1
|
Mocan LP, Ilieș M, Melincovici CS, Spârchez M, Crăciun R, Nenu I, Horhat A, Tefas C, Spârchez Z, Iuga CA, Mocan T, Mihu CM. Novel approaches in search for biomarkers of cholangiocarcinoma. World J Gastroenterol 2022; 28:1508-1525. [PMID: 35582128 PMCID: PMC9048460 DOI: 10.3748/wjg.v28.i15.1508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/12/2021] [Accepted: 03/06/2022] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) arises from the ductular epithelium of the biliary tree, either within the liver (intrahepatic CCA) or more commonly from the extrahepatic bile ducts (extrahepatic CCA). This disease has a poor prognosis and a growing worldwide prevalence. The poor outcomes of CCA are partially explained by the fact that a final diagnosis is challenging, especially the differential diagnosis between hepatocellular carcinoma and intrahepatic CCA, or distal CCA and pancreatic head adenocarcinoma. Most patients present with an advanced disease, unresectable disease, and there is a lack in non-surgical therapeutic modalities. Not least, there is an acute lack of prognostic biomarkers which further complicates disease management. Therefore, there is a dire need to find alternative diagnostic and follow-up pathways that can lead to an accurate result, either singlehandedly or combined with other methods. In the "-omics" era, this goal can be attained by various means, as it has been successfully demonstrated in other primary tumors. Numerous variants can reach a biomarker status ranging from circulating nucleic acids to proteins, metabolites, extracellular vesicles, and ultimately circulating tumor cells. However, given the relatively heterogeneous data, extracting clinical meaning from the inconsequential noise might become a tall task. The current review aims to navigate the nascent waters of the non-invasive approach to CCA and provide an evidence-based input to aid clinical decisions and provide grounds for future research.
Collapse
Affiliation(s)
- Lavinia-Patricia Mocan
- Department of Histology, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| | - Maria Ilieș
- Department of Proteomics and Metabolomics, MedFUTURE Research Center for Advanced Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400349, Romania
| | - Carmen Stanca Melincovici
- Department of Histology, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| | - Mihaela Spârchez
- 2nd Pediatrics Department, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| | - Rareș Crăciun
- 3rd Medical Department, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
- Department of Gastroenterology, "Prof. dr. Octavian Fodor" Institute for Gastroenterology and Hepatology, Cluj-Napoca 400162, Romania
| | - Iuliana Nenu
- 3rd Medical Department, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
- Department of Gastroenterology, "Prof. dr. Octavian Fodor" Institute for Gastroenterology and Hepatology, Cluj-Napoca 400162, Romania
| | - Adelina Horhat
- 3rd Medical Department, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
- Department of Gastroenterology, "Prof. dr. Octavian Fodor" Institute for Gastroenterology and Hepatology, Cluj-Napoca 400162, Romania
| | - Cristian Tefas
- 3rd Medical Department, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
- Department of Gastroenterology, "Prof. dr. Octavian Fodor" Institute for Gastroenterology and Hepatology, Cluj-Napoca 400162, Romania
| | - Zeno Spârchez
- 3rd Medical Department, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
- Department of Gastroenterology, "Prof. dr. Octavian Fodor" Institute for Gastroenterology and Hepatology, Cluj-Napoca 400162, Romania
| | - Cristina Adela Iuga
- Department of Proteomics and Metabolomics, MedFUTURE Research Center for Advanced Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400349, Romania
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| | - Tudor Mocan
- 3rd Medical Department, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
- Department of Gastroenterology, "Prof. dr. Octavian Fodor" Institute for Gastroenterology and Hepatology, Cluj-Napoca 400162, Romania
| | - Carmen Mihaela Mihu
- Department of Histology, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| |
Collapse
|
2
|
Li HY, Sun H, Zhang AH, He LW, Qiu S, Xue JR, Wu F, Wang XJ. Therapeutic Effect and Mechanism of Si-Miao-Yong-An-Tang on Thromboangiitis Obliterans Based on the Urine Metabolomics Approach. Front Pharmacol 2022; 13:827733. [PMID: 35273504 PMCID: PMC8902467 DOI: 10.3389/fphar.2022.827733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Si-Miao-Yong-An-Tang (SMYAT) is a classic prescription for the treatment of thromboangiitis obliterans (TAO). However, the effect and mechanism are still unclear. This experiment aims to evaluate the therapeutic effect and mechanism of SMYAT on sodium laurate solution induced thromboangiitis obliterans model rats using urine metabolomics. The therapeutic effect of SMYAT was evaluated by histopathology, hemorheology and other indexes. The urine metabolomic method, principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were used for clustering group and discriminant analysis to screen urine differential metabolic biomarkers, and explore new insight into pathophysiological mechanisms of SMYAT in the treatment of TAO. SMYAT has significant antithrombotic and anti-inflammatory effects, according to the results of urine metabolomic analysis, and regulate the metabolic profile of TAO rats, and its return profile is close to the state of control group. Through metabolomics technology, a total of 35 urine biomarkers of TAO model were characterized. Among them, SMYAT treatment can regulate 22 core biomarkers, such as normetanephrine and 4-pyridoxic acid. It is found that the therapeutic effect of SMYAT is closely related to the tyrosine metabolism, vitamin B6 metabolism and cysteine and methionine metabolism. It preliminarily explored the therapeutic mechanism of SMYAT, and provided a scientific basis for the application of SMYAT.
Collapse
Affiliation(s)
- Hui-Yu Li
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hui Sun
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ai-Hua Zhang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lu-Wen He
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shi Qiu
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jun-Ru Xue
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fangfang Wu
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China
| | - Xi-Jun Wang
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR, China
| |
Collapse
|
3
|
Li Y, Liu J, Zhou H, Liu J, Xue X, Wang L, Ren S. Liquid chromatography-mass spectrometry method for discovering the metabolic markers to reveal the potential therapeutic effects of naringin on osteoporosis. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1194:123170. [DOI: 10.1016/j.jchromb.2022.123170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 02/02/2022] [Accepted: 02/10/2022] [Indexed: 12/15/2022]
|
4
|
Zhao LK, Zhao YB, Zhang PX. High-throughput metabolomics discovers metabolite biomarkers and insights the protective mechanism of schisandrin B on myocardial injury rats. J Sep Sci 2020; 44:717-725. [PMID: 33247873 DOI: 10.1002/jssc.202000875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 12/26/2022]
Abstract
Schisandrin B has been proved to possess anti-inflammatory and anti-endoplasmic effects, could improve cardiac function, inhibit apoptosis, and reduce inflammation after ischemic injury. However, the detailed metabolic mechanism and potential pathways of Schisandrin B effects on myocardial injury are unclear. Metabolomics could yield in-depth mechanistic insights and explore the potential therapeutic effect of natural products. In this study, the preparation of doxorubicin-induced myocardial injury rat model for evaluation of Schisandrin B on viral myocarditis sequelae related pathological changes and its mechanism. The metabolite profiling of myocardial injury rats was performed through ultra-high performance liquid chromatography combined with mass spectrometry combined with pattern recognition approaches and pathway analysis. A total of 15 metabolites (nine in positive ion mode and six in negative ion mode) were considered as potential biomarkers of myocardial injury, and these metabolites may correlate with the regulation of Schisandrin B treatment. A total of six metabolic pathways are closely related to Schisandrin B treatment, including glycerophospholipid metabolism, sphingolipid metabolism, purine metabolism, etc. This study revealed the potential biomarkers and metabolic network pathways of myocardial injury, and illuminated the protective mechanism of Schisandrin B on myocardial injury.
Collapse
Affiliation(s)
- Ling-Kun Zhao
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, P. R. China
| | - Yun-Bo Zhao
- First Affiliated Hospital, Jiamusi University, Jiamusi, Heilongjiang, P. R. China
| | - Peng-Xia Zhang
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, P. R. China
| |
Collapse
|
5
|
Du HW, Cong W, Wang B, Zhao XL, Meng XC. High-throughput metabolomic method based on liquid chromatography: high resolution mass spectrometry with chemometrics for metabolic biomarkers and pathway analysis to reveal the protective effects of baicalin on thyroid cancer. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4139-4149. [PMID: 32776035 DOI: 10.1039/d0ay00977f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cell metabonomics focuses on discovering metabolic biomarkers and pathway changes in cells from biological systems to obtain the cell properties and functional information under different conditions. Baicalin possesses various pharmacological activities, and plays a vital role in the oncology research field. However, the detailed mechanism of its action is still unclear. In this work, we employed ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS) based non-targeted metabolomics method associated with chemometrics analysis to explore metabolic pathways and biomarkers for investigating the efficacy and pharmacological targets of baicalin against thyroid cancer cells. In addition, morphological observation, parameter calculation of cell proliferation and apoptosis were carried out, which assisted in elucidation of pharmacological activity of baicalin on the human thyroid cancer cells. The results showed that baicalin possesses an intense stimulative apoptosis and inhibits proliferation activity on SW579 human thyroid cancer cells, and partially reversed the cell metabolite abnormalities. A total of nineteen differentiated metabolites in SW579 cells were identified and deemed as potential biomarkers after the baicalin treatment, involving nine metabolic pathways, such as taurine and hypotaurine metabolism, pyrimidine metabolism, fructose and mannose metabolism, steroid hormone biosynthesis and sphingolipid metabolism. High-throughput non-targeted metabolomics provide an insight into specialized mechanism of baicalin against thyroid cancer and contributes to novel drug discovery and thyroid cancer management in clinical practice.
Collapse
Affiliation(s)
- Hong-Wei Du
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, Heilongjiang Province, People's Republic of China.
| | | | | | | | | |
Collapse
|
6
|
Li YP, Wang CY, Shang HT, Hu RR, Fu H, Xiao XF. A high-throughput and untargeted lipidomics approach reveals new mechanistic insight and the effects of salvianolic acid B on the metabolic profiles in coronary heart disease rats using ultra-performance liquid chromatography with mass spectrometry. RSC Adv 2020; 10:17101-17113. [PMID: 35521479 PMCID: PMC9053481 DOI: 10.1039/d0ra00049c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/12/2020] [Indexed: 12/11/2022] Open
Abstract
High-throughput lipidomics provides the possibility for the development of new therapeutic drugs. Accordingly, herein, we reveal the protective role of salvianolic acid B (Sal B) in rats with coronary heart disease (CHD) and propose a new mechanism for its action through a high-throughput and non-targeted lipidomics strategy. A CHD animal model was induced by consecutive high-fat diet feeding with vitamin D3 injection. At the end of the 8th week, the serum sample was analyzed to explore the metabolic biomarker and pathway changes using untargeted lipidomics based on ultra-performance liquid chromatography with mass spectrometry (UPLC/MS). In addition, blood and heart tissue samples were collected and processed for the detection of biochemical indicators and liver histological observation. After salvianolic acid B treatment, the levels of LDH, CK, CK-MB, MYO, CTn1, TG, TC, LDL-c, and Apo(b) were significantly lower than that in the model group, while the levels of HDL-c and Apo(a1) were significantly higher than that in the model group. Furthermore, the histological features of fibrosis and steatosis were also evidently relieved in the model group. A total of twenty-six potential biomarkers were identified to express the lipid metabolic turbulence in the CHD animal models, of which twenty-two were regulated by salvianolic acid B trending to the normal state, including TG(20:0/20:4/o-18:0), PC(20:4/18:1(9Z)), PC(18:3/20:2), PA(18:0/18:2), LysoPE(18:2/0:0), SM(d18:0/22:1), PE(22:6/0:0), LysoPE (20:4/0:0), sphinganine, Cer(d18:0/18:0), PS(14:0/14:1), PC (18:0/16:0), LysoPC(17:0), PE(22:2/20:1), PC(20:3/20:4), PE(20:4/P-16:0), PS(20:3/18:0), cholesterol sulfate, TG(15:0/22:6/18:1), prostaglandin E2, arachidonic acid and sphingosine-1-phosphate. According to the metabolite enrichment and pathway analyses, the pharmacological activity of salvianolic acid B on CHD is mainly involved in three vital metabolic pathways including glycerophospholipid metabolism, sphingolipid metabolism and arachidonic acid metabolism. Thus, based on the lipidomics-guided biochemical analysis of the lipid biomarkers and pathways, Sal B protects against CHD with good therapeutic effect by regulating glycerophospholipid metabolism, sphingolipid metabolism and arachidonic acid metabolism, inhibiting oxidative stress damage and lipid peroxidation. High-throughput lipidomics provides the possibility for the development of new therapeutic drugs.![]()
Collapse
Affiliation(s)
- Ying-Peng Li
- Tianjin University of Traditional Chinese Medicine Tianjin 301617 China
| | - Cong-Ying Wang
- Tianjin University of Traditional Chinese Medicine Tianjin 301617 China
| | - Hong-Tao Shang
- Tianjin University of Traditional Chinese Medicine Tianjin 301617 China
| | - Rui-Rui Hu
- Tianjin University of Traditional Chinese Medicine Tianjin 301617 China
| | - Hui Fu
- Tianjin University of Traditional Chinese Medicine Tianjin 301617 China
| | - Xue-Feng Xiao
- Tianjin University of Traditional Chinese Medicine Tianjin 301617 China
| |
Collapse
|
7
|
Sun YC, Han SC, Yao MZ, Liu HB, Wang YM. Exploring the metabolic biomarkers and pathway changes in crucian under carbonate alkalinity exposure using high-throughput metabolomics analysis based on UPLC-ESI-QTOF-MS. RSC Adv 2020; 10:1552-1571. [PMID: 35494719 PMCID: PMC9047290 DOI: 10.1039/c9ra08090b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022] Open
Abstract
The aims of this study is to explore the metabolomic biomarker and pathway changes in crucian under carbonate alkalinity exposures using high-throughput metabolomics analysis based on ultra-performance liquid chromatography-electrospray ionization-quadrupole time of flight-tandem mass spectrometry (UPLC-ESI-QTOF-MS) for carrying out adaptive evolution of fish in environmental exposures and understanding molecular physiological mechanisms of saline–alkali tolerance in fishes. Under 60 day exposure management, the UPLC-ESI-QTOF-MS technology, coupled with a pattern recognition approach and metabolic pathway analysis, was utilized to give insight into the metabolic biomarker and pathway changes. In addition, biochemical parameters in response to carbonate alkalinity in fish were detected for chronic impairment evaluation. A total of twenty-seven endogenous metabolites were identified to distinguish the biochemical changes in fish in clean water under exposure to different concentrations of carbonate alkalinity (CA); these mainly involved amino acid synthesis and metabolism, arachidonic acid metabolism, glyoxylate and dicarboxylate metabolism, pyruvate metabolism and the citrate cycle (TCA cycle). Compared with the control group, CA exposure increased the level of blood ammonia; TP; ALB; Gln in the liver and gills; GS; urea in blood, the liver and gills; CREA; CPS; Glu and LDH; and decreased the level of weight gain rate, oxygen consumption, discharge rate of ammonia, SOD, CAT, ALT, AST and Na+/K+-ATPase. At low concentrations, CA can change the normal metabolism of fish in terms of changing the osmotic pressure regulation capacity, antioxidant capacity, ammonia metabolism and liver and kidney function to adapt to the CA exposure environment. As the concentration of CA increases, various metabolic processes in crucian are inhibited, causing chronic damage to the body. The results show that the metabolomic strategy is a potentially powerful tool for identifying the mechanisms in response to different environmental exposomes and offers precious information about the chronic response of fish to CA. We explore the metabolic biomarker and pathway changes accompanying the adaptive evolution of crucian subjected to carbonate alkalinity exposure, using UPLC-ESI-QTOF-MS, in order to understand the molecular physiological mechanisms of saline–alkali tolerance.![]()
Collapse
Affiliation(s)
- Yan-chun Sun
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products
- Ministry of Agriculture and Rural Areas
- Harbin 150070
- P. R. China
| | - Shi-cheng Han
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products
- Ministry of Agriculture and Rural Areas
- Harbin 150070
- P. R. China
| | - Ming-zhu Yao
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products
- Ministry of Agriculture and Rural Areas
- Harbin 150070
- P. R. China
| | - Hong-bai Liu
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products
- Ministry of Agriculture and Rural Areas
- Harbin 150070
- P. R. China
| | - Yu-mei Wang
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products
- Ministry of Agriculture and Rural Areas
- Harbin 150070
- P. R. China
| |
Collapse
|
8
|
Liang Q, Liu H, Li XL, Yang Y, Hairong P. Rapid lipidomics analysis for sepsis-induced liver injury in rats and insights into lipid metabolic pathways using ultra-performance liquid chromatography/mass spectrometry. RSC Adv 2019; 9:35364-35371. [PMID: 35528052 PMCID: PMC9074727 DOI: 10.1039/c9ra05836b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 10/19/2019] [Indexed: 11/30/2022] Open
Abstract
Lipidomics has been applied in the identification and quantification of molecular lipids within an organism, and to provide insights into mechanisms in clinical medicine. Sepsis is a major systemic inflammatory syndrome and the liver here is a potential target organ for dysfunctional response. However, the study of alterations in global lipid profiles associated with sepsis-induced liver injury is still limited. In this work, we set out to determine alterations of lipidomics profiles in a rat model of sepsis-induced liver injury using an untargeted lipidomics strategy. Liquid chromatography coupled with mass spectrometry in conjunction with multivariate data analysis and pathway analysis were used to acquire a global lipid metabolite profile. Meanwhile, biochemistry index and histopathological examinations of the liver were performed to obtain auxiliary measurements for determining the pathological changes associated with sepsis-induced liver injury. Eleven lipid metabolites and two metabolic pathways were discovered and associated with sepsis-induced liver injury. The results indicated that various biomarkers and pathways may provide evidence for and insight into lipid profile alterations associated with sepsis-induced liver injury, and hence pointed to potential strategic targets for clinical diagnosis and therapy in the future. Lipidomics has been applied in the identification and quantification of molecular lipids within an organism, and to provide insights into mechanisms in clinical medicine.![]()
Collapse
Affiliation(s)
- Qun Liang
- ICU Center, First Affiliated Hospital, Heilongjiang University of Chinese Medicine Heping Road 24, Xiangfang District Harbin 150040 China +86-13069717715 +86-13069717715
| | - Han Liu
- Simon Fraser University (SFU) Burnaby British Columbia Canada
| | - Xiu-Li Li
- ICU Center, First Affiliated Hospital, Heilongjiang University of Chinese Medicine Heping Road 24, Xiangfang District Harbin 150040 China +86-13069717715 +86-13069717715
| | - Yang Yang
- ICU Center, First Affiliated Hospital, Heilongjiang University of Chinese Medicine Heping Road 24, Xiangfang District Harbin 150040 China +86-13069717715 +86-13069717715
| | - Panguo Hairong
- ICU Center, First Affiliated Hospital, Heilongjiang University of Chinese Medicine Heping Road 24, Xiangfang District Harbin 150040 China +86-13069717715 +86-13069717715
| |
Collapse
|
9
|
Liang Q, Liu H, Li X, Zhang Y. Retracted Article: High performance liquid chromatography coupled with high resolution mass spectrometry-based characterization of lipidomic responses from rats with kidney injuries. RSC Adv 2018; 8:20250-20258. [PMID: 35541673 PMCID: PMC9080792 DOI: 10.1039/c8ra02805b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 05/22/2018] [Indexed: 11/21/2022] Open
Abstract
Metabolism of lipids is essential for the regulation of a variety of key cellular functions. Recent advances in high performance liquid chromatography coupled with high resolution mass spectrometry have expanded our knowledge of lipid metabolism in diseases. Currently, sepsis is one of the most important public health problems all over the world, which is a serious systemic inflammatory syndrome leading to infection by various agents or trauma and subsequently to a multiple organ dysfunction response. However, little is known about the lipids affected by sepsis and their roles in kidney injuries. In this study, we present targeted and non-targeted lipidomics strategies to discover the lipid metabolism variation in serum in rats with sepsis-induced kidney injuries. Liquid chromatography (LC) coupled with mass spectrometry (MS) and multivariate data analysis were used to obtain the global lipid metabolic profiles. In addition, biochemical parameters and histopathological examination results for the kidney were analyzed to support the pathological changes during sepsis-induced kidney injury. The identification of ten proposed lipids and five relevant pathways will promote a better understanding of lipid profile alterations in kidney injury. The results suggested that lipid metabolism in sepsis-induced kidney injury had changed significantly and contribute by offering potential targets for clinical diagnosis and therapy in the future, which would be worth further studies to broaden the applications of high performance liquid chromatography coupled with high resolution mass spectrometry in the study of lipid metabolism. In this study, we present targeted and non-targeted lipidomics strategies to discover the lipid metabolism variation in serum in rats with sepsis-induced kidney injuries.![]()
Collapse
Affiliation(s)
- Qun Liang
- ICU Center
- First Affiliated Hospital
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- China
| | - Han Liu
- Simon Fraser University
- Burnaby
- Canada
| | - Xiuli Li
- ICU Center
- First Affiliated Hospital
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- China
| | - Yang Zhang
- ICU Center
- First Affiliated Hospital
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- China
| |
Collapse
|
10
|
Liu C, Zong WJ, Zhang AH, Zhang HM, Luan YH, Sun H, Cao HX, Wang XJ. Lipidomic characterisation discovery for coronary heart disease diagnosis based on high-throughput ultra-performance liquid chromatography and mass spectrometry. RSC Adv 2018; 8:647-654. [PMID: 35538954 PMCID: PMC9076928 DOI: 10.1039/c7ra09353e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/03/2017] [Indexed: 11/21/2022] Open
Abstract
Although many diagnostic tools have been developed for coronary heart disease (CHD), its diagnosis is still challenging. Lipids play an important role in diseases and a lipidomics approach could offer a platform to clarify the pathogenesis and pathologic changes of this disease. To the best of our knowledge, no lipidomics studies on serum have been attempted to improve the diagnosis and identify the potential biomarkers of CHD. The aim of this study was to investigate the distinctive lipid changes in serum samples of CHD patients and to identify candidate biomarkers for the reliable diagnosis of CHD using this platform. In this study, the serum lipid profiles of CHD patients were measured via ultra-performance liquid chromatography-G2-Si-high definition mass spectrometry combined with multivariate data analysis. A MetaboAnalyst tool was used for the analysis of the receiver operating-characteristic, while the IPA software was applied for the pathway analysis. The obtained results inferred that 33 lipid molecular species involving 6 fatty acids, 21 glycerophospholipids and 6 sphingolipids have significant differences in the serum of CHD patients. Simultaneously, 4 upstream regulatory proteins related to lipid metabolism disorders of CHD were predicted. Ten lipids have high clinical diagnostic significance according to the receiver operating-characteristic curves. This research shows that the in-depth study of lipids in the serum contributes to the clinical diagnosis of CHD and interprets the occurrence and development of CHD. Although many diagnostic tools have been developed for coronary heart disease (CHD), its diagnosis is still challenging.![]()
Collapse
Affiliation(s)
- Chang Liu
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
- Heilongjiang University of Chinese Medicine
| | - Wen-jing Zong
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
- Heilongjiang University of Chinese Medicine
| | - Ai-hua Zhang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
- Heilongjiang University of Chinese Medicine
| | - Hua-min Zhang
- China Academy of Chinese Medical Science
- Beijing
- China
| | - Yi-han Luan
- China Academy of Chinese Medical Science
- Beijing
- China
| | - Hui Sun
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
- Heilongjiang University of Chinese Medicine
| | - Hong-xin Cao
- China Academy of Chinese Medical Science
- Beijing
- China
| | - Xi-jun Wang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
- Heilongjiang University of Chinese Medicine
| |
Collapse
|
11
|
Song Q, Zhang AH, Yan GL, Liu L, Wang XJ. Technological advances in current metabolomics and its application in tradition Chinese medicine. RSC Adv 2017. [DOI: 10.1039/c7ra02056b] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
During the last few years, many metabolomics technologies have been established in biomedical research for analyzing the changes of metabolite levels.
Collapse
Affiliation(s)
- Qi Song
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Ai-hua Zhang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Guang-li Yan
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine
- Macau University of Science and Technology
- Macau
- China
| | - Xi-jun Wang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| |
Collapse
|
12
|
Liang Q, Zhu Y, Liu H, Li B, Zhang AH. High-throughput lipidomics enables discovery of the mode of action of huaxian capsule impacting the metabolism of sepsis. RSC Adv 2017. [DOI: 10.1039/c7ra07873k] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Severe sepsis (SS) is a major cause of mortality and morbidity in the intensive care unit and requires rapid diagnosis and treatment.
Collapse
Affiliation(s)
- Qun Liang
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Yongzhi Zhu
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Han Liu
- Simon Fraser University (SFU)
- Burnaby
- Canada
| | - Bingbing Li
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Ai-Hua Zhang
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| |
Collapse
|
13
|
Liang Q, Liu H, Jiang Y, Xing H, Zhang T, Zhang AH. Discovering lipid phenotypic changes of sepsis-induced lung injury using high-throughput lipidomic analysis. RSC Adv 2016. [DOI: 10.1039/c6ra03979k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The aim of this study was to use lipidomics to identify lipid molecules that could predict patients with sepsis-induced lung injury.
Collapse
Affiliation(s)
- Qun Liang
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Han Liu
- Simon Fraser University (SFU)
- Burnaby
- Canada
| | - Yan Jiang
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Haitao Xing
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Tianyu Zhang
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Ai-Hua Zhang
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| |
Collapse
|
14
|
Wang X, Li J, Zhang AH. Urine metabolic phenotypes analysis of extrahepatic cholangiocarcinoma disease using ultra-high performance liquid chromatography-mass spectrometry. RSC Adv 2016. [DOI: 10.1039/c6ra09430a] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Extrahepatic cholangiocarcinoma (ECC) is the second most common type of malignant primary tumor with a poor survival rate and an increasing global trend.
Collapse
Affiliation(s)
- Xinxin Wang
- Heilongjiang Province Land Reclamation Headquarters General Hospital
- Heilongjiang Agriculture and Reclamation Bureau
- Harbin 150088
- China
| | - Jun Li
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- China
| | - Ai-Hua Zhang
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- China
| |
Collapse
|