1
|
Chuprin AS, Belova SA, Vologzhanina AV, Dorovatovskii PV, Voloshin YZ. Preparation, X-ray Characterization, and Reactivity of the Rod-like and Angular Germanium- and Titanium(IV)-Capped Iron(II) Bis-Clathrochelates and Their Mono- and Bis-Capped (Semi)clathrochelate Precursors. Inorg Chem 2024; 63:4299-4311. [PMID: 38364313 DOI: 10.1021/acs.inorgchem.3c04319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Transmetalation of the bis{triethylantimony(V)}-capped iron(II) tris-α-dioximate with n-butylboronic acid afforded the mixed antimony, boron cross-linked clathrochelate with single reactive antimony(V)-based apical fragment. This macrobicyclic precursor easily underwent the transmetalation reactions with germanium and titanium(IV) alkoxides to give the rod-like and angular FeII2MIV-trinuclear bis-clathrochelates. Those of the aforementioned diantimony(V)-capped complex with 3- and 4-carboxyphenylboronic acids afforded the monoboron-capped iron(II) semiclathrochelates, undergoing a double-cyclization (macrobicyclization) with germanium- and titanium(IV)-based capping agents. The reactions in the low-temperature range unexpectedly gave the stable 2:1 associates, formed by the bridging of two carboxyl-terminated macrobicyclic molecules of the mixed carboxylboron, triethylantimony-capped iron(II) clathrochelate with a triethylantimony(V)-based linker fragment. The obtained complexes were characterized using elemental analysis, MALDI-TOF, 1H and 13C{1H} NMR and UV-vis spectra, and single-crystal XRD experiments. The encapsulated iron(II) ion in their 3D-molecules is situated almost in the center of its FeN6-coordination polyhedron possessing a truncated trigonal-pyramidal geometry. Fe-N distances fall in the range 1.887(7)-1.945(4) Å characteristic of the low-spin iron(II) complexes. The cross-linking titanium and germanium(IV) ions in the corresponding bis-clathrochelate molecules form the octahedral MIVO6-coordination polyhedra, the MIV-O distances of which vary from 1.946(2) to 1.964(2) Å and from 1.879(7) to 1.907(6) Å, respectively.
Collapse
Affiliation(s)
- Alexander S Chuprin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova St., 119334 Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Prosp., 119991 Moscow, Russia
| | - Svetlana A Belova
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova St., 119334 Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Prosp., 119991 Moscow, Russia
| | - Anna V Vologzhanina
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova St., 119334 Moscow, Russia
| | - Pavel V Dorovatovskii
- National Research Center Kurchatov Institute, 1 Kurchatova pl., 123098 Moscow, Russia
| | - Yan Z Voloshin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova St., 119334 Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Prosp., 119991 Moscow, Russia
| |
Collapse
|
2
|
Thaler R, Kopacka H, Wurst K, Müller T, Neururer FR, Hohloch S, Lippmann P, Ott I, Bildstein B. Clathrochelate Complexes Containing Axial Cymantrene and Tromancenium Moieties. Eur J Inorg Chem 2023; 26:e202300368. [PMID: 38505780 PMCID: PMC10947045 DOI: 10.1002/ejic.202300368] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/28/2023] [Indexed: 03/21/2024]
Abstract
New clathrochelate complexes of manganese, iron and cobalt containing peripheral organometallic manganese moieties cymantrene or tromancenium were synthesized via self-assembly from di/tri-topic dioximes, metal templates and cymantrene/tromancenium boronic acid pinacol esters. These air-stable, highly colored, oligometallic complexes are composed of various combinations of MnIFeIIMnI, MnICoIIMnI, MnIMnIIMnIIMnI and MnICoIICoIIMnI metal assemblies with corresponding complicated magnetic and electrochemical properties. Full spectroscopic and structural characterization by 1H/11B/13C NMR, HRMS, IR, UV-vis, single crystal XRD and CV (cyclic voltammetry) is provided. Tetrametallic complexes containing tromanceniumyl substituents with two CoII or MnII central metals exhibit promising anticancer properties against different tumor cell lines.
Collapse
Affiliation(s)
- Reinhard Thaler
- Institut für Allgemeine, Anorganische und Theoretische ChemieUniversität InnsbruckInnrain 80–826020InnsbruckAustria
| | - Holger Kopacka
- Institut für Allgemeine, Anorganische und Theoretische ChemieUniversität InnsbruckInnrain 80–826020InnsbruckAustria
| | - Klaus Wurst
- Institut für Allgemeine, Anorganische und Theoretische ChemieUniversität InnsbruckInnrain 80–826020InnsbruckAustria
| | - Thomas Müller
- Institut für Organische ChemieUniversität InnsbruckInnrain 80–826020InnsbruckAustria
| | - Florian R. Neururer
- Institut für Allgemeine, Anorganische und Theoretische ChemieUniversität InnsbruckInnrain 80–826020InnsbruckAustria
| | - Stephan Hohloch
- Institut für Allgemeine, Anorganische und Theoretische ChemieUniversität InnsbruckInnrain 80–826020InnsbruckAustria
| | - Petra Lippmann
- Institute of Medicinal and Pharmaceutical ChemistryTechnische Universität BraunschweigBeethovenstr. 5538106BraunschweigGermany
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical ChemistryTechnische Universität BraunschweigBeethovenstr. 5538106BraunschweigGermany
| | - Benno Bildstein
- Institut für Allgemeine, Anorganische und Theoretische ChemieUniversität InnsbruckInnrain 80–826020InnsbruckAustria
| |
Collapse
|
3
|
Chuprin AS, Pavlov AA, Vologzhanina AV, Dorovatovskii PV, Makarenkov AV, Ol'shevskaya VA, Dudkin SV, Voloshin YZ. Multistep synthesis and X-ray structures of carboxyl-terminated hybrid iron(II) phthalocyaninatoclathrochelates and their postsynthetic transformation into polytopic carboranyl-containing derivatives. Dalton Trans 2023; 52:3884-3895. [PMID: 36877091 DOI: 10.1039/d3dt00076a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
A multistep general synthetic strategy towards polytopic carboranyl-containing (semi)clathrochelate metal complexes, based on the template synthesis, transmetallation, amide condensation and 1,3-dipolar cycloaddition reactions, is developed. Their mono(semi)clathrochelate precursors with a single reactive group were obtained using a transmetallation of the triethylantimony-capped macrobicyclic precursor. The thus obtained carboxyl-terminated iron(II) semiclathrochelate underwent a macrobicyclization with zirconium(IV) phthalocyaninate to form the corresponding phthalocyaninatoclathrochelate. The direct one-pot template condensation of the suitable chelating and cross-linking ligand synthons on the Fe2+ ion as a matrix was also used for its preparation. Further amide condensation of the aforementioned semiclathrochelate and hybrid complexes with propargylamine in the presence of carbonyldiimidazole gave the (pseudo)cage derivatives with a terminal CC bond. Their "click" reaction with an appropriate carboranylmethyl azide afforded the ditopic carboranosemiclathrochelates and the tritopic carboranyl-containing phthalocyaninatoclathrochelates with a flexible spacer fragment between their polyhedral entities. The obtained new complexes were characterized using elemental analysis, MALDI-TOF mass spectrometry, multinuclear NMR, and UV-vis spectroscopy, and by single crystal X-ray diffraction experiments. Their FeN6-coordination polyhedra show a truncated trigonal-pyramidal geometry, while the cross-linking heptacoordinate Zr4+ or Hf4+ cations in the hybrid compounds form the MIVN4O3-coordination polyhedra with the geometry of a capped trigonal prism.
Collapse
Affiliation(s)
- Alexander S Chuprin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
| | - Alexander A Pavlov
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
- BMSTU Center of National Technological Initiative "Digital Material Science: New Material and Substances", Bauman Moscow State Technical University, 2nd Baumanskaya st. 5, 105005, Moscow, Russia
| | - Anna V Vologzhanina
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
| | - Pavel V Dorovatovskii
- National Research Center Kurchatov Institute, 1 Kurchatova pl., 123098, Moscow, Russia
| | - Anton V Makarenkov
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
| | - Valentina A Ol'shevskaya
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
| | - Semyon V Dudkin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
| | - Yan Z Voloshin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| |
Collapse
|
4
|
Laws K, Buckingham MA, Farleigh M, Ma M, Aldous L. High Seebeck coefficient thermogalvanic cells via the solvent-sensitive charge additivity of cobalt 1,8-diaminosarcophagine. Chem Commun (Camb) 2023; 59:2323-2326. [PMID: 36752070 DOI: 10.1039/d2cc05413b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Thermogalvanic devices can chemically convert low grade (<200 °C) waste thermal energy into electrical energy. A temperature gradient across the device drives an entropically favourable electrochemical redox reaction, resulting in continuous current production. The voltage correlates with the entropy change during the redox reaction, which favours high valence metal complexes with high charge densities. Here we investigate cobalt (II/III) sarcophagine ([Co(SAR)]2+/3+) for application in thermogalvanic cells, as a function of solvent; the two uncoordinated amine groups 1,8-diaminosarcophagine are typically protonated to form tetracationic/pentacationic [Co(SARH2)]4+/5+. In water, [Co(SARH2)]4+/5+ gave a thermogalvanic Seebeck coefficient (Se) of +0.43 mV K-1, which is entropically consistent with just the Co2+/3+ core valence, whereas DMSO and ionic liquid solvents gave Se values of +1.84 and +2.04 mV K-1, respectively, in line with the 'Co4+/5+' overall complex. This work proves how the ionic charge on pendant moieties can undergo charge-additivity with the metal core to significantly boost entropically-driven processes, but only in suitably low dielectric and bulky solvents.
Collapse
Affiliation(s)
- Kristine Laws
- Department of Chemistry, King's College London, London, SE1 1DB, UK.
| | - Mark A Buckingham
- Department of Chemistry, King's College London, London, SE1 1DB, UK.
| | - Matthew Farleigh
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Michelle Ma
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Leigh Aldous
- Department of Chemistry, King's College London, London, SE1 1DB, UK.
| |
Collapse
|
5
|
Multistep synthesis, reactivity and X-ray structure of the anisole-terminated iron(II) polyhalogenoclathrochelates and their monoribbed-functionalized macrobicyclic derivatives. TRANSIT METAL CHEM 2022. [DOI: 10.1007/s11243-022-00515-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2022]
|
6
|
Limarev IP, Zelinskii GE, Belova SA, Dorovatovskii PV, Vologzhanina AV, Lebed EG, Voloshin YZ. Monoribbed‐functionalized macrobicyclic iron(
II
) complexes decorated with terminal reactive and vector groups: synthetic strategy towards, chemical transformations and structural characterization. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ilya P. Limarev
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st. 119991 Moscow Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr. 119991 Moscow Russia
| | - Genrikh E. Zelinskii
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st. 119991 Moscow Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr. 119991 Moscow Russia
| | - Svetlana A. Belova
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st. 119991 Moscow Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr. 119991 Moscow Russia
| | | | - Anna V. Vologzhanina
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st. 119991 Moscow Russia
| | - Ekaterina G. Lebed
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st. 119991 Moscow Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr. 119991 Moscow Russia
| | - Yan Z. Voloshin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st. 119991 Moscow Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr. 119991 Moscow Russia
| |
Collapse
|
7
|
Hruby M, Martínez IIS, Stephan H, Pouckova P, Benes J, Stepanek P. Chelators for Treatment of Iron and Copper Overload: Shift from Low-Molecular-Weight Compounds to Polymers. Polymers (Basel) 2021; 13:3969. [PMID: 34833268 PMCID: PMC8618197 DOI: 10.3390/polym13223969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/18/2022] Open
Abstract
Iron and copper are essential micronutrients needed for the proper function of every cell. However, in excessive amounts, these elements are toxic, as they may cause oxidative stress, resulting in damage to the liver and other organs. This may happen due to poisoning, as a side effect of thalassemia infusion therapy or due to hereditary diseases hemochromatosis or Wilson's disease. The current golden standard of therapy of iron and copper overload is the use of low-molecular-weight chelators of these elements. However, these agents suffer from severe side effects, are often expensive and possess unfavorable pharmacokinetics, thus limiting the usability of such therapy. The emerging concepts are polymer-supported iron- and copper-chelating therapeutics, either for parenteral or oral use, which shows vivid potential to keep the therapeutic efficacy of low-molecular-weight agents, while avoiding their drawbacks, especially their side effects. Critical evaluation of this new perspective polymer approach is the purpose of this review article.
Collapse
Affiliation(s)
- Martin Hruby
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic Heyrovského Náměstí 2, 162 06 Prague, Czech Republic;
| | - Irma Ivette Santana Martínez
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research Bautzner Landstraße 400, 01328 Dresden, Germany; (I.I.S.M.); (H.S.)
| | - Holger Stephan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research Bautzner Landstraße 400, 01328 Dresden, Germany; (I.I.S.M.); (H.S.)
| | - Pavla Pouckova
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University in Prague, Salmovska 1, 120 00 Prague, Czech Republic; (P.P.); (J.B.)
| | - Jiri Benes
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University in Prague, Salmovska 1, 120 00 Prague, Czech Republic; (P.P.); (J.B.)
| | - Petr Stepanek
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic Heyrovského Náměstí 2, 162 06 Prague, Czech Republic;
| |
Collapse
|
8
|
Novikov VV, Nelyubina YV. Modern physical methods for the molecular design of single-molecule magnets. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abstract
Many paramagnetic metal complexes have emerged as unique magnetic materials (single-molecule magnets), which behave as conventional magnets at the single-molecule level, thereby making it possible to use them in modern devices for data storage and processing. The rational design of these complexes, however, requires a deep understanding of the physical laws behind a single-molecule magnet behaviour, the mechanisms of magnetic relaxation that determines the magnetic properties and the relationship of these properties with the structure of single-molecule magnets. This review focuses on the physical methods providing such understanding, including different versions and various combinations of magnetometry, electron paramagnetic and nuclear magnetic resonance spectroscopy, optical spectroscopy and X-ray diffraction. Many of these methods are traditionally used to determine the composition and structure of new chemical compounds. However, they are rarely applied to study molecular magnetism.
The bibliography includes 224 references.
Collapse
|
9
|
Antipin IS, Alfimov MV, Arslanov VV, Burilov VA, Vatsadze SZ, Voloshin YZ, Volcho KP, Gorbatchuk VV, Gorbunova YG, Gromov SP, Dudkin SV, Zaitsev SY, Zakharova LY, Ziganshin MA, Zolotukhina AV, Kalinina MA, Karakhanov EA, Kashapov RR, Koifman OI, Konovalov AI, Korenev VS, Maksimov AL, Mamardashvili NZ, Mamardashvili GM, Martynov AG, Mustafina AR, Nugmanov RI, Ovsyannikov AS, Padnya PL, Potapov AS, Selektor SL, Sokolov MN, Solovieva SE, Stoikov II, Stuzhin PA, Suslov EV, Ushakov EN, Fedin VP, Fedorenko SV, Fedorova OA, Fedorov YV, Chvalun SN, Tsivadze AY, Shtykov SN, Shurpik DN, Shcherbina MA, Yakimova LS. Functional supramolecular systems: design and applications. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5011] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
Giraldi E, Scopelliti R, Fadaei-Tirani F, Severin K. Metal-Stabilized Boronate Ester Cages. Inorg Chem 2021; 60:10873-10879. [PMID: 34291934 DOI: 10.1021/acs.inorgchem.1c01719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular cages with arylboronate ester caps at the vertices are described. The cages were obtained by metal-templated polycondensation reactions of a tris(2-formylpyridine oxime) ligand with arylboronic acids. Suited templates are triflate or triflimide salts of ZnII, FeII, CoII, or MnII. In the products, the metal ions are coordinated internally to the pyridyl and oximato N atoms adjacent to the boronate ester, resulting in an improved hydrolytic stability of the latter. It is possible to decorate the cages with cyano or aldehyde groups using functionalized arylboronic acids. The aldehyde groups allow for a postsynthetic modification of the cages via an imine bond formation.
Collapse
Affiliation(s)
- Erica Giraldi
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
11
|
Zelinskii GE, Limarev IP, Vologzhanina AV, Olshevskaya VA, Makarenkov AV, Dorovatovskii PV, Chuprin AS, Vershinin MA, Dudkin SV, Voloshin YZ. Synthesis and Structure of the Bis- and Tris-Polyhedral Hybrid Carboranoclathrochelates with Functionalizing Biorelevant Substituents-The Derivatives of Propargylamine Iron(II) Clathrochelates with Terminal Triple C≡C Bond(s). Molecules 2021; 26:3635. [PMID: 34198621 PMCID: PMC8232327 DOI: 10.3390/molecules26123635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
A synthetic strategy for obtaining structurally flexible hybrid iron(II) carboranoclatrochelates functionalized with biorelevant groups, based on a combination of a 1,3-dipolar cycloaddition reaction with nucleophilic substitution of an appropriate chloroclathrochelate precursor, was developed. In its first stage, a stepwise substitution of the dichloroclathrochelate precursor with amine N-nucleophiles of different natures in various solvents was performed. One of its two chlorine atoms with morpholine or diethylamine in dichloromethane gave reactive monohalogenoclathrochelate complexes functionalized with abiorelevant substituents. Further nucleophilic substitution of their remaining chlorine atoms with propargylamine in DMF led to morpholine- and diethylamine-functionalized monopropargylamine cage complexes, the molecules of which contain the single terminal C≡C bond. Their "click" 1,3-cycloaddition reactions in toluene with ortho-carborane-(1)-methylazide catalyzed by copper(II) acetate gave spacer-containing di- and tritopic iron(II) carboranoclatrochelates formed by a covalent linking between their different polyhedral(cage) fragments. The obtained complexes were characterized using elemental analysis, MALDI-TOF mass, UV-Vis, 1H, 1H{11B}, 11B, 11B{1H}, 19F{1H} and 13C{1H}-NMR spectra, and by a single crystal synchrotron X-ray diffraction experiment for the diethylamine-functionalized iron(II) carboranoclathrochelate. Its encapsulated iron(II) ion is situated almost in the center of the FeN6-coordination polyhedron possessing a geometry intermediate between a trigonal prism and a trigonal antiprism with a distortion angle φ of approximately 28°. Conformation of this hybrid molecule is strongly affected by its intramolecular dihydrogen bonding: a flexibility of the carborane-terminated ribbed substituent allowed the formation of numerous C-H…H-B intramolecular interactions. The H(C) atom of this carborane core also forms the intermolecular C-H…F-B interaction with an adjacent carboranoclathrochelate molecule. The N-H…N intermolecular interaction between the diethylamine group of one hybrid molecule and the heterocyclic five-membered 1H-[1,2,3]-triazolyl fragment of the second molecule of this type caused formation of H-bonded carboranoclathrochelate dimers in the X-rayed crystal.
Collapse
Affiliation(s)
- Genrikh E. Zelinskii
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninskii pr., 31, 119991 Moscow, Russia; (G.E.Z.); (I.P.L.)
- Nesmeyanov Institute of the Organoelement Compounds of the Russian Academy of Sciences, Vavilova Str., 28, 119991 Moscow, Russia; (A.V.V.); (V.A.O.); (A.V.M.); (A.S.C.); (S.V.D.)
| | - Ilya P. Limarev
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninskii pr., 31, 119991 Moscow, Russia; (G.E.Z.); (I.P.L.)
- Nesmeyanov Institute of the Organoelement Compounds of the Russian Academy of Sciences, Vavilova Str., 28, 119991 Moscow, Russia; (A.V.V.); (V.A.O.); (A.V.M.); (A.S.C.); (S.V.D.)
| | - Anna V. Vologzhanina
- Nesmeyanov Institute of the Organoelement Compounds of the Russian Academy of Sciences, Vavilova Str., 28, 119991 Moscow, Russia; (A.V.V.); (V.A.O.); (A.V.M.); (A.S.C.); (S.V.D.)
| | - Valentina A. Olshevskaya
- Nesmeyanov Institute of the Organoelement Compounds of the Russian Academy of Sciences, Vavilova Str., 28, 119991 Moscow, Russia; (A.V.V.); (V.A.O.); (A.V.M.); (A.S.C.); (S.V.D.)
| | - Anton V. Makarenkov
- Nesmeyanov Institute of the Organoelement Compounds of the Russian Academy of Sciences, Vavilova Str., 28, 119991 Moscow, Russia; (A.V.V.); (V.A.O.); (A.V.M.); (A.S.C.); (S.V.D.)
| | | | - Alexander S. Chuprin
- Nesmeyanov Institute of the Organoelement Compounds of the Russian Academy of Sciences, Vavilova Str., 28, 119991 Moscow, Russia; (A.V.V.); (V.A.O.); (A.V.M.); (A.S.C.); (S.V.D.)
| | - Mikhail A. Vershinin
- Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences, 3 Lavrentieva prosp., 630090 Novosibirsk, Russia;
| | - Semyon V. Dudkin
- Nesmeyanov Institute of the Organoelement Compounds of the Russian Academy of Sciences, Vavilova Str., 28, 119991 Moscow, Russia; (A.V.V.); (V.A.O.); (A.V.M.); (A.S.C.); (S.V.D.)
| | - Yan Z. Voloshin
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninskii pr., 31, 119991 Moscow, Russia; (G.E.Z.); (I.P.L.)
- Nesmeyanov Institute of the Organoelement Compounds of the Russian Academy of Sciences, Vavilova Str., 28, 119991 Moscow, Russia; (A.V.V.); (V.A.O.); (A.V.M.); (A.S.C.); (S.V.D.)
| |
Collapse
|
12
|
Golovanov IS, Sukhorukov AY. Merging Boron with Nitrogen-Oxygen Bonds: A Review on BON Heterocycles. Top Curr Chem (Cham) 2021; 379:8. [PMID: 33544252 DOI: 10.1007/s41061-020-00317-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/20/2020] [Indexed: 11/25/2022]
Abstract
Cyclic boronate esters play important roles in organic synthesis, pharmacology, supramolecular chemistry and materials science owing to their stability in air and versatile reactivity. Most of these compounds contain a B-O-C linkage with an alkoxy- or carboxylate group bound to the boron atom (e.g. boronate-diol esters, MIDA boronates). Boron chelates comprising a B-O-N motif (BON heterocycles) are much less explored, although first representatives of this class were prepared in the early 1960s. In recent years, there has been a growing interest in BON heterocycles as new chemotypes for drug design. The exocyclic B-O-N linkage, which is readily formed under mild conditions, shows surprising hydrolytic and thermal resistance. This allows the formation of BON heterocycles to be used as click-type reactions for the preparation of bioconjugates and functionally modified polymers. We believe that BON heterocycles are promising yet underrated organoboron derivatives. This review summarizes the scattered information about known types of BON heterocycles, including their synthesis, reactivity and structural data. Available applications of BON heterocycles in materials science and medicinal chemistry, along with their prospects, are also discussed. The bibliography contains 289 references.
Collapse
Affiliation(s)
- Ivan S Golovanov
- Laboratory of Organic and Metal-Organic Nitrogen-Oxygen Systems, N. D. Zelinsky Institute of Organic Chemistry, Leninsky prospect, 47, 119991, Moscow, Russia.
| | - Alexey Yu Sukhorukov
- Laboratory of Organic and Metal-Organic Nitrogen-Oxygen Systems, N. D. Zelinsky Institute of Organic Chemistry, Leninsky prospect, 47, 119991, Moscow, Russia.
- Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, Stremyanny lane, 36, 117997, Moscow, Russia.
| |
Collapse
|
13
|
Kovalska V, Kuperman M, Losytskyy M, Vakarov S, Potocki S, Yarmoluk S, Voloshin Y, Varzatskii O, Gumienna-Kontecka E. Induced CD of iron(ii) clathrochelates: sensing of the structural and conformational alterations of serum albumins. Metallomics 2020; 11:338-348. [PMID: 30516230 DOI: 10.1039/c8mt00278a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An ability of inherently achiral macrobicyclic metal complexes iron(ii) clathrochelates to acquire an induced CD (ICD) output in the visible spectral range upon interaction with bovine serum albumin (BSA) was recently discovered. In the present work, the CD-reporting properties of iron(ii) clathrochelates to proteins and the thermodynamic parameters of their binding to albumins are evaluated. It is shown that iron(ii) clathrochelates functionalized by six ribbed carboxyphenylsulfide groups are able to discriminate between serum albumins of relative structure (here human and bovine albumins) by giving distinct ICD spectra. Besides, by the variation of the shape and intensity of CD bands, these cage metal complexes reflect the pH-triggered alterations of the tertiary structure of albumins. The constitutional isomerism (ortho-, meta- or para-isomers) of terminal carboxyphenylsulfide groups of iron(ii) clathrochelates strongly affects both the character of their ICD output upon binding with proteins and the parameters of the formed guest-host associates. Using isothermal titration calorimetry, it was determined that cage metal complexes bearing meta- and ortho-isomers of carboxyphenylsulfide groups possess higher association constants (Ka ∼ 2 × 104 M-1) and clathrochelate-to-BSA binding ratios (n = 2) than the para-isomer (Ka ∼ 5 × 103 M-1, n = 1). The iron(ii) clathrochelates are suggested to be potential molecular three-dimensional scaffolds for the design of CD-sensitive reporters able to recognize specific elements of protein surfaces.
Collapse
Affiliation(s)
- Vladyslava Kovalska
- Institute of Molecular Biology and Genetics, NASU, 150 Zabolotnogo St., 03143 Kyiv, Ukraine.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Selin RA, Chornenka NV, Chernii VY, Mokhir A, Vologzhanina AV, Belov AS, Pomadchik AL, Voloshin YZ. Chemical design of the heterodifunctionalized iron(II) clathrochelates with terminal biorelevant carboxyl group and reactive triple C≡C bond: Synthesis, structure, redox properties and their stability in various media. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Kovalska V, Vakarov S, Losytskyy M, Kuperman M, Chornenka N, Toporivska Y, Gumienna-Kontecka E, Voloshin Y, Varzatskii O, Mokhir A. Dicarboxyl-terminated iron(ii) clathrochelates as ICD-reporters for globular proteins. RSC Adv 2019; 9:24218-24230. [PMID: 35527894 PMCID: PMC9069836 DOI: 10.1039/c9ra04102h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/26/2019] [Indexed: 01/07/2023] Open
Abstract
Cage metal complexes iron(ii) clathrochelates, which are inherently CD silent, were discovered to demonstrate intensive output in induced circular dichroism (ICD) spectra upon their assembly to albumins. With the aim to design clathrochelates as protein-sensitive CD reporters, the approach for the functionalization of one chelate α-dioximate fragment of the clathrochelate framework with two non-equivalent substituents was developed, and constitutional isomers of clathrochelate with two non-equivalent carboxyphenylsulfide groups were synthesized. The interaction of designed iron(ii) clathrochelates and their symmetric homologues with globular proteins (serum albumins, lysozyme, β-lactoglobulin (BLG), trypsin, insulin) was studied by protein fluorescence quenching and CD techniques. A highly-intensive ICD output of the clathrochelates was observed upon their association with albumins and BLG. It was shown that in the presence of BLG, different clathrochelate isomers gave spectra of inverted signs, indicating the stabilization of opposite configurations (Λ or Δ) of the clathrochelate framework in the assembly with this protein. So, we suggest that the isomerism of the terminal carboxy group determined preferable configurations of the clathrochelate framework for the fixation in the protein binding site. MALDI TOF results show the formation of BLG-clathrochelate complex with ratio 1 : 1. Based on the docking simulations, the binding of the clathrochelate molecule (all isomers) to the main BLG binding site (calyx) in its open conformation is suggested. The above results point that the variation of the ribbed substituents at the clathrochelate framework is an effective tool to achieve the specificity of clathrochelate ICD reporting properties to the target protein.
Collapse
Affiliation(s)
- Vladyslava Kovalska
- Institute of Molecular Biology and Genetics, NASU 150 Zabolotnogo St. 03143 Kyiv Ukraine
| | - Serhii Vakarov
- Princeton Biomolecular Research Labs 26A Saperne Pole St. 01042 Kyiv Ukraine
- V.I. Vernadsky Institute of General and Inorganic Chemistry, NASU 32/34 Palladin Av. 03142 Kyiv Ukraine
| | - Mykhaylo Losytskyy
- Institute of Molecular Biology and Genetics, NASU 150 Zabolotnogo St. 03143 Kyiv Ukraine
| | - Marina Kuperman
- Institute of Molecular Biology and Genetics, NASU 150 Zabolotnogo St. 03143 Kyiv Ukraine
| | - Nina Chornenka
- Princeton Biomolecular Research Labs 26A Saperne Pole St. 01042 Kyiv Ukraine
- V.I. Vernadsky Institute of General and Inorganic Chemistry, NASU 32/34 Palladin Av. 03142 Kyiv Ukraine
| | - Yuliya Toporivska
- Faculty of Chemistry, University of Wroclaw 14 F. Joliot-Curie St. 50-383 Wroclaw Poland
| | | | - Yan Voloshin
- Nesmeyanov Institute of Organoelement Compounds RAS 28 Vavilova St. 119991 Moscow Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences 31 Leninsky Prosp. 119991 Moscow Russia
| | - Oleg Varzatskii
- V.I. Vernadsky Institute of General and Inorganic Chemistry, NASU 32/34 Palladin Av. 03142 Kyiv Ukraine
| | - Andriy Mokhir
- Organic Chemistry II, Friedrich-Alexander-University of Erlangen-Nuremberg Henkestr. 42 91054 Erlangen Germany
| |
Collapse
|
16
|
Bila JL, Pijeat J, Ramorini A, Fadaei-Tirani F, Scopelliti R, Baudat E, Severin K. Porous networks based on iron(ii) clathrochelate complexes. Dalton Trans 2019; 48:4582-4588. [PMID: 30882828 DOI: 10.1039/c9dt00546c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Microporous networks based on boronate ester-capped iron(ii) clathrochelate complexes are described. The networks were obtained by covalent cross-linking of tetrabrominated clathrochelate complexes via Suzuki-Miyaura polycross-coupling reactions with diboronic acids, or by Sonogashira-Hagihara polycross-coupling of clathrochelate complexes with terminal alkyne functions and 1,3,5-tribromobenzene. The networks display permanent porosity with apparent Brunauer-Emmett-Teller surface areas of up to SABET = 593 m2 g-1. A clathrochelate complex based on an enantiopure dioximato ligand was used to prepare chiral networks. One of these networks was shown to preferentially absorb d-tryptophan over l-tryptophan.
Collapse
Affiliation(s)
- José L Bila
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
17
|
Inhibition of DNA synthesis in the transcription system of Taq DNA polymerase by various iron and cobalt(II) tris-dioximate clathrochelates: In vitro study and X-ray structure of leader inhibitors, the carboxyl-terminated macrobicyclic complexes☆. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
18
|
Jansze SM, Severin K. Clathrochelate Metalloligands in Supramolecular Chemistry and Materials Science. Acc Chem Res 2018; 51:2139-2147. [PMID: 30156828 DOI: 10.1021/acs.accounts.8b00306] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The term "clathrochelate" describes a complex in which a coordinatively saturated metal ion is surrounded by a macropolycyclic ligand. First examples of clathrochelate complexes were reported 50 years ago. Meanwhile, the synthesis and reactivity of clathrochelates have been investigated in detail, and numerous applications have been explored. In this Account, we summarize work on the utilization of transition metal clathrochelates as metalloligands in supramolecular chemistry and materials science, with special focus on results from our group. First, we discuss the chemistry of boron-capped clathrochelates. These complexes are facile to synthesize by metal-templated condensation reactions. The synthesis is modular, and it is straightforward to implement structural variations. Importantly, it is possible to attach functional groups such as amines, pyridines, or carboxylic acids to the ligand periphery. Other noteworthy features of boron-capped clathrochelates are high thermodynamic and kinetic stability, tunable redox potential, and good solubility. Next, we show that clathrochelate-based metalloligands can be used to build molecularly defined metal-ligand assemblies of nanoscale dimensions. Different molecular architectures are described, including coordination cages with unusual gyrobifastigium or square orthobicupola-like structures. Metalloligands containing multiple clathrochelate complexes are particularly well suited to build large metal-ligand assemblies (>3 nm) with minimal synthetic efforts. Boron-capped clathrochelates have also been investigated in the context of materials chemistry. Linear or cross-linked clathrochelate polymers were found to display permanent porosity. Furthermore, such polymers were used to prepare conducting films on electrodes. Clathrochelate metalloligands are well suited to prepare metal-organic frameworks (MOFs). The high stability of clathrochelates ensures compatibility with harsh reaction conditions, and it mitigates potential problems such as exchange reactions. Boron-capped clathrochelates can be decorated with functional groups in lateral and apical position, and it is possible to use these complexes as multiconnected nodes in polymeric structures. Overall, we hope to convey the utility of clathrochelate complexes in supramolecular chemistry and materials science. The work published thus far gives a first glimpse of the potential of these compounds, but there are other directions, which are waiting to be explored. For example, it will be interesting to study the properties of nanostructures based on chiral clathrochelate complexes. Furthermore, the redox and magnetic properties of clathrochelates may give rise to novel functional materials. Given that clathrochelates are straightforward to prepare, we hope that others will join the efforts to explore the supramolecular and materials chemistry of these interesting molecular building blocks.
Collapse
Affiliation(s)
- Suzanne M. Jansze
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
19
|
Pavlov A, Savkina SA, Belov AS, Voloshin YZ, Nelyubina YV, Novikov VV. Very Large Magnetic Anisotropy of Cage Cobalt(II) Complexes with a Rigid Cholesteryl Substituent from Paramagnetic NMR Spectroscopy. ACS OMEGA 2018; 3:4941-4946. [PMID: 31458710 PMCID: PMC6641741 DOI: 10.1021/acsomega.8b00772] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 04/27/2018] [Indexed: 05/05/2023]
Abstract
Variable-temperature NMR spectroscopy has recently emerged as a new alternative to the magnetometry methods for studying single molecule magnets. Its use is based on an accurate determination of magnetic susceptibility tensor anisotropy Δχ, which is not always achievable due to some contact contribution to NMR chemical shifts and possible conformational dynamics. Here, we applied this approach to cholesteryl-substituted cage cobalt(II) complexes featuring a very large magnetic anisotropy. Conformational rigidity and large size of the cholesteryl substituent with many magnetically nonequivalent nuclei resulted in an excellent convergence of experimental and calculated 1H and 13C chemical shifts, thus allowing for the determination of Δχ value for all of the synthesized cobalt(II) complexes with a very high accuracy and providing a more reliable zero-field splitting energy for further calculations.
Collapse
Affiliation(s)
- Alexander
A. Pavlov
- Nesmeyanov
Institute of Organoelement Compounds, Russian
Academy of Sciences, Vavilova Street, 28, 119991 Moscow, Russia
| | - Svetlana A. Savkina
- Nesmeyanov
Institute of Organoelement Compounds, Russian
Academy of Sciences, Vavilova Street, 28, 119991 Moscow, Russia
| | - Alexander S. Belov
- Nesmeyanov
Institute of Organoelement Compounds, Russian
Academy of Sciences, Vavilova Street, 28, 119991 Moscow, Russia
| | - Yan Z. Voloshin
- Nesmeyanov
Institute of Organoelement Compounds, Russian
Academy of Sciences, Vavilova Street, 28, 119991 Moscow, Russia
- Kurnakov
Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii prospekt, 31, 117901 Moscow, Russia
| | - Yulia V. Nelyubina
- Nesmeyanov
Institute of Organoelement Compounds, Russian
Academy of Sciences, Vavilova Street, 28, 119991 Moscow, Russia
- Kurnakov
Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii prospekt, 31, 117901 Moscow, Russia
| | - Valentin V. Novikov
- Nesmeyanov
Institute of Organoelement Compounds, Russian
Academy of Sciences, Vavilova Street, 28, 119991 Moscow, Russia
- E-mail:
| |
Collapse
|
20
|
Kovalska VB, Vakarov SV, Kuperman MV, Losytskyy MY, Gumienna-Kontecka E, Voloshin YZ, Varzatskii OA. Induced chirality of cage metal complexes switched by their supramolecular and covalent binding. Dalton Trans 2018; 47:1036-1052. [PMID: 29257161 DOI: 10.1039/c7dt03731g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An ability of the ribbed-functionalized iron(ii) clathrochelates to induce a CD output in interactions with a protein, covalent bonding or supramolecular interactions with a low-molecular-weight chiral inductor, was discovered. The interactions of CD inactive, carboxyl-terminated iron(ii) clathrochelates with serum albumin induced their molecular asymmetry, causing an appearance of strong CD signals in the range of 350-600 nm, whereas methyl ester and amide clathrochelate derivatives remained almost CD inactive. The CD spectra of carboxyl-terminated clathrochelates on supramolecular interactions or covalent bonding with (R)-(+)-1-phenylethylamine gave a substantially lower CD output than with albumin, affected by both the solvent polarity and the isomerism of clathrochelate's ribbed substituents. In supramolecular assemblies, the bands were most intensive for ortho-substituted carboxyl-terminated clathrochelates. The ortho- and meta-phenylethylamide cage complexes in tetrachloromethane inverted the signs of their CD bands compared with those in acetonitrile. It was suggested that the tris-dioximate metal clathrochelates possess a Russian doll-like molecular system. Because of the distorted TP-TAP geometry, their coordination polyhedron had no inversion centre and possessed an inherent chirality together with the equiprobability of its left(Λ)- and right(Δ)-handle twists. The selective fixation of one of these C3-distorted conformations resulted in the appearance of the CD signal in the range of their visible metal-to-ligand charge transfer bands. Calculations by DFT methods were used to illustrate the possible conformations of the macrobicyclic molecules, as well as the intramolecular interactions between the cage framework and optically active distal substituents responsible for the chirality induction of the metal-centred coordination polyhedra.
Collapse
Affiliation(s)
- Vladyslava B Kovalska
- Institute of Molecular Biology and Genetics NASU, 150 Zabolotnogo St., 03143 Kiev, Ukraine and SC Princeton Biomolecular Research Labs, Saperne pole st., 26A, 01042, Kyiv, Ukraine.
| | - Serhii V Vakarov
- Vernadskii Institute of General and Inorganic Chemistry NASU, 32/34 Palladin Av., 03080 Kiev, Ukraine
| | - Marina V Kuperman
- Institute of Molecular Biology and Genetics NASU, 150 Zabolotnogo St., 03143 Kiev, Ukraine
| | - Mykhaylo Y Losytskyy
- Institute of Molecular Biology and Genetics NASU, 150 Zabolotnogo St., 03143 Kiev, Ukraine
| | | | - Yan Z Voloshin
- Nesmeyanov Institute of Organoelement Compounds RAS, 28 Vavilova St., 119991 Moscow, Russia and Kurnakov Institute of General and Inorganic Chemistry RAS, 31 Leninsky Prosp., 119991 Moscow, Russia
| | - Oleg A Varzatskii
- SC Princeton Biomolecular Research Labs, Saperne pole st., 26A, 01042, Kyiv, Ukraine. and Vernadskii Institute of General and Inorganic Chemistry NASU, 32/34 Palladin Av., 03080 Kiev, Ukraine
| |
Collapse
|
21
|
Pseudoclathrochelate n-hexadecylboron-capped metal(II) tris-pyrazoloximates: synthesis, X-ray structure, spectral and magnetic characteristics. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.11.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Denisenko IN, Varzatskii OA, Selin RA, Belov AS, Lebed EG, Vologzhanina AV, Zubavichus YV, Voloshin YZ. Extension and functionalization of an encapsulating macrobicyclic ligand using palladium-catalyzed Suzuki–Miyaura and Sonogashira reactions of iron(ii) dihalogenoclathrochelates with inherent halogen substituents. RSC Adv 2018; 8:13578-13587. [PMID: 35542518 PMCID: PMC9079834 DOI: 10.1039/c8ra01819g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 03/22/2018] [Indexed: 11/23/2022] Open
Abstract
A new approach for performing Suzuki–Miyaura and Sonogashira reactions of iron(ii) dihalogenoclathrochelates, optimizing their reaction conditions (such as temperature, solvent and a palladium-containing catalyst) and the nature of other reagents (such as arylboron components) is elaborated. These palladium-catalyzed reactions are very sensitive to the nature of the macrobicyclic substrates. The reactivity of the leaving halogen atoms correlates with their ability to undergo an oxidative addition, decreasing in the order: I > Br > Cl, and iron(ii) diiodoclathrochelate underwent these C–C cross-couplings under their “classical” conditions. Phenylboronic, 4-carboxyphenylboronic and 6-ethoxy-2-naphthylboronic acids, and the diethyl ether of 4-(ethoxycarbonyl)boronic acid were tested as components of Suzuki–Miyaura reactions in DMF and in THF. The highest yields of the target products were obtained in DMF, while the highest activation was observed with sodium and potassium carbonates. The Suzuki–Miyaura reaction of a diiodoclathrochelate with 6-ethoxy-2-naphthylboronic acid gave the mono- and difunctionalized clathrochelates resulting from the tandem hydrodeiodination – C–C cross-coupling and double C–C cross-coupling reactions, respectively. Its Sonogashira reactions with trimethylsilylacetylene and acetylenecarboxylic acid in THF and in DMF were tested. This palladium-catalyzed reaction with a (CH3)3Si-containing active component gave the target products in a high total yield. The complexes obtained were characterized using elemental analysis, MALDI-TOF, UV-Vis, 1H and 13C{1H} NMR spectroscopy, and by single crystal XRD. Despite the non-equivalence of the ribbed α-dioximate fragments of their molecules, the encapsulated iron(ii) ion is situated almost in the centre of its FeN6-coordination polyhedron, the geometry of which is almost intermediate between a trigonal prism and a trigonal antiprism. A new approach for performing Suzuki and Sonogashira reactions of iron(ii) dihalogenoclathrochelates, optimizing their reaction conditions, is elaborated.![]()
Collapse
Affiliation(s)
- Irina N. Denisenko
- Vernadskii Institute of General and Inorganic Chemistry NASU
- 03142 Kiev
- Ukraine
| | - Oleg A. Varzatskii
- Vernadskii Institute of General and Inorganic Chemistry NASU
- 03142 Kiev
- Ukraine
| | - Roman A. Selin
- Vernadskii Institute of General and Inorganic Chemistry NASU
- 03142 Kiev
- Ukraine
- PBMR Labs Ukraine
- 02094 Kiev
| | | | | | | | - Yan V. Zubavichus
- Kurchatov Complex for Synchrotron and Neutron Investigations
- National Research Centre Kurchatov Institute
- 123182 Moscow
- Russia
| | - Yan Z. Voloshin
- Nesmeyanov Institute of Organoelement Compounds RAS
- 119991 Moscow
- Russia
- Kurnakov Institute of General and Inorganic Chemistry RAS
- 119991 Moscow
| |
Collapse
|
23
|
Zelinskii GE, Belov AS, Belaya IG, Vologzhanina AV, Novikov VV, Varzatskii OA, Voloshin YZ. The molecular design of cage metal complexes for biological applications: pathways of the synthesis, and X-ray structures of a series of new N2-, S2- and O2-alicyclic iron(ii) di- and tetrachloroclathrochelates. NEW J CHEM 2018. [DOI: 10.1039/c7nj03051g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New iron(ii) di- and tetrahalogenoclathrochelates with apical functionalizing substituents were prepared and characterized.
Collapse
Affiliation(s)
- Genrikh E. Zelinskii
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences
- 119991 Moscow
- Russia
| | - Alexander S. Belov
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences
- 119991 Moscow
- Russia
| | - Irina G. Belaya
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences
- 119991 Moscow
- Russia
| | - Anna V. Vologzhanina
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences
- 119991 Moscow
- Russia
| | - Valentin V. Novikov
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences
- 119991 Moscow
- Russia
| | | | - Yan Z. Voloshin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences
- 119991 Moscow
- Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- Moscow
| |
Collapse
|
24
|
Varzatskii OA, Vakarov SV, Belov AS, Lebed EG, Vologzhanina AV, Voloshin YZ. Synthesis and X-ray structure of methyl esters of the dicarboxyphenylsulfide iron(II) clathrochelates. J COORD CHEM 2017. [DOI: 10.1080/00958972.2017.1407923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Oleg A. Varzatskii
- Vernadskii Institute of General and Inorganic Chemistry NASU, Kyiv, Ukraine
- SC Princeton Biomolecular Research Labs, Kyiv, Ukraine
| | - Serhii V. Vakarov
- Vernadskii Institute of General and Inorganic Chemistry NASU, Kyiv, Ukraine
| | | | | | | | - Yan Z. Voloshin
- Nesmeyanov Institute of Organoelement Compounds RAS, Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry RAS, Moscow, Russia
| |
Collapse
|
25
|
Bolotin DS, Bokach NA, Demakova MY, Kukushkin VY. Metal-Involving Synthesis and Reactions of Oximes. Chem Rev 2017; 117:13039-13122. [PMID: 28991449 DOI: 10.1021/acs.chemrev.7b00264] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This review classifies and summarizes the past 10-15 years of advancements in the field of metal-involving (i.e., metal-mediated and metal-catalyzed) reactions of oximes. These reactions are diverse in nature and have been employed for syntheses of oxime-based metal complexes and cage-compounds, oxime functionalizations, and the preparation of new classes of organic species, in particular, a wide variety of heterocyclic systems spanning small 3-membered ring systems to macroheterocycles. This consideration gives a general outlook of reaction routes, mechanisms, and driving forces and underlines the potential of metal-involving conversions of oxime species for application in various fields of chemistry and draws attention to the emerging putative targets.
Collapse
Affiliation(s)
- Dmitrii S Bolotin
- Institute of Chemistry, Saint Petersburg State University , Universitetskaya Nab., 7/9, Saint Petersburg, Russian Federation
| | - Nadezhda A Bokach
- Institute of Chemistry, Saint Petersburg State University , Universitetskaya Nab., 7/9, Saint Petersburg, Russian Federation
| | - Marina Ya Demakova
- Institute of Chemistry, Saint Petersburg State University , Universitetskaya Nab., 7/9, Saint Petersburg, Russian Federation
| | - Vadim Yu Kukushkin
- Institute of Chemistry, Saint Petersburg State University , Universitetskaya Nab., 7/9, Saint Petersburg, Russian Federation
| |
Collapse
|
26
|
Ge C, Zhang J, Qin Z, Zhang P, Zhang R, Zhao H, Wang Y, Zhang X. Boron-capped binuclear Mn(II) clathrochelate complexes: Synthetic, structural, and electrochemical studies. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.04.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Dudkin SV, Belov AS, Nelyubina YV, Savchuk AV, Pavlov AA, Novikov VV, Voloshin YZ. Synthesis, X-ray structure and electrochemical properties of hybrid binuclear metallophthalocyaninate-capped tris-pyridineoximates. NEW J CHEM 2017. [DOI: 10.1039/c7nj00131b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
New antimony-capped iron and nickel(ii) tris-pyridineoximates easily underwent transmetallation with zirconium and hafnium(iv) phthalocyaninates giving metallophthalocyaninato-cross-linked complexes.
Collapse
Affiliation(s)
- Semyon V. Dudkin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences
- Moscow
- Russia
| | - Alexander S. Belov
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences
- Moscow
- Russia
| | - Yulia V. Nelyubina
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences
- Moscow
- Russia
| | - Anastasia V. Savchuk
- Vernadskii Institute of General and Inorganic Chemistry of the National Academy of Sciences of Ukraine
- 03680 Kiev
- Ukraine
| | - Alexander A. Pavlov
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences
- Moscow
- Russia
| | - Valentin V. Novikov
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences
- Moscow
- Russia
| | - Yan Z. Voloshin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences
- Moscow
- Russia
- Gubkin Russian State University of Oil and Gas
- 119991 Moscow
| |
Collapse
|
28
|
Template synthesis and X-ray structure of the tris-glyoximate iron(II) clathrochelates with terminal reactive groups. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
29
|
Dudkin SV, Erickson NR, Vologzhanina AV, Novikov VV, Rhoda HM, Holstrom CD, Zatsikha YV, Yusubov MS, Voloshin YZ, Nemykin VN. Preparation, X-ray Structures, Spectroscopic, and Redox Properties of Di- and Trinuclear Iron-Zirconium and Iron-Hafnium Porphyrinoclathrochelates. Inorg Chem 2016; 55:11867-11882. [PMID: 27801586 DOI: 10.1021/acs.inorgchem.6b01936] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The first hybrid di- and trinuclear iron(II)-zirconium(IV) and iron(II)-hafnium(IV) macrobicyclic complexes with one or two apical 5,10,15,20-tetraphenylporphyrin fragments were obtained using transmetalation reaction between n-butylboron-triethylantimony-capped or bis(triethylantimony)-capped iron(II) clathrochelate precursors and dichlorozirconium(IV)- or dichlorohafnium(IV)-5,10,15,20-tetraphenylporphyrins under mild conditions. New di- and trinuclear porphyrinoclathrochelates of general formula FeNx3((Bn-Bu)(MTPP)) and FeNx3(MTPP)2 [M = Zr, Hf; TPP = 5,10,15,20-tetraporphyrinato(2-); Nx = nioximo(2-)] were characterized by one-dimensional (1H and 13C{1H}) and two-dimensional (COSY and HSQC) NMR, high-resolution electrospray ionization mass spectrometry, UV-visible, and magnetic circular dichroism spectra, single-crystal X-ray diffraction experiments, as well as elemental analyses. Redox properties of all complexes were probed using electrochemical and spectroelectrochemical approaches. Electrochemical and spectroelectrochemical data suggestive of a very weak, if any, long-range electronic coupling between two porphyrin π-systems in FeNx3(MTPP)2 complexes. Density functional theory and time-dependent density functional theory calculations were used to correlate spectroscopic signatures and redox properties of new compounds with their electronic structures.
Collapse
Affiliation(s)
- Semyon V Dudkin
- Department of Chemistry & Biochemistry, University of Minnesota Duluth , Duluth, Minnesota 55812, United States.,Department of Technology of Organic Substances & Polymer Materials, Tomsk Polytechnic University , 634050 Tomsk, Russia.,Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , 119991 Moscow, Russia
| | - Nathan R Erickson
- Department of Chemistry & Biochemistry, University of Minnesota Duluth , Duluth, Minnesota 55812, United States
| | - Anna V Vologzhanina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , 119991 Moscow, Russia
| | - Valentin V Novikov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , 119991 Moscow, Russia
| | - Hannah M Rhoda
- Department of Chemistry & Biochemistry, University of Minnesota Duluth , Duluth, Minnesota 55812, United States
| | - Cole D Holstrom
- Department of Chemistry & Biochemistry, University of Minnesota Duluth , Duluth, Minnesota 55812, United States
| | - Yuriy V Zatsikha
- Department of Chemistry & Biochemistry, University of Minnesota Duluth , Duluth, Minnesota 55812, United States.,Department of Chemistry, University of Manitoba , Winnipeg, Manitoba R3T 2N2, Canada
| | - Mekhman S Yusubov
- Department of Technology of Organic Substances & Polymer Materials, Tomsk Polytechnic University , 634050 Tomsk, Russia
| | - Yan Z Voloshin
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , 119991 Moscow, Russia
| | - Victor N Nemykin
- Department of Chemistry & Biochemistry, University of Minnesota Duluth , Duluth, Minnesota 55812, United States.,Department of Chemistry, University of Manitoba , Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
30
|
Zelinskii GE, Belov AS, Vologzhanina AV, Pavlov AA, Novikov VV, Varzatskii OA, Voloshin YZ. Synthesis, structure and ADMET properties of the monoribbed-functionalized iron(II) clathrochelates with terminal DNA-relevant groups. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Zelinskii GE, Belov AS, Vologzhanina AV, Novikov VV, Varzatskii ОА, Voloshin YZ. Intramolecular self-alkylation reaction of an iron(II) dichloroclathrochelate caused cyclization–demethylation in its chelate ribbed fragment. INORG CHEM COMMUN 2016. [DOI: 10.1016/j.inoche.2016.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Synthesis, structure and reactivity of iron(II) clathrochelates with terminal formyl (acetal) groups. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2015.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|