1
|
Xia Y, Jiang X, Wang Y, Huang Q, Chen D, Hou C, Mu Y, Shen J. Enhanced anaerobic reduction of nitrobenzene at high salinity by betaine acting as osmoprotectant and regulator of metabolism. WATER RESEARCH 2022; 223:118982. [PMID: 36058098 DOI: 10.1016/j.watres.2022.118982] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/24/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic technology is extensively applied in the treatment of industrial organic wastewater, but high salinity always triggers microbial cell dehydration, causing the failure of the anaerobic process. In this work, betaine, one kind of compatible solutes which could balance the osmotic pressure of anaerobic biomass, was exogenously added for enhancing the anaerobic reduction of nitrobenzene (NB) at high salinity. Only 100 mg L-1 betaine dosing could significantly promote the removal efficiency of NB within 35 h at 9% salinity (36.92 ± 4.02% without betaine and 72.94 ± 6.57% with betaine). The relieving effects on salt stress could be observed in the promotion of more extracellular polymeric substances (EPS) secretion with betaine addition. Additionally, the oxidation-reduction potential (ORP), as well as the electron transfer system (ETS) value, was increased with betaine addition, which was reflected in the improvement of system removal efficiency and enzyme activity. Microbial community analysis demonstrated that Bacillus and Clostridiisalibacter which were positively correlated with the stability of the anaerobic process were enriched with betaine addition at high salinity. Metagenomic analysis speculated that the encoding genes for salt tolerance (kdpB/oadA/betA/opuD/epsP/epsH) and NB degradation (nfsA/wrbA/ccdA/menC) obtained higher relative abundance with betaine addition under high salt environment, which might be the key to improving salt tolerance of anaerobic biomass. The long-term assessment demonstrated that exogenous addition betaine played an important role in maintaining the stability of the anaerobic system, which would be a potential strategy to achieve a high-efficiency anaerobic process under high salinity conditions.
Collapse
Affiliation(s)
- Yan Xia
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xinbai Jiang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yuxuan Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qian Huang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Dan Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Cheng Hou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
2
|
Menezes O, Yu Y, Root RA, Gavazza S, Chorover J, Sierra-Alvarez R, Field JA. Iron(II) monosulfide (FeS) minerals reductively transform the insensitive munitions compounds 2,4-dinitroanisole (DNAN) and 3-nitro-1,2,4-triazol-5-one (NTO). CHEMOSPHERE 2021; 285:131409. [PMID: 34271466 DOI: 10.1016/j.chemosphere.2021.131409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
As military applications of the insensitive munitions compounds (IMCs) 2,4-dinitroanisole (DNAN) and 3-nitro-1,2,4-triazol-5-one (NTO) increase, there is a growing need to understand their environmental fate and to develop remediation strategies to mitigate their impacts. Iron (II) monosulfide (FeS) minerals are abundant in freshwater and marine sediments, marshes, and hydrothermal environments. This study shows that FeS solids can reduce DNAN and NTO to their corresponding amines under anoxic ambient conditions. The reactions between IMCs and the FeS minerals were surface-mediated since they did not occur when only dissolved Fe2+(aq) and S2-(aq) were present. Mackinawite, a tetragonal FeS with a layered structure, reduced DNAN mainly to 2-methoxy-5-nitroaniline (MENA), which in turn was partially reduced to 2-4-diaminoanisole (DAAN). The layered structure of mackinawite provided intercalation sites likely responsible for partial adsorption of MENA and DAAN. Mackinawite entirely reduced NTO to 3-amino-1,2,4-triazol-5-one (ATO). The reduction of IMCs showed concurrent oxidation of mackinawite to goethite and elemental sulfur. A commercial FeS product, composed mainly of pyrrhotite and troilite, reduced DNAN to DAAN and NTO to ATO. At pH 6.5, DNAN and NTO transformation rates were 667 and 912 μmol h-1 m-2, respectively, on the mackinawite surface and 417 and 1344 μmol h-1 m-2, respectively, on the commercial FeS surface. This is the first report of the reduction of a nitro-heterocyclic compound (NTO) by FeS minerals. The evidence indicates that DNAN and NTO can be rapidly transformed to their succeeding amines in anoxic subsurface environments and aquatic sediments rich in FeS minerals.
Collapse
Affiliation(s)
- Osmar Menezes
- Department of Chemical and Environmental Engineering, The University of Arizona, Tucson, AZ, 85721, USA; Laboratório de Saneamento Ambiental, Departamento de Engenharia Civil e Ambiental, Universidade Federal de Pernambuco, Recife, PE, 50740-530, Brazil
| | - Youngjae Yu
- Department of Chemical and Environmental Engineering, The University of Arizona, Tucson, AZ, 85721, USA
| | - Robert A Root
- Department of Environmental Science, The University of Arizona, AZ, 85721, USA
| | - Savia Gavazza
- Laboratório de Saneamento Ambiental, Departamento de Engenharia Civil e Ambiental, Universidade Federal de Pernambuco, Recife, PE, 50740-530, Brazil
| | - Jon Chorover
- Department of Environmental Science, The University of Arizona, AZ, 85721, USA
| | - Reyes Sierra-Alvarez
- Department of Chemical and Environmental Engineering, The University of Arizona, Tucson, AZ, 85721, USA
| | - Jim A Field
- Department of Chemical and Environmental Engineering, The University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
3
|
Li J, Li C, Zhao L, Pan X, Cai G, Zhu G. The application status, development and future trend of nano-iron materials in anaerobic digestion system. CHEMOSPHERE 2021; 269:129389. [PMID: 33385673 DOI: 10.1016/j.chemosphere.2020.129389] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Growing environment problem and emphasis of environmental protection motivate intense research efforts in exploring technology to improve treatment efficiency on refractory organic pollutants. Hence, finding a method to make up for the deficiency of anaerobic digestion (AD) is very attractive and challenging tasks. The recent spark in the interest for the usage of some nanomaterials as an additive to strengthen AD system. The adoption of iron compounds can influence the performance and stability in AD system. However, different iron species and compounds can influence AD system in significantly different ways, both positive and negative. Therefore, strengthening mechanism, treatment efficiency, microbial community changes in Nanoscale Zero Valent Iron (nZVI) and Fe3O4 nanoparticles (Fe3O4 NPs) added AD systems were summarized by this review. The strengthening effects of nZVI and Fe3O4 NPs in different pollutants treatment system were analyzed. Previous study on the effects of nZVI and Fe3O4 NPs addition on AD have reported the concentration of nZVI and Fe3O4 NPs, and the types and biodegradability of pollutants might be the key factors that determine the direction and extent of effect in AD system. This review provides a summary on the nZVI and Fe3O4 NPs added AD system to establish experiment systems and conduct follow-up experiments in future study.
Collapse
Affiliation(s)
- Junjie Li
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunxing Li
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Lixin Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Xiaofang Pan
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Guanjing Cai
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Gefu Zhu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
4
|
Iron-assisted biological wastewater treatment: Synergistic effect between iron and microbes. Biotechnol Adv 2020; 44:107610. [DOI: 10.1016/j.biotechadv.2020.107610] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 12/21/2022]
|
5
|
Xu W, Zhao H, Cao H, Zhang Y, Sheng Y, Li T, Zhou S, Li H. New insights of enhanced anaerobic degradation of refractory pollutants in coking wastewater: Role of zero-valent iron in metagenomic functions. BIORESOURCE TECHNOLOGY 2020; 300:122667. [PMID: 31901513 DOI: 10.1016/j.biortech.2019.122667] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
Coking wastewater (CWW) has long been a serious challenge for anaerobic treatment due to its high concentrations of phenolics and nitrogen-containing heterocyclic compounds (NHCs). Herein, we proposed and validated a new strategy of using zero-valent iron (ZVI) to strengthen the anaerobic treatment of CWW. Results showed that COD removal efficiencies was increased by 9.5-13.7% with the assistance of ZVI. GC-MS analysis indicated that the removal of phenolics and NHCs was improved, and the intermediate 2(1H)-Quinolinone of quinoline degradation was further removed by ZVI addition. High-throughput sequencing showed that phenolics and NHCs degraders, such as Levilinea and Sedimentibacter were significantly enriched, and the predicted gene abundance of xenobiotic degradation and its downstream metabolic pathways was also increased by ZVI. Network and redundancy analysis indicated that the decreased oxidation-reduction potential (ORP) by ZVI was the main driver for microbial community succession. This study provided an alternative strategy for strengthening CWW anaerobic treatment.
Collapse
Affiliation(s)
- Weichao Xu
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China; Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, PR China
| | - He Zhao
- Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Hongbin Cao
- Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yuxiu Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China.
| | - Yuxing Sheng
- Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Tinggang Li
- Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Siyuan Zhou
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China
| | - Haibo Li
- Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, PR China
| |
Collapse
|
6
|
Wang S, Zhou A, Zhang J, Liu Z, Zheng J, Zhao X, Yue X. Enhanced quinoline removal by zero-valent iron-coupled novel anaerobic processes: performance and underlying function analysis. RSC Adv 2019; 9:1176-1186. [PMID: 35518020 PMCID: PMC9059619 DOI: 10.1039/c8ra09529a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 12/19/2018] [Indexed: 12/03/2022] Open
Abstract
Quinoline is toxic and difficult to degrade biologically; thus, it is a serious threat to the safety of ecosystems. To promote quinoline reduction, zero-valent iron (ZVI) was introduced into an anaerobic digestion (AD) system through batch experiments. The performance of three different types of ZVI (i.e., iron powder, iron scrap and rusty iron scrap) on quinoline degradation, methane production, formation of volatile fatty acids (VFAs) and chemical oxygen demand (COD) removal were investigated systematically. Compared to the AD system alone, quinoline and COD removal as well as the production of methane and acetic acid were effectively enhanced by ZVI, especially rusty iron scrap. The removal efficiencies of quinoline and COD were increased by 28.6% and 19.9%, respectively. The enhanced effects were attributed to the high accumulation of ferrous ions and high pH self-buffering capability, which were established by ZVI addition. Furthermore, high-throughput sequencing analysis indicated that the functional microorganisms in the ZVI-AD system were higher than in the AD system, and the added types of ZVI played important roles in structuring the innate microbial community in waste activated sludge (WAS). Especially, high enrichment of microorganisms capable of degrading quinoline, such as Pseudomonas and Bacillus, in the coupled system was detected.
Collapse
Affiliation(s)
- Sufang Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology Taiyuan 030024 Shanxi Province China +86-0351-3176581 +86-0351-3176581
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology Taiyuan 030024 Shanxi Province China +86-0351-3176581 +86-0351-3176581
| | - Jiaguang Zhang
- College of Environmental Science and Engineering, Taiyuan University of Technology Taiyuan 030024 Shanxi Province China +86-0351-3176581 +86-0351-3176581
| | - Zhaohua Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology Taiyuan 030024 Shanxi Province China +86-0351-3176581 +86-0351-3176581
| | - Jierong Zheng
- College of Environmental Science and Engineering, Taiyuan University of Technology Taiyuan 030024 Shanxi Province China +86-0351-3176581 +86-0351-3176581
| | - Xiaochan Zhao
- College of Environmental Science and Engineering, Taiyuan University of Technology Taiyuan 030024 Shanxi Province China +86-0351-3176581 +86-0351-3176581
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology Taiyuan 030024 Shanxi Province China +86-0351-3176581 +86-0351-3176581
| |
Collapse
|
7
|
Jiang X, Chen Y, Hou C, Liu X, Ou C, Han W, Sun X, Li J, Wang L, Shen J. Promotion of Para-Chlorophenol Reduction and Extracellular Electron Transfer in an Anaerobic System at the Presence of Iron-Oxides. Front Microbiol 2018; 9:2052. [PMID: 30214440 PMCID: PMC6125335 DOI: 10.3389/fmicb.2018.02052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/13/2018] [Indexed: 01/10/2023] Open
Abstract
Anaerobic dechlorination of chlorophenols often subjects to their toxicity and recalcitrance, presenting low loading rate and poor degradation efficiency. In this study, in order to accelerate p-chlorophenol (p-CP) reduction and extracellular electron transfer in an anaerobic system, three iron-oxide nanoparticles, namely hematite, magnetite and ferrihydrite, were coupled into an anaerobic system, with the performance and underlying role of iron-oxide nanoparticles elucidated. The reductive dechlorination of p-CP was notably improved in the anaerobic systems coupled by hematite and magnetite, although ferrihydrite did not plays a positive role. Enhanced dechlorination of p-CP in hematite or magnetite coupled anaerobic system was linked to the obvious accumulation of acetate, lower oxidation-reduction potential and pH, which were beneficial for reductive dechlorination. Electron transfer could be enhanced by Fe2+/Fe3+ redox couple on the iron oxides surface formed through dissimilatory iron-reduction. This study demonstrated that the coupling of iron-oxide nanoparticles such as hematite and magnetite could be a promising alternative to the conventional anaerobic reduction process for the removal of CPs from wastewater.
Collapse
Affiliation(s)
- Xinbai Jiang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Yuzhe Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Chen Hou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Xiaodong Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Changjin Ou
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, China
| | - Weiqing Han
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Xiuyun Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Lianjun Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
8
|
Khatiwada R, Olivares C, Abrell L, Root RA, Sierra-Alvarez R, Field JA, Chorover J. Oxidation of reduced daughter products from 2,4-dinitroanisole (DNAN) by Mn(IV) and Fe(III) oxides. CHEMOSPHERE 2018; 201:790-798. [PMID: 29550573 DOI: 10.1016/j.chemosphere.2018.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/21/2018] [Accepted: 03/03/2018] [Indexed: 06/08/2023]
Abstract
Abiotic transformation of anthropogenic compounds by redox-active metal oxides affects contaminant fate in soil. The capacity of birnessite and ferrihydrite to oxidize the insensitive munitions compound, 2,4-dinitroanisol (DNAN), and its amine-containing daughter products, 2-methoxy-5-nitro aniline (MENA) and 2,4-diaminoanisole (DAAN), was studied in stirred reactors at controlled pH (7.0). Aqueous suspensions were reacted at metal oxide solid to solution mass ratios (SSR) of 0.15, 1.5 and 15 g kg-1 and solutions were analyzed after 0-3 h by high performance liquid chromatography coupled with photodiode array or mass spectrometry detection. Results indicate that DNAN was resistant to oxidation by birnessite and ferrihydrite. Ferrihydrite did not oxidize MENA, but MENA was susceptible to rapid oxidation by birnessite, with nitrogen largely mineralized to nitrite. This is the first report on mineralization of nonphenolic aromatics and the release of mineralized N from aromatic amines following reaction with birnessite. DAAN was oxidized by both solids, but ca. ten times higher rate was observed with birnessite as compared to ferrihydrite at an SSR of 1.5 g kg-1. At 15 g kg-1 SSR, DAAN was removed from solution within 5 min of reaction with birnessite. CO2(g) evolution experiments indicate mineralization of 15 and 12% of the carbon associated with MENA and DAAN, respectively, under oxic conditions with birnessite at SSR of 15 g kg-1. The results taken as a whole indicate that initial reductive (bio)transformation products of DNAN are readily oxidized by birnessite. The oxidizability of the reduced DNAN products was increased with progressive (bio)reduction as reflected by impacts on the oxidation rate.
Collapse
Affiliation(s)
- Raju Khatiwada
- Department of Soil, Water and Environmental Science, University of Arizona, Tucson, AZ, USA
| | - Christopher Olivares
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - Leif Abrell
- Department of Soil, Water and Environmental Science, University of Arizona, Tucson, AZ, USA; Arizona Laboratory for Emerging Contaminants, University of Arizona, Tucson, AZ, USA
| | - Robert A Root
- Department of Soil, Water and Environmental Science, University of Arizona, Tucson, AZ, USA
| | - Reyes Sierra-Alvarez
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - James A Field
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - Jon Chorover
- Department of Soil, Water and Environmental Science, University of Arizona, Tucson, AZ, USA; Arizona Laboratory for Emerging Contaminants, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
9
|
Wang D, Ma W, Han H, Li K, Xu H, Fang F, Hou B, Jia S. Enhanced anaerobic degradation of Fischer-Tropsch wastewater by integrated UASB system with Fe-C micro-electrolysis assisted. CHEMOSPHERE 2016; 164:14-24. [PMID: 27573211 DOI: 10.1016/j.chemosphere.2016.08.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 08/06/2016] [Accepted: 08/16/2016] [Indexed: 06/06/2023]
Abstract
Coupling of the Fe-C micro-electrolysis (IC-ME) into the up-flow anaerobic sludge blanket (UASB) was developed for enhanced Fischer-Tropsch wastewater treatment. The COD removal efficiency and methane production in R3 with IC-ME assisted both reached up to 80.6 ± 1.7% and 1.38 ± 0.11 L/L·d that higher than those values in R1 with GAC addition (63.0 ± 3.4% and 0.95 ± 0.09 L/L·d) and R2 with ZVI addition (74.5 ± 2.8% and 1.21 ± 0.09 L/L·d) under the optimum HRT (5 d). The Fe corrosion as electron donor reduced the ORP values and stimulated the activities of hydrogenotrophic methanogens to lower H2 partial pressure in R2 and R3. Additionally, Fe2+ as by-product of iron corrosion, its presence could effectively increase the percentage of protein content in tightly bound extracellular polymeric substances (TB-EPS) to promote better bioflocculation, increasing to 90.5 mg protein/g·VSS (R2) and 106.3 mg protein/g·VSS (R3) while this value in R1 was simply 56.6 mg protein/g·VSS. More importantly, compared with R1, the excess accumulation of propionic acid and butyric acid in system was avoided. The macroscopic galvanic cells around Fe-C micro-electrolysis carriers in R3, that larger than microscopic galvanic cells in R2, further accelerate to transfer the electrons from anodic Fe to cathodic carbon that enhance interspecies hydrogen transfer, making the decomposition of propionic acid and butyric acid more thermodynamically feasible, finally facilitate more methane production.
Collapse
Affiliation(s)
- Dexin Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wencheng Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hongjun Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Kun Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hao Xu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Fang Fang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Baolin Hou
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shengyong Jia
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|