaho, 875 Perimeter Dr, Moscow, Idaho 83844-3010, United States
| | - Seiichi Taguchi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe 657-8501, Japan
| | - Hideki Abe
- Bioplastic Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takeharu Tsuge
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502, Japan
| |
Collapse
|
3
|
Volova TG, Zhila NO, Kiselev EG, Sukovatyi AG, Lukyanenko AV, Shishatskaya EI. Biodegradable Polyhydroxyalkanoates with a Different Set of Valerate Monomers: Chemical Structure and Physicochemical Properties. Int J Mol Sci 2023; 24:14082. [PMID: 37762383 PMCID: PMC10531092 DOI: 10.3390/ijms241814082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/26/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
The properties, features of thermal behavior and crystallization of copolymers containing various types of valerate monomers were studied depending on the set and ratio of monomers. We synthesized and studied the properties of three-component copolymers containing unusual monomers 4-hydroxyvalerate (4HV) and 3-hydroxy-4-methylvalerate (3H4MV), in addition to the usual 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) monomers. The results showed that P(3HB-co-3HV-co-4HV) and P(3HB-co-3HV-co-3H4MV) terpolymers tended to increase thermal stability, especially for methylated samples, including an increase in the gap between melting point (Tmelt) and thermal degradation temperature (Tdegr), an increase in the melting point and glass transition temperature, as well as a lower degree of crystallinity (40-46%) compared with P(3HB-co-3HV) (58-66%). The copolymer crystallization kinetics depended on the set and ratio of monomers. For terpolymers during exothermic crystallization, higher rates of spherulite formation (Gmax) were registered, reaching, depending on the ratio of monomers, 1.6-2.0 µm/min, which was several times higher than the Gmax index (0.52 µm/min) for the P(3HB-co-3HV) copolymer. The revealed differences in the thermal properties and crystallization kinetics of terpolymers indicate that they are promising polymers for processing into high quality products from melts.
Collapse
Affiliation(s)
- Tatiana G. Volova
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia; (T.G.V.); (E.G.K.); (A.G.S.); (E.I.S.)
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia;
| | - Natalia O. Zhila
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia; (T.G.V.); (E.G.K.); (A.G.S.); (E.I.S.)
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia;
| | - Evgeniy G. Kiselev
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia; (T.G.V.); (E.G.K.); (A.G.S.); (E.I.S.)
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia;
| | - Aleksey G. Sukovatyi
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia; (T.G.V.); (E.G.K.); (A.G.S.); (E.I.S.)
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia;
| | - Anna V. Lukyanenko
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia;
- L.V. Kirensky Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/38 Akademgorodok, Krasnoyarsk 660036, Russia
| | - Ekaterina I. Shishatskaya
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia; (T.G.V.); (E.G.K.); (A.G.S.); (E.I.S.)
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia;
| |
Collapse
|
4
|
Zhou Z, LaPointe AM, Shaffer TD, Coates GW. Nature-inspired methylated polyhydroxybutyrates from C1 and C4 feedstocks. Nat Chem 2023:10.1038/s41557-023-01187-0. [PMID: 37024718 DOI: 10.1038/s41557-023-01187-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 03/16/2023] [Indexed: 04/08/2023]
Abstract
Polyolefin plastics are widely used due to their low cost and outstanding properties, but their environmental persistence presents a major societal challenge. Polyhydroxyalkanoates (PHA) are biodegradable substitutes for polyolefins, but their high cost and thermal instability are impediments to their widespread application. Here we report a series of methylated polyhydroxybutyrates, poly(3-hydroxy-2-methylbutyrate)s, which are structurally inspired by natural PHAs. The cis homopolymers exhibit tacticity-independent crystallinity, which allows for the discovery of high-melting, thermally stable and mechanically tough copolymers, and a full range of polyolefin-like properties can be further achieved by tailoring the cis/trans ratio of the repeating units. Moreover, these materials can be synthesized from inexpensive carbon monoxide and 2-butene feedstocks, and they can be chemically recycled or upcycled at their end of life. The versatile properties, abundant feedstocks and end-of-life utility of this family of polyesters will enable a powerful platform for the discovery of sustainable alternatives to polyolefin plastics.
Collapse
Affiliation(s)
- Zhiyao Zhou
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY, USA
| | - Anne M LaPointe
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY, USA
| | | | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
5
|
Sivashankari RM, Mierzati M, Miyahara Y, Mizuno S, Nomura CT, Taguchi S, Abe H, Tsuge T. Exploring Class I polyhydroxyalkanoate synthases with broad substrate specificity for polymerization of structurally diverse monomer units. Front Bioeng Biotechnol 2023; 11:1114946. [PMID: 36896015 PMCID: PMC9989198 DOI: 10.3389/fbioe.2023.1114946] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Polyhydroxyalkanoate (PHA) synthases (PhaCs) are key enzymes in PHA polymerization. PhaCs with broad substrate specificity are attractive for synthesizing structurally diverse PHAs. In the PHA family, 3-hydroxybutyrate (3HB)-based copolymers are industrially produced using Class I PhaCs and can be used as practical biodegradable thermoplastics. However, Class I PhaCs with broad substrate specificities are scarce, prompting our search for novel PhaCs. In this study, four new PhaCs from the bacteria Ferrimonas marina, Plesiomonas shigelloides, Shewanella pealeana, and Vibrio metschnikovii were selected via a homology search against the GenBank database, using the amino acid sequence of Aeromonas caviae PHA synthase (PhaCAc), a Class I enzyme with a wide range of substrate specificities, as a template. The four PhaCs were characterized in terms of their polymerization ability and substrate specificity, using Escherichia coli as a host for PHA production. All the new PhaCs were able to synthesize P(3HB) in E. coli with a high molecular weight, surpassing PhaCAc. The substrate specificity of PhaCs was evaluated by synthesizing 3HB-based copolymers with 3-hydroxyhexanoate, 3-hydroxy-4-methylvalerate, 3-hydroxy-2-methylbutyrate, and 3-hydroxypivalate monomers. Interestingly, PhaC from P. shigelloides (PhaCPs) exhibited relatively broad substrate specificity. PhaCPs was further engineered through site-directed mutagenesis, and the variant resulted in an enzyme with improved polymerization ability and substrate specificity.
Collapse
Affiliation(s)
| | - Maierwufu Mierzati
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Yuki Miyahara
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Shoji Mizuno
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Christopher T Nomura
- Department of Biological Sciences, College of Science, University of Idaho, Moscow, ID, United States
| | - Seiichi Taguchi
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Hideki Abe
- Bioplastic Research Team, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Takeharu Tsuge
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
6
|
Ceneviva LVS, Mierzati M, Miyahara Y, Nomura CT, Taguchi S, Abe H, Tsuge T. Poly(3-mercapto-2-methylpropionate), a Novel α-Methylated Bio-Polythioester with Rubber-like Elasticity, and Its Copolymer with 3-hydroxybutyrate: Biosynthesis and Characterization. Bioengineering (Basel) 2022; 9:bioengineering9050228. [PMID: 35621506 PMCID: PMC9137767 DOI: 10.3390/bioengineering9050228] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/08/2023] Open
Abstract
A new polythioester (PTE), poly(3-mercapto-2-methylpropionate) [P(3M2MP)], and its copolymer with 3-hydroxybutyrate (3HB) were successfully biosynthesized from 3-mercapto-2-methylpropionic acid as a structurally-related precursor. This is the fourth PTE of biological origin and the first to be α-methylated. P(3M2MP) was biosynthesized using an engineered Escherichia coli LSBJ, which has a high molecular weight, amorphous structure, and elastomeric properties, reaching 2600% elongation at break. P(3HB-co-3M2MP) copolymers were synthesized by expressing 3HB-supplying enzymes. The copolymers were produced with high content in the cells and showed a high 3M2MP unit incorporation of up to 77.2 wt% and 54.8 mol%, respectively. As the 3M2MP fraction in the copolymer increased, the molecular weight decreased and the polymers became softer, more flexible, and less crystalline, with lower glass transition temperatures and higher elongations at break. The properties of this PTE were distinct from those of previously biosynthesized PTEs, indicating that the range of material properties can be further expanded by introducing α-methylated thioester monomers.
Collapse
Affiliation(s)
- Lucas Vinicius Santini Ceneviva
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan; (L.V.S.C.); (M.M.); (Y.M.)
| | - Maierwufu Mierzati
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan; (L.V.S.C.); (M.M.); (Y.M.)
| | - Yuki Miyahara
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan; (L.V.S.C.); (M.M.); (Y.M.)
| | - Christopher T. Nomura
- Department of Biological Sciences, College of Science, University of Idaho, 875 Perimeter Dr., Moscow, ID 83844-3010, USA;
| | - Seiichi Taguchi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe 657-8501, Japan;
| | - Hideki Abe
- Bioplastic Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan;
| | - Takeharu Tsuge
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan; (L.V.S.C.); (M.M.); (Y.M.)
- Correspondence:
| |
Collapse
|
7
|
Haque FM, Ishibashi JSA, Lidston CAL, Shao H, Bates FS, Chang AB, Coates GW, Cramer CJ, Dauenhauer PJ, Dichtel WR, Ellison CJ, Gormong EA, Hamachi LS, Hoye TR, Jin M, Kalow JA, Kim HJ, Kumar G, LaSalle CJ, Liffland S, Lipinski BM, Pang Y, Parveen R, Peng X, Popowski Y, Prebihalo EA, Reddi Y, Reineke TM, Sheppard DT, Swartz JL, Tolman WB, Vlaisavljevich B, Wissinger J, Xu S, Hillmyer MA. Defining the Macromolecules of Tomorrow through Synergistic Sustainable Polymer Research. Chem Rev 2022; 122:6322-6373. [PMID: 35133803 DOI: 10.1021/acs.chemrev.1c00173] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transforming how plastics are made, unmade, and remade through innovative research and diverse partnerships that together foster environmental stewardship is critically important to a sustainable future. Designing, preparing, and implementing polymers derived from renewable resources for a wide range of advanced applications that promote future economic development, energy efficiency, and environmental sustainability are all central to these efforts. In this Chemical Reviews contribution, we take a comprehensive, integrated approach to summarize important and impactful contributions to this broad research arena. The Review highlights signature accomplishments across a broad research portfolio and is organized into four wide-ranging research themes that address the topic in a comprehensive manner: Feedstocks, Polymerization Processes and Techniques, Intended Use, and End of Use. We emphasize those successes that benefitted from collaborative engagements across disciplinary lines.
Collapse
Affiliation(s)
- Farihah M Haque
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jacob S A Ishibashi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Claire A L Lidston
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1801, United States
| | - Huiling Shao
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Frank S Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Alice B Chang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1801, United States
| | - Christopher J Cramer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Paul J Dauenhauer
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - William R Dichtel
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Christopher J Ellison
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ethan A Gormong
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Leslie S Hamachi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Thomas R Hoye
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mengyuan Jin
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Julia A Kalow
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Hee Joong Kim
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Gaurav Kumar
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christopher J LaSalle
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stephanie Liffland
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Bryce M Lipinski
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1801, United States
| | - Yutong Pang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Riffat Parveen
- Department of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Xiayu Peng
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yanay Popowski
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130-4899, United States
| | - Emily A Prebihalo
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yernaidu Reddi
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Daylan T Sheppard
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jeremy L Swartz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - William B Tolman
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130-4899, United States
| | - Bess Vlaisavljevich
- Department of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Jane Wissinger
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Shu Xu
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Marc A Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
8
|
Furutate S, Abe H, Tsuge T. Thermal properties of poly(3-hydroxy-2-methylbutyrate-co-3-hydroxybutyrate) copolymers with narrow comonomer-unit compositional distributions. Polym J 2021. [DOI: 10.1038/s41428-021-00545-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Hiroe A, Sakurai T, Mizuno S, Miyahara Y, Goto S, Yamada M, Tsuge T, Taguchi S. Microbial oversecretion of (R)-3-hydroxybutyrate oligomer with diethylene glycol terminal as a macromonomer for polyurethane synthesis. Int J Biol Macromol 2020; 167:1290-1296. [PMID: 33202278 DOI: 10.1016/j.ijbiomac.2020.11.083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/07/2020] [Accepted: 11/12/2020] [Indexed: 11/28/2022]
Abstract
Poly((R)-3-hydroxybutyrate) (P(3HB)) is a polyester that is synthesized and accumulated in many prokaryotic cells. Recently, a new culture method for the secretion of the intracellularly synthesized (R)-3-hydroxybutyrate oligomer (3HBO) from recombinant Escherichia coli cells was developed. In this study, we attempted to produce microbial 3HBO capped with a diethylene glycol terminal (3HBO-DEG) as a macromonomer for polymeric materials. First, we prepared recombinant E. coli strains harboring genes encoding various polyhydroxyalkanoate (PHA) synthases (PhaC, PhaEC or PhaRC) that can incorporate chain transfer (CT) agents such as DEG into the polymer's terminal and generate CT end-capped oligomers. To this end, each strain was cultivated under DEG supplemental conditions, and the synthesis of 3HBO-DEG was confirmed. As a result, the highest secretory production of 3HBO-DEG was observed for the PHA synthase derived from Bacillus cereus YB-4 (PhaRCYB4). To evaluate the usability of the secreted 3HBO-DEG as a macromonomer, 3HBO-DEG was purified from the culture medium and polymerized with 4,4'-diphenylmethane diisocyanate as a spacer compound. Characterization of the polymeric products revealed that 3HBO-based polyurethane was successfully obtained and was a flexible and transparent noncrystalline polymer, unlike P(3HB). These results suggested that microbial 3HBO-DEG is a promising platform building block for synthesizing polyurethane and various other polymers.
Collapse
Affiliation(s)
- Ayaka Hiroe
- Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan; MIRAI, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Tetsuo Sakurai
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
| | - Shoji Mizuno
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan; MIRAI, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Yuki Miyahara
- Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan; MIRAI, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Saki Goto
- Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan; MIRAI, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Mariko Yamada
- Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan; MIRAI, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takeharu Tsuge
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan; MIRAI, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| | - Seiichi Taguchi
- Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan.
| |
Collapse
|
10
|
|
11
|
Dong H, Liffland S, Hillmyer MA, Chang MCY. Engineering in Vivo Production of α-Branched Polyesters. J Am Chem Soc 2019; 141:16877-16883. [DOI: 10.1021/jacs.9b08585] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Stephanie Liffland
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Marc A. Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | |
Collapse
|
12
|
Xu Z, Li X, Hao N, Pan C, de la Torre L, Ahamed A, Miller JH, Ragauskas AJ, Yuan J, Yang B. Kinetic understanding of nitrogen supply condition on biosynthesis of polyhydroxyalkanoate from benzoate by Pseudomonas putida KT2440. BIORESOURCE TECHNOLOGY 2019; 273:538-544. [PMID: 30472353 DOI: 10.1016/j.biortech.2018.11.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/09/2018] [Accepted: 11/10/2018] [Indexed: 05/10/2023]
Abstract
Nitrogen supply is critical to the synthesis of intracellular PHA in various bacteria. However, the specific role of the nitrogen in synthesizing PHA from benzoate, a lignin model compound use for the study of bacteria catabolism of aromatics, is still not clear. In this study, two culture conditions were maintained for Pseudomonas putida KT2440 to produce PHA using benzoate as a carbon source. Under nitrogen-limited and surplus conditions, the accumulation of PHA was to 37.3% and 0.25% of cell dry weight, respectively. A model fit to the kinetics of biomass growth and PHA accumulation showed good agreement with data. GC-MS and NMR showed that PHA contained six hydroxyl fatty acid monomers under nitrogen-limited conditions, while two monomers were identified under nitrogen surplus conditions. The average molecular weight of PHA increased after the nitrogen source was exhausted. These results provide a promising strategy for optimization of lignin to PHA yields.
Collapse
Affiliation(s)
- Zhangyang Xu
- Bioproducts, Sciences, and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA 99354, USA
| | - Xiaolu Li
- Bioproducts, Sciences, and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA 99354, USA
| | - Naijia Hao
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Chunmei Pan
- Bioproducts, Sciences, and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA 99354, USA
| | - Luis de la Torre
- School of Engineering and Applied Sciences, Washington State University, Richland, WA 99354, USA
| | - Aftab Ahamed
- Bioproducts, Sciences, and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA 99354, USA
| | - John H Miller
- School of Engineering and Applied Sciences, Washington State University, Richland, WA 99354, USA
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA
| | - Joshua Yuan
- Synthetic and Systems Biology Innovation Hub, Department of Plant Pathology and Microbiology, Texas A&M University, College Station, 77843, USA
| | - Bin Yang
- Bioproducts, Sciences, and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA 99354, USA.
| |
Collapse
|
13
|
Biosynthesis and characterization of novel polyhydroxyalkanoate copolymers consisting of 3-hydroxy-2-methylbutyrate and 3-hydroxyhexanoate. JOURNAL OF POLYMER RESEARCH 2017. [DOI: 10.1007/s10965-017-1392-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
14
|
Blaisse MR, Dong H, Fu B, Chang MCY. Discovery and Engineering of Pathways for Production of α-Branched Organic Acids. J Am Chem Soc 2017; 139:14526-14532. [PMID: 28990776 DOI: 10.1021/jacs.7b07400] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cell-based synthesis offers many opportunities for preparing small molecules from simple renewable carbon sources by telescoping multiple reactions into a single fermentation step. One challenge in this area is the development of enzymatic carbon-carbon bond forming cycles that enable a modular disconnection of a target structure into cellular building blocks. In this regard, synthetic pathways based on thiolase enzymes to catalyze the initial carbon-carbon bond forming step between acyl coenzyme A (CoA) substrates offer a versatile route for biological synthesis, but the substrate diversity of such pathways is currently limited. In this report, we describe the identification and biochemical characterization of a thiolase-ketoreductase pair involved in production of branched acids in the roundworm, Ascaris suum, that demonstrates selectivity for forming products with an α-methyl branch using a propionyl-CoA extender unit. Engineering synthetic pathways for production of α-methyl acids in Escherichia coli using these enzymes allows the construction of microbial strains that produce either chiral 2-methyl-3-hydroxy acids (1.1 ± 0.2 g L-1) or branched enoic acids (1.12 ± 0.06 g L-1) in the presence of a dehydratase at 44% and 87% yield of fed propionate, respectively. In vitro characterization along with in vivo analysis indicates that the ketoreductase is the key driver for selectivity, forming predominantly α-branched products even when paired with a thiolase that highly prefers unbranched linear products. Our results expand the utility of thiolase-based pathways and provide biosynthetic access to α-branched compounds as precursors for polymers and other chemicals.
Collapse
Affiliation(s)
- Michael R Blaisse
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720-1460, United States
| | - Hongjun Dong
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720-1460, United States
| | - Beverly Fu
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720-1460, United States
| | - Michelle C Y Chang
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720-1460, United States.,Department of Molecular and Cell Biology, University of California, Berkeley , Berkeley, California 94720-1460, United States
| |
Collapse
|
15
|
Panaitescu DM, Nicolae CA, Frone AN, Chiulan I, Stanescu PO, Draghici C, Iorga M, Mihailescu M. Plasticized poly(3-hydroxybutyrate) with improved melt processing and balanced properties. J Appl Polym Sci 2017. [DOI: 10.1002/app.44810] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Denis Mihaela Panaitescu
- Polymer Department; National Institute of Research and Development in Chemistry and Petrochemistry; 202 Splaiul Independentei Bucharest 060021 Romania
| | - Cristian Andi Nicolae
- Polymer Department; National Institute of Research and Development in Chemistry and Petrochemistry; 202 Splaiul Independentei Bucharest 060021 Romania
| | - Adriana Nicoleta Frone
- Polymer Department; National Institute of Research and Development in Chemistry and Petrochemistry; 202 Splaiul Independentei Bucharest 060021 Romania
| | - Ioana Chiulan
- Polymer Department; National Institute of Research and Development in Chemistry and Petrochemistry; 202 Splaiul Independentei Bucharest 060021 Romania
| | - Paul Octavian Stanescu
- Advanced Polymers Materials Group, Politehnica University of Bucharest; 1-7 Polizu Street Bucharest 011061 Romania
| | - Constantin Draghici
- C. D. Nenitescu Organic Chemistry Center of Romanian Academy; 202 B Splaiul Independentei Bucharest 060023 Romania
| | - Michaela Iorga
- Polymer Department; National Institute of Research and Development in Chemistry and Petrochemistry; 202 Splaiul Independentei Bucharest 060021 Romania
| | - Mona Mihailescu
- Physics Department, Faculty of Applied Sciences; Politehnica University of Bucharest; 313 Splaiul Independentei Bucharest 060042 Romania
| |
Collapse
|