1
|
Roy S, Paul S, Mukherjee S, De P, Mukherjee A. Unraveling Mechanism and Enhancing Selectivity of a Ru II-bis-bipyridyl-morphocumin Complex with RAFT-Generated Glycopolymer Exploiting Warburg Effect in Cancer. Chemistry 2024:e202403695. [PMID: 39614769 DOI: 10.1002/chem.202403695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Indexed: 12/12/2024]
Abstract
The Warburg effect, which generates increased demand of glucose in cancer cells is a relatively underexplored phenomenon in existing commercial drugs to enhance uptake in cancer cells. Here, we present a chemotherapeutic strategy employing a Ru(II)-bis-bipyridyl-morphocumin complex (2) encapsulated in a self-assembling glucose-functionalized copolymer P(G-EMA-co-MMA) (where G=glucose; MMA=methyl methacrylate; EMA=ethyl methacrylate), designed to exploit this effect for enhanced selectivity in cancer treatment. The P(G-EMA-co-MMA) polymer, synthesized via reversible-addition fragmentation chain transfer (RAFT) polymerization, has a number average molecular weight (Mn,NMR) of 8000 g/mol. Complex 2, stable in aqueous media, selectively releases a cytotoxic, lysosome-targeting compound, morphocumin, in the presence of excess hydrogen peroxide (H₂O₂), a reactive oxygen species (ROS) prevalent in tumor microenvironments. Additionally, complex 2 promotes ROS accumulation, which may further enhance morphocumin release through a synergistic domino effect. Comparative studies reveal that 2 outperforms its curcumin Ru(II) complex (1) analog in solution stability, organelle specificity, and cellular mechanisms. Both 1 and 2 exhibit phototherapeutic effects under low-intensity visible light, but their chemotoxicity significantly increases with incubation time in the dark, highlighting the superior chemotherapeutic efficacy of the O,O-coordinating Ru(II) ternary polypyridyl complexes. Complex 2 induces apoptosis via the intrinsic pathway and shows a 9-fold increase in selectivity for pancreatic cancer cells (MIA PaCa-2) over non-cancerous HEK293 cells when encapsulated in the glucose-conjugated polymer (DP@2). Glucose deprivation in the culture medium further enhances drug efficacy by an additional 5-fold. This work underscores the potential of glucose-functionalized polymers and ROS-responsive Ru(II) complexes in targeted cancer therapy.
Collapse
Affiliation(s)
- Souryadip Roy
- Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, Mohanpur, 741246, India
| | - Soumya Paul
- Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, Mohanpur, 741246, India
| | - Sujato Mukherjee
- Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, Mohanpur, 741246, India
| | - Priyadarsi De
- Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, Mohanpur, 741246, India
| | - Arindam Mukherjee
- Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, Mohanpur, 741246, India
| |
Collapse
|
2
|
Paul S, Ghosh S, Maity T, Behera PP, Mukherjee A, De P. Photocleavable Visible Light-Triggered Anthraquinone-Derived Water-Soluble Block Copolymer for Peroxynitrite Generation in Cancer Therapy. ACS Macro Lett 2024; 13:288-295. [PMID: 38368530 DOI: 10.1021/acsmacrolett.3c00728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
We report a facile stimuli-responsive strategy to generate reactive oxygen and nitrogen species (ROS and RNS) in the biological milieu from a photocleavable water-soluble block copolymer under visible light irradiation (427 nm, 2.25 mW/cm2). An anthraquinone-based water-soluble polymeric nitric oxide (NO) donor (BCPx-NO) is synthesized, which exhibits NO release in the range of 40-65 μM within 10 h of photoirradiation with a half-life of 30-103 min. Additionally, BCPx-NO produces peroxynitrite (ONOO-) and singlet oxygen (1O2) under photoirradiation. To understand the mechanism of NO release and photolysis of the functional group under blue light, we prepared a small-molecule anthraquinone-based N-nitrosamine (NOD). The cellular investigation of the effect of spatiotemporally controlled ONOO- and 1O2 generation from the NO donor polymeric nanoparticles in a triple negative breast adenocarcinoma (MDA-MB-231) under visible light irradiation (white light, 5.83 mW/cm2; total dose 31.5 J/cm2) showed an IC50 of 0.6 mg/mL. The stimuli-responsive strategy using a photolabile water-soluble block copolymer employed to generate ROS and RNS in a biological setting widens the horizon for their potential in cancer therapy.
Collapse
|
3
|
Paul S, Ashrit P, Kumar M, Mete S, Ghosh S, Vemula PK, Mukherjee A, De P. Photostimulated Extended Nitric Oxide (NO) Release from Water-Soluble Block Copolymer to Enhance Antibacterial Activity. Biomacromolecules 2024; 25:77-88. [PMID: 38048403 DOI: 10.1021/acs.biomac.3c00822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
N-Nitrosamines are well established motifs to release nitric oxide (NO) under photoirradiation. Herein, a series of amphiphilic N-nitrosamine-based block copolymers (BCPx-NO) are developed to attain controlled NO release under photoirradiation (365 nm, 3.71 mW/cm2). The water-soluble BCPx-NO forms micellar architecture in aqueous medium and exhibits a sustained NO release of 92-160 μM within 11.5 h, which is 36.8-64.0% of the calculated value. To understand the NO release mechanism, a small molecular NO donor (NOD) resembling the NO releasing functional motif of BCPx-NO is synthesized, which displays a burst NO release in DMSO within 2.5 h. The radical nature of the released NO is confirmed by electron paramagnetic resonance (EPR) spectroscopy. The gradual NO release from micellar BCPx-NO enhances antibacterial activity over NOD and exhibits a superior bactericidal effect on Gram-positive Staphylococcus aureus. In relation to biomedical applications, this work offers a comprehensive insight into tuning light-triggered NO release to improve antibacterial activity.
Collapse
Affiliation(s)
| | - Priya Ashrit
- Institute for Stem Cell Science and Regenerative Medicine (InStem), UAS-GKVK Campus, Bellary Road, Bangalore 560065, Karnataka, India
| | | | - Sourav Mete
- Institute for Stem Cell Science and Regenerative Medicine (InStem), UAS-GKVK Campus, Bellary Road, Bangalore 560065, Karnataka, India
| | | | - Praveen Kumar Vemula
- Institute for Stem Cell Science and Regenerative Medicine (InStem), UAS-GKVK Campus, Bellary Road, Bangalore 560065, Karnataka, India
| | | | | |
Collapse
|
4
|
Mittal A, Krishna, Zabihi F, Rancan F, Achazi K, Nie C, Vogt A, Haag R, Sharma SK. Fabrication of hydrolase responsive diglycerol based Gemini amphiphiles for dermal drug delivery applications. RSC Adv 2022; 12:23566-23577. [PMID: 36090422 PMCID: PMC9386574 DOI: 10.1039/d2ra03090j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022] Open
Abstract
Since biocatalysts manoeuvre most of the physiological activities in living organisms and exhibit extreme selectivity and specificity, their use to trigger physicochemical change in polymeric architectures has been successfully used for targeted drug delivery. Our major interest is to develop lipase responsive nanoscale delivery systems from bio-compatible and biodegradable building blocks. Herein, we report the synthesis of four novel non-ionic Gemini amphiphiles using a chemo-enzymatic approach. A symmetrical diglycerol has been used as a core that is functionalised with alkyl chains for the creation of a hydrophobic cavity, and for aqueous solubility (polyethylene glycol) monomethyl ether (mPEG) is incorporated. Such systems can exhibit a varied self-assembly behaviour leading to the observance of different morphological structures. The aggregation behaviour of the synthesised nanocarrier was studied by dynamic light scattering (DLS) and critical aggregation concentration (CAC) measurements. The nanotransport potential of amphiphiles was investigated for hydrophobic guest molecules, i.e. Nile red, nimodipine and curcumin. Cytotoxicity of the amphiphiles was studied using HeLa and MCF7 cell lines at different concentrations, i.e. 0.05, 0.1, and 0.5 mg mL-1. All nanocarriers were found to be non-cytotoxic up to a concentration of 0.1 mg mL-1. Confocal laser scanning microscopy (cLSM) study suggested the uptake of encapsulated dye in the cytosol of the cancer cells within 4 h, thus implying that amphiphilic systems can efficiently transport hydrophobic drug molecules into cells. The biomedical application of the synthesised Gemini amphiphiles was also investigated for dermal drug delivery. In addition, the enzyme-mediated release study was performed that demonstrated 90% of the dye is released within three days. All these results supported the capability of nanocarriers in drug delivery systems.
Collapse
Affiliation(s)
- Ayushi Mittal
- Department of Chemistry, University of Delhi Delhi 110 007 India +91-11-27666646
| | - Krishna
- Department of Chemistry, University of Delhi Delhi 110 007 India +91-11-27666646
| | - Fatemeh Zabihi
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin Charitéplatz 1 10117 Berlin Germany
- Institut für Chemie und Biochemie, Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Fiorenza Rancan
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin Charitéplatz 1 10117 Berlin Germany
| | - Katharina Achazi
- Institut für Chemie und Biochemie, Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Chuanxiong Nie
- Institut für Chemie und Biochemie, Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Annika Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin Charitéplatz 1 10117 Berlin Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Sunil K Sharma
- Department of Chemistry, University of Delhi Delhi 110 007 India +91-11-27666646
| |
Collapse
|
5
|
Enzymatic synthesis of glycerol, azido-glycerol and azido-triglycerol based amphiphilic copolymers and their relevance as nanocarriers: A review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Orlikowska H, Sobolewska A, Bartkiewicz S. Light-responsive surfactants: Photochromic properties of water-soluble azobenzene derivatives. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Rashmi, Zabihi F, Singh AK, Achazi K, Schade B, Hedtrich S, Haag R, Sharma SK. Non-ionic PEG-oligoglycerol dendron conjugated nano-carriers for dermal drug delivery. Int J Pharm 2020; 580:119212. [PMID: 32165226 DOI: 10.1016/j.ijpharm.2020.119212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/22/2020] [Accepted: 03/07/2020] [Indexed: 01/03/2023]
Abstract
A new class of non-ionic amphiphiles have been synthesised using a combination of polyethylene glycol (PEG) and oligoglycerol dendrons as hydrophilic units and an alkoxy aryl moiety as hydrophobic unit. The resulting amphiphiles were found to aggregate in aqueous medium. Their aggregation behaviour was studied using dynamic light scattering (DLS), fluorescence spectroscopy, and cryogenic electron microscopy (cryo-TEM). The inner hydrophobic core of these aggregates in aqueous medium is capable of encapsulating lipophilic guest molecules. The encapsulation behaviour was studied using Nile red as a hydrophobic dye as well as Curcumin and Dexamethasone as hydrophobic drug candidates. Furthermore, for biological evaluation, cytotoxicity and cellular uptake was studied using different cancer cell lines. The biomedical application of synthesised amphiphiles was further investigated for dermal drug delivery on excised human skin using Nile red encapsulated in the nanocarrier. The release profile of drug/dye encapsulated amphiphiles was studied under physiochemical conditions in the presence of immobilized lipase Novozym 435.
Collapse
Affiliation(s)
- Rashmi
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | - Fatemeh Zabihi
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany; Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany
| | - Abhishek K Singh
- Department of Chemistry, University of Delhi, Delhi 110 007, India; Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Katharina Achazi
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Boris Schade
- Forschungszentrum für Elektronenmikroskopie, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 36a, 14195 Berlin, Germany
| | - Sarah Hedtrich
- University of British Columbia, Faculty of Pharmaceutical Sciences, 2405 Wesbrook Mall, V6T1Z3 Vancouver, Canada; Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany.
| | - Sunil K Sharma
- Department of Chemistry, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
8
|
Rashmi, Singh AK, Achazi K, Ehrmann S, Böttcher C, Haag R, Sharma SK. Stimuli-responsive non-ionic Gemini amphiphiles for drug delivery applications. Polym Chem 2020. [DOI: 10.1039/d0py01040e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This paper shows the synthesis of stimuli responsive Gemini amphiphiles sensitive to Glutathione and hydrolase.
Collapse
Affiliation(s)
- Rashmi
- Department of Chemistry
- University of Delhi
- Delhi 110 007
- India
| | - Abhishek K. Singh
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Katharina Achazi
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Svenja Ehrmann
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
- Forschungszentrum für Elektronenmikroskopie
| | - Christoph Böttcher
- Forschungszentrum für Elektronenmikroskopie
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Sunil K. Sharma
- Department of Chemistry
- University of Delhi
- Delhi 110 007
- India
| |
Collapse
|
9
|
|
10
|
Bujak K, Orlikowska H, Sobolewska A, Schab-Balcerzak E, Janeczek H, Bartkiewicz S, Konieczkowska J. Azobenzene vs azopyridine and matrix molar masses effect on photoinduced phenomena. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.03.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
One-Pot FDCA Diester Synthesis from Mucic Acid and Their Solvent-Free Regioselective Polytransesterification for Production of Glycerol-Based Furanic Polyesters. Molecules 2019; 24:molecules24061030. [PMID: 30875923 PMCID: PMC6471091 DOI: 10.3390/molecules24061030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 01/03/2023] Open
Abstract
A one pot-two step procedure for the synthesis of diethyl furan-2,5-dicarboxylate (DEFDC) starting from mucic acid without isolation of the intermediate furan dicarboxylic acid (FDCA) was studied. Then, the production of three different kinds of furan-based polyesters— polyethylene-2,5-furan dicarboxylate (PEF), polyhydropropyl-2,5-furan dicarboxylate(PHPF) and polydiglycerol-2,5-furandicarboxylate (PDGF)—was realized through a Co(Ac)2·4H2O catalyzed polytransesterification performed at 160 °C between DEFDC and a defined diol furan-based prepolymer or pure diglycerol. In parallel to polymerization process, an unattended regioselective 1-OH acylation of glycerol by direct microwave-heated FDCA diester transesterification led to the formation of a symmetric prepolymer ready for further polymerization and clearly identified by 2D NMR sequences. Furthermore, the synthesis of a more soluble and hydrophilic diglycerol-based furanic polyester was also achieved. The resulting biobased polymers were characterized by NMR, FT-IR spectroscopy, DSC, TGA and XRD. The morphologies of the resulted polymers were observed by FE-SEM and the purity of the material by EDX.
Collapse
|
12
|
Rashmi, Singh AK, Achazi K, Schade B, Böttcher C, Haag R, Sharma SK. Synthesis of non-ionic bolaamphiphiles and study of their self-assembly and transport behaviour for drug delivery applications. RSC Adv 2018; 8:31777-31782. [PMID: 35548236 PMCID: PMC9085746 DOI: 10.1039/c8ra05921g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/27/2018] [Indexed: 11/21/2022] Open
Abstract
A series of four bolaamphiphiles with different hydrophilic units has been synthesised. All the amphiphiles were well characterised from their physiochemical data. The aggregation tendency of newly synthesised amphiphiles was studied using fluorescence spectroscopy, dynamic light scattering (DLS), and cryogenic electron microscopy (cryo-TEM). Furthermore, their application as nanocarriers for hydrophobic guests was demonstrated by using two established standards, i.e. the dye Nile red and the drug nimodipine. A cytotoxicity and cellular uptake study has been carried out using A549 cells. Due to the presence of an ester linkage in PEG based bolaamphiphiles, a drug release study was performed in the presence of an immobilized enzyme Novozym-435 (a lipase).
Collapse
Affiliation(s)
- Rashmi
- Department of Chemistry, University of Delhi Delhi 110 007 India +91-11-27666646
| | - Abhishek K Singh
- Department of Chemistry, University of Delhi Delhi 110 007 India +91-11-27666646
| | - Katharina Achazi
- Institut für Chemie und Biochemie, Freie Universität Berlin Takustraße 3 14195 Berlin Germany +49-30-838-452633 +49-30-838-52633
| | - Boris Schade
- Forschungszentrum für Elektronenmikroskopie, Institut für Chemie und Biochemie, Freie Universität Berlin Fabeckstraße 36a 14195 Berlin Germany
| | - Christoph Böttcher
- Forschungszentrum für Elektronenmikroskopie, Institut für Chemie und Biochemie, Freie Universität Berlin Fabeckstraße 36a 14195 Berlin Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin Takustraße 3 14195 Berlin Germany +49-30-838-452633 +49-30-838-52633
| | - Sunil K Sharma
- Department of Chemistry, University of Delhi Delhi 110 007 India +91-11-27666646
| |
Collapse
|
13
|
Dana S, Sahoo H, Bhattacharyya A, Mandal A, Prasad E, Baidya M. Copper-Catalyzed Chelation-Assisted Synthesis of Unsymmetrical Aliphatic Azo Compounds. ChemistrySelect 2017. [DOI: 10.1002/slct.201700073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Suman Dana
- Department of Chemistry; Indian Institute of Technology Madras; Chennai India - 600 036
| | - Harekrishna Sahoo
- Department of Chemistry; Indian Institute of Technology Madras; Chennai India - 600 036
| | - Ayan Bhattacharyya
- Department of Chemistry; Indian Institute of Technology Madras; Chennai India - 600 036
| | - Anup Mandal
- Department of Chemistry; Indian Institute of Technology Madras; Chennai India - 600 036
| | - Edamana Prasad
- Department of Chemistry; Indian Institute of Technology Madras; Chennai India - 600 036
| | - Mahiuddin Baidya
- Department of Chemistry; Indian Institute of Technology Madras; Chennai India - 600 036
| |
Collapse
|
14
|
Prasad S, Achazi K, Böttcher C, Haag R, Sharma SK. Fabrication of nanostructures through self-assembly of non-ionic amphiphiles for biomedical applications. RSC Adv 2017. [DOI: 10.1039/c6ra28654b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Non-cytotoxic and non-ionic amphiphiles having supramolecular aggregation behavior were synthesized from biocompatible starting materials using a “greener” chemo-enzymatic method.
Collapse
Affiliation(s)
- Suchita Prasad
- Department of Chemistry
- University of Delhi
- Delhi 110 007
- India
| | - Katharina Achazi
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Christoph Böttcher
- Forschungszentrum für Elektronenmikroskopie
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Sunil K. Sharma
- Department of Chemistry
- University of Delhi
- Delhi 110 007
- India
| |
Collapse
|
15
|
Mukherjee S, Das Sarma J, Shunmugam R. pH-Sensitive Nanoaggregates for Site-Specific Drug-Delivery as Well as Cancer Cell Imaging. ACS OMEGA 2016; 1:755-764. [PMID: 30023490 PMCID: PMC6044711 DOI: 10.1021/acsomega.6b00167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/12/2016] [Indexed: 06/02/2023]
Abstract
Multifunctional polymeric nanoaggregates could enable targeted cancer therapy and imaging, which eventually facilitate monitoring of the therapeutic effect. A fluorescent nanoaggregate is constructed for theranostic application. Chlorambucil (Chl), a fluorescent inactive chemotherapeutic agent, is covalently attached to the nanoaggregate for therapeutic action. The pyrene (Py) motif is also covalently attached to the nanoaggregates, with the motivation of cancer cell imaging. This nanoaggregate is further functionalized with biotin (Btn) for receptor-mediated drug delivery. The efficiency of this system is evaluated by in vitro cell studies to prove its receptor-mediated internalization as well as theranostic capabilities. This newly designed nanocarrier, Nor-Chl-Py-Btn (Nor, norbornene), has the ability to combine both therapeutic and diagnostic capabilities into a single polymer that offers existing prospects for the development of nanomedicine.
Collapse
Affiliation(s)
- Saikat Mukherjee
- Department of Chemical
Sciences, Polymer Research Centre and Department of Biological Sciences, Indian Institute of Science Education and Research
Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Jayasri Das Sarma
- Department of Chemical
Sciences, Polymer Research Centre and Department of Biological Sciences, Indian Institute of Science Education and Research
Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Raja Shunmugam
- Department of Chemical
Sciences, Polymer Research Centre and Department of Biological Sciences, Indian Institute of Science Education and Research
Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| |
Collapse
|
16
|
Parshad B, Kumari M, Achazi K, Bӧttcher C, Haag R, Sharma SK. Chemo-Enzymatic Synthesis of Perfluoroalkyl-Functionalized Dendronized Polymers as Cyto-Compatible Nanocarriers for Drug Delivery Applications. Polymers (Basel) 2016; 8:polym8080311. [PMID: 30974586 PMCID: PMC6432502 DOI: 10.3390/polym8080311] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/04/2016] [Accepted: 08/09/2016] [Indexed: 01/22/2023] Open
Abstract
Among amphiphilic polymers with diverse skeletons, fluorinated architectures have attracted significant attention due to their unique property of segregation and self-assembly into discrete supramolecular entities. Herein, we have synthesized amphiphilic copolymers by grafting hydrophobic alkyl/perfluoroalkyl chains and hydrophilic polyglycerol [G2.0] dendrons onto a co-polymer scaffold, which itself was prepared by enzymatic polymerization of poly[ethylene glycol bis(carboxymethyl) ether]diethylester and 2-azidopropan-1,3-diol. The resulting fluorinated polymers and their alkyl chain analogs were then compared in terms of their supramolecular aggregation behavior, solubilization capacity, transport potential, and release profile using curcumin and dexamethasone drugs. The study of the release profile of encapsulated curcumin incubated with/without a hydrolase enzyme Candida antarctica lipase (CAL-B) suggested that the drug is better stabilized in perfluoroalkyl chain grafted polymeric nanostructures in the absence of enzyme for up to 12 days as compared to its alkyl chain analogs. Although both the fluorinated as well as non-fluorinated systems showed up to 90% release of curcumin in 12 days when incubated with lipase, a comparatively faster release was observed in the fluorinated polymers. Cell viability of HeLa cells up to 95% in aqueous solution of fluorinated polymers (100 μg/mL) demonstrated their excellent cyto-compatibility.
Collapse
Affiliation(s)
- Badri Parshad
- Department of Chemistry, University of Delhi, Delhi 110 007, India.
| | - Meena Kumari
- Department of Chemistry, University of Delhi, Delhi 110 007, India.
| | - Katharina Achazi
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, Berlin 14195, Germany.
| | - Christoph Bӧttcher
- Forschungszentrum für Elektronenmikroskopie, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 36a, Berlin 14195, Germany.
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, Berlin 14195, Germany.
| | - Sunil K Sharma
- Department of Chemistry, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
17
|
Chemo-Enzymatic Synthesis of Oligoglycerol Derivatives. Molecules 2016; 21:molecules21081038. [PMID: 27517886 PMCID: PMC6273276 DOI: 10.3390/molecules21081038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 11/16/2022] Open
Abstract
A cleaner and greener method has been developed and used to synthesize 14 different functionalized oligomer derivatives of glycerol in moderate 29%–39% yields over three steps. After successive regioselective enzymatic acylation of the primary hydroxyl groups, etherification or esterification of the secondary hydroxyl groups and chemoselective enzymatic saponification, the target compounds can efficiently be used as versatile building blocks in organic and supramolecular chemistry.
Collapse
|
18
|
Harnoy AJ, Slor G, Tirosh E, Amir RJ. The effect of photoisomerization on the enzymatic hydrolysis of polymeric micelles bearing photo-responsive azobenzene groups at their cores. Org Biomol Chem 2016; 14:5813-9. [DOI: 10.1039/c6ob00396f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
19
|
Kumar A, Khan A, Malhotra S, Mosurkal R, Dhawan A, Pandey MK, Singh BK, Kumar R, Prasad AK, Sharma SK, Samuelson LA, Cholli AL, Len C, Richards NGJ, Kumar J, Haag R, Watterson AC, Parmar VS. Synthesis of macromolecular systems via lipase catalyzed biocatalytic reactions: applications and future perspectives. Chem Soc Rev 2016; 45:6855-6887. [DOI: 10.1039/c6cs00147e] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This review highlights the application of lipases in the synthesis of pharmaceutically important small molecules and polymers for diverse applications.
Collapse
|
20
|
Sequeira MA, Herrera MG, Quirolo ZB, Dodero VI. Easy directed assembly of only nonionic azoamphiphile builds up functional azovesicles. RSC Adv 2016. [DOI: 10.1039/c6ra20933e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We reported that C12OazoE3OH is a functional molecule which directed assembly in water builds up into functional azovesicles.
Collapse
Affiliation(s)
- M. A. Sequeira
- Instituto de Química del Sur (INQUISUR-CONICET)
- Departamento de Química
- Universidad Nacional del Sur
- 8000FTN Bahía Blanca
- Argentina
| | - M. G. Herrera
- Instituto de Química del Sur (INQUISUR-CONICET)
- Departamento de Química
- Universidad Nacional del Sur
- 8000FTN Bahía Blanca
- Argentina
| | - Z. B. Quirolo
- Instituto de Química del Sur (INQUISUR-CONICET)
- Departamento de Química
- Universidad Nacional del Sur
- 8000FTN Bahía Blanca
- Argentina
| | - V. I. Dodero
- Instituto de Química del Sur (INQUISUR-CONICET)
- Departamento de Química
- Universidad Nacional del Sur
- 8000FTN Bahía Blanca
- Argentina
| |
Collapse
|
21
|
Kalva N, Basutkar NB, Ambade AV. Photoresponsive assemblies of linear-dendritic copolymers containing azobenzene in the dendron interior: the effect of the dendron structure on dye encapsulation and release. RSC Adv 2016. [DOI: 10.1039/c6ra02250b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Linear-dendritic copolymers show differential dye encapsulation and photoinduced dye release based on the number and positions of azobenzenes in the dendritic backbone as well as substituents on the dendron periphery.
Collapse
Affiliation(s)
- Nagendra Kalva
- Polymer Science and Engineering Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
- Academy of Scientific and Innovative Research
| | - Nitin B. Basutkar
- Polymer Science and Engineering Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
| | - Ashootosh V. Ambade
- Polymer Science and Engineering Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
- Academy of Scientific and Innovative Research
| |
Collapse
|