1
|
Pan Q, Guan H, Xu W, Zhao J, Liu Y, Cui L, Zhou J. Recent advance for enantiorecognition of chiral drugs sensing: Electrochemical, electrochemiluminescent and photoelectrochemical application. Biosens Bioelectron 2025; 273:117141. [PMID: 39848000 DOI: 10.1016/j.bios.2025.117141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/25/2025]
Abstract
Chiral isomers show different behaviours and properties in physiological activities. It is of great significance to find productive approach to realize the recognition of enantiomers, which is a key issue in biochemical and pharmaceutical fields. Nowadays, chiral identification can be successfully achieved according to the discrepancies of special signals correlated with different enantiomers of multiple electrode structures. Electrochemical technologies have attracted wide interest in enantioselective analysis because of its unique merits, such as the economic and miniaturized instruments, simplified and environmental-friendly sample preparations. This review summarizes the development trends of electrochemical sensing in the enantiospecific analysis of chiral drugs, expounds the enantiospecific recognition mechanism between chiral selector and target enantiomers based on general electrochemical, electrochemiluminescent and photoelectrochemical sensors, respectively. In addition, this review attempts to predict the future application of electrochemical, electrochemiluminescent and photoelectrochemical-based technologies in the enantioselective recognition and detection.
Collapse
Affiliation(s)
- Qianxiu Pan
- School of Pharmacy, School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, China
| | - Hong Guan
- Weifang Vocational College, Weifang, 262737, China
| | - Wenjing Xu
- School of Pharmacy, School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, China
| | - Jingjing Zhao
- School of Pharmacy, School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, China
| | - Yan Liu
- School of Pharmacy, School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, China
| | - Lin Cui
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| | - Jin Zhou
- School of Pharmacy, School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, China.
| |
Collapse
|
2
|
Nergiz M, Zenger O, Peşint GB. L-proline determination by molecularly imprinted nanoparticles: A potential nanoscale tool for the diagnosis of metabolic disorders. J Chromatogr A 2024; 1730:465106. [PMID: 38917678 DOI: 10.1016/j.chroma.2024.465106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/29/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024]
Abstract
Detecting and quantifying amino acids is vital in biochemical analyses, especially for diagnosing metabolic disorders. L-proline, among these amino acids, holds significant relevance for various metabolic disorders in living organisms, particularly in humans. hyperprolinemia arises when ineffective breakdown of L-proline occurs due to enzyme deficiencies, leading to its accumulation in the body and underscoring the need for precise monitoring. To address this challenge, molecular imprinting offers a reliable single-step technique for detecting target molecules like proteins, peptides, amino acids, or ions with high selectivity. Moreover, nanoparticles, with significant surface area-to-volume ratios, enable high-level mass transfer and binding kinetics, making them ideal for nano-scale sensitive applications. In this study, 2-hydroxyethyl methacrylate-based molecularly imprinted nanoparticles were synthesized via mini-emulsion polymerization, combining the advantages of molecular imprinting technique and nanoparticles for the specific recognition of L-proline, and were well-characterized by Scanning Electron Microscopy, zeta-sizer particle size analysis, and Fourier Transform Infrared Spectroscopy. Based on zeta-sizer analysis, the estimated diameters of L-proline-imprinted and non-imprinted nanoparticles (Pro-MIPs and NIPs) were determined to be approximately 27.51 nm and 20.66 nm, respectively. The adsorption of L-proline onto nanoparticles from aqueous solutions was investigated in a batch system, and the maximum L-proline adsorption capacity was determined to be 26.58 mg/g for Pro-MIPs and 4.65 mg/g for and NIPs. The selectivity of Pro-MIPs was assessed using Liquid Chromatography-Tandem Mass Spectrometry, even in human serum and in the presence of competing molecules (L-histidine and L-phenylalanine). Additionally, Pro-MIPs maintained their adsorption capacity through up to 10 adsorption-desorption cycles without significant decrease.
Collapse
Affiliation(s)
- Mustafa Nergiz
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, 01250 Sarıçam, Adana, Türkiye
| | - Okan Zenger
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, 01250 Sarıçam, Adana, Türkiye
| | - Gözde Baydemir Peşint
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, 01250 Sarıçam, Adana, Türkiye.
| |
Collapse
|
3
|
Yuan S, Tan L, Zhao L, Wang F, Cai W, Li J, Wu D, Kong Y. Chiral Ru-Based Covalent Organic Frameworks as An Electrochemiluminescence-Active Platform for the Enantioselective Sensing of Amino Acids. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13161-13169. [PMID: 38412557 DOI: 10.1021/acsami.4c00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Although several studies related with the electrochemiluminescence (ECL) technique have been reported for chiral discrimination, it still has to face some limitations, namely, complex synthetic pathways and a relatively low recognition efficiency. Herein, this study introduces a facile strategy for the synthesis of ECL-active chiral covalent organic frameworks (COFs) employed as a chiral recognition platform. In this artificial structure, ruthenium(II) coordinated with the dipyridyl unit of the COF and enantiopure cyclohexane-1,2-diamine was harnessed as the ECL-active unit, which gave strong ECL emission in the presence of the coreactant reagent (K2S2O8). When the as-prepared COF was used as a chiral ECL-active platform, clear discrimination was observed in the response of the ECL intensity toward l- and d-enantiomers of amino acids, including tryptophan, leucine, methionine, threonine, and histidine. The biggest ratio of the ECL intensity between different configurations was up to 1.75. More importantly, a good linear relationship between the enantiomeric composition and the ECL intensity was established, which was successfully employed to determine the unknown enantiomeric compositions of the real samples. In brief, we believe that the proposed ECL-based chiral platform provides an important reference for the determination of the configuration and enantiomeric compositions.
Collapse
Affiliation(s)
- Shuyi Yuan
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Lilan Tan
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Lei Zhao
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Fangqin Wang
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Wenrong Cai
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Junyao Li
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Datong Wu
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
4
|
Tan L, Cai W, Wang F, Li J, Wu D, Kong Y. Postsynthetic Modification Strategy for Constructing Electrochemiluminescence-Active Chiral Covalent Organic Frameworks Performing Efficient Enantioselective Sensing. Anal Chem 2024; 96:3942-3950. [PMID: 38394220 DOI: 10.1021/acs.analchem.3c05887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Electrochemiluminescence (ECL), integrating the characteristics of electrochemistry and fluorescence, has the advantages of high sensitivity and low background. However, only a few studies have been reported for enantioselective sensing based on the ECL-active platform because of the huge challenges in constructing tunable chiral ECL luminophores. Here, we developed a facile strategy to design and prepare ECL-active chiral covalent organic frameworks (COFs) Ph-triPy+-(R)-Ru(II) for enantioselective sensing. In such an artificial structure, the ionic skeleton of COFs was beneficial to the electron transfer on the working electrode surface and the chiral Ru-ligand was used as the chiral ECL-active luminophore. It was found that Ph-triPy+-(R)-Ru(II) coupled with sodium persulfate (Na2S2O8) as the coreactant exhibited obvious ECL signals. More importantly, a clear difference toward l- and d-enantiomers was observed in the response of the ECL intensity, resulting in a uniform recognition law. That is, for amino alcohols, d-enantiomers (1 mM) measured by Ph-triPy+-(R)-Ru(II) showed a higher ECL intensity compared with l-enantiomers. Differently, amino acids (1 mM) gave an inverse recognition phenomenon. The ECL intensity ratios between l- and d-enantiomers (1 mM) are in the range of 1.25-1.94 for serine, aspartic acid, glutamic acid, valine, leucine, leucinol, and valinol. What is more interesting is that the ECL intensity was closely related to the concentration of l-amino alcohols and d-amino acids, whereas their inverse configurations remained unchanged. In a word, the present concept demonstrates a feasible direction toward chiral ECL-active COFs and their potential for efficient enantioselective sensing.
Collapse
Affiliation(s)
- Lilan Tan
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Wenrong Cai
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Fangqin Wang
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Junyao Li
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Datong Wu
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
5
|
Baghal Behyar M, Hasanzadeh M, Seidi F, Shadjou N. Sensing of Amino Acids: Critical role of nanomaterials for the efficient biomedical analysis. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
6
|
Engineering a cationic supramolecular charge switch for facile amino acids enantiodiscrimination based on extended-gate field effect transistors. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.11.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
7
|
Liu C, Yao J, Xiao C, Zhao T, Selvapalam N, Zhou C, Wu W, Yang C. Electrochemiluminescent Chiral Discrimination with a Pillar[5]arene Molecular Universal Joint-Coordinated Ruthenium Complex. Org Lett 2021; 23:3885-3890. [PMID: 33960791 DOI: 10.1021/acs.orglett.1c01016] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A bicyclic pillar[5]arene derivative fused with a bipyridine side ring, a so-called molecular universal joint (MUJ), was synthesized, and the pair of enantiomers was resolved by high-performance liquid chromatography enantioresolution. The electrochemiluminescent detection based on the ruthenium complex of the enantiopure MUJ showed excellent chiral discrimination toward certain amino acids.
Collapse
Affiliation(s)
- Chunhong Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Jiabin Yao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Chao Xiao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Ting Zhao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Narayanan Selvapalam
- Center for Supramolecular Chemistry and Department of Chemistry, International Research Center, Kalasalingam Academy of Research and Education (Kalasalingam University), Krishnankoil, Tamil Nadu 626-126, India
| | - Cuisong Zhou
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Wanhua Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| |
Collapse
|
8
|
Zhao B, Yang S, Deng J, Pan K. Chiral Graphene Hybrid Materials: Structures, Properties, and Chiral Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003681. [PMID: 33854894 PMCID: PMC8025009 DOI: 10.1002/advs.202003681] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/14/2020] [Indexed: 05/02/2023]
Abstract
Chirality has become an important research subject. The research areas associated with chirality are under substantial development. Meanwhile, graphene is a rapidly growing star material and has hard-wired into diverse disciplines. Rational combination of graphene and chirality undoubtedly creates unprecedented functional materials and may also lead to great findings. This hypothesis has been clearly justified by the sizable number of studies. Unfortunately, there has not been any previous review paper summarizing the scattered studies and advancements on this topic so far. This overview paper attempts to review the progress made in chiral materials developed from graphene and their derivatives, with the hope of providing a systemic knowledge about the construction of chiral graphenes and chiral applications thereof. Recently emerging directions, existing challenges, and future perspectives are also presented. It is hoped this paper will arouse more interest and promote further faster progress in these significant research areas.
Collapse
Affiliation(s)
- Biao Zhao
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing100029China
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Shenghua Yang
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing100029China
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing100029China
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Kai Pan
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| |
Collapse
|
9
|
Hobbs C, Řezanka P, Řezanka M. Cyclodextrin‐Functionalised Nanomaterials for Enantiomeric Recognition. Chempluschem 2020; 85:876-888. [DOI: 10.1002/cplu.202000187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/29/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Christopher Hobbs
- Department of Nanomaterials in Natural SciencesInstitute for Nanomaterials, Advanced Technologies and InnovationTechnical University of Liberec Studentská 1402/2 461 17 Liberec Czech Republic
| | - Pavel Řezanka
- Department of Analytical ChemistryUniversity of Chemistry and Technology Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Michal Řezanka
- Department of Nanomaterials in Natural SciencesInstitute for Nanomaterials, Advanced Technologies and InnovationTechnical University of Liberec Studentská 1402/2 461 17 Liberec Czech Republic
| |
Collapse
|
10
|
Wang SY, Li L, Xiao Y, Wang Y. Recent advances in cyclodextrins-based chiral-recognizing platforms. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115691] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Wu T, Zhao W, Gu J, Zhang GC, Feng M, Sun X, Yin B, Jiang H, Wen B, Gao F. Homoleptic cyclometalated iridium(III) complex nanowires electrogenerated chemiluminescence sensors for high-performance discrimination of proline enantiomers based on the difference of electron-transfer capability. Talanta 2019; 194:98-104. [DOI: 10.1016/j.talanta.2018.09.107] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/25/2018] [Accepted: 09/30/2018] [Indexed: 11/27/2022]
|
12
|
Zhang Y, Zhang R, Yang X, Qi H, Zhang C. Recent advances in electrogenerated chemiluminescence biosensing methods for pharmaceuticals. J Pharm Anal 2018; 9:9-19. [PMID: 30740252 PMCID: PMC6355466 DOI: 10.1016/j.jpha.2018.11.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/20/2022] Open
Abstract
Electrogenerated chemiluminescence (electrochemiluminescence, ECL) generates species at electrode surfaces, which undergoes electron-transfer reactions and forms excited states to emit light. It has become a very powerful analytical technique and has been widely used in such as clinical testing, biowarfare agent detection, and pharmaceutical analysis. This review focuses on the current trends of molecular recognition-based biosensing methods for pharmaceutical analysis since 2010. It introduces a background of ECL and presents the recent ECL developments in ECL immunoassay (ECLIA), immunosensors, enzyme-based biosensors, aptamer-based biosensors, and molecularly imprinted polymers (MIP)-based sensors. At last, the future perspective for these analytical methods is briefly discussed.
Collapse
Affiliation(s)
- Yu Zhang
- Medpace Bioanalytical Laboratories, 5365 Medpace Way, Cincinnati, OH 45227, USA
| | - Rui Zhang
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN 47405, USA
| | - Xiaolin Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
13
|
Gu J, Wu J, Gao Y, Wu T, Li Q, Li A, Zheng JY, Wen B, Gao F. Electrogenerated chemiluminescence logic gate operations based on molecule-responsive organic microwires. NANOSCALE 2017; 9:10397-10403. [PMID: 28702574 DOI: 10.1039/c7nr02347b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Complex logic gate operations using organic microwires as signal transducers based on electrogenerated chemiluminescence (ECL) intensity as the optical readout signal have been developed by taking advantage of the unique ECL reaction between organic semiconductor 9,10-bis(phenylethynyl)anthracene (BPEA) microwires and small molecules. The BPEA microwires, prepared on cleaned-ITO substrate using a simple physical vapor transport (PVT) method, were subsequently used for construction of the ECL sensors. The developed sensor exhibits high ECL efficiency and excellent stability in the presence of co-reactant tripropylamine. Based on the remarkable detection performance of BPEA MWs/TPrA system, the sensors manifested high sensitive ECL response in a wide linear range with low detection limit for the detection of dopamine, proline or methylene blue, which behaves on the basis of molecule-responsive ECL properties based on different ECL reaction mechanisms. Inspired by this, these sensing systems can be utilized to design OR, XOR and INHIBIT logic gates, which would be used for the determination of dopamine, proline and ethylene blue via logic outputs. Importantly, the individual logic gates can be easily brought together through three-input operations to function as integrated logic gates.
Collapse
Affiliation(s)
- Jianmin Gu
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China. and State Key Laboratory of Metastable Materials Science and Technology (MMST), Yanshan University, Qinhuangdao 066004, China.
| | - Jingxiao Wu
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Yahui Gao
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Tianhui Wu
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Qing Li
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Aixue Li
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Jian-Yao Zheng
- School of Physics, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), and Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, Ireland
| | - Bin Wen
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Yanshan University, Qinhuangdao 066004, China.
| | - Faming Gao
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
14
|
Lin X, Zhu S, Wang Q, Xia Q, Ran P, Fu Y. Chiral recognition of penicillamine enantiomers using hemoglobin and gold nanoparticles functionalized graphite-like carbon nitride nanosheets via electrochemiluminescence. Colloids Surf B Biointerfaces 2016; 148:371-376. [DOI: 10.1016/j.colsurfb.2016.09.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/18/2016] [Accepted: 09/09/2016] [Indexed: 11/28/2022]
|
15
|
Hamedi MM, Ünal B, Kerr E, Glavan AC, Fernandez-Abedul MT, Whitesides GM. Coated and uncoated cellophane as materials for microplates and open-channel microfluidics devices. LAB ON A CHIP 2016; 16:3885-3897. [PMID: 27714038 DOI: 10.1039/c6lc00975a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This communication describes the use of uncoated cellophane (regenerated cellulose films) for the fabrication of microplates, and the use of coated cellophane for the fabrication of open-channel microfluidic devices. The microplates based on uncoated cellophane are particularly interesting for applications that require high transparency in the ultraviolet (UV) regime, and offer a low-cost alternative to expensive quartz-well plates. Uncoated cellophane is also resistant to damage by various solvents. The microfluidic devices, based on coated cellophane, can have features with dimensions as small as 500 μm, and complex, non-planar geometries. Electrodes can be printed on the surface of the coated cellophane, and embedded in microfluidic devices, to develop resistive heaters and electroanalytical devices for flow injection analysis, and continuous flow electrochemiluminescence (ECL) applications. These open-channel devices are appropriate for applications where optical transparency (especially in the visible regime), resistance to damage by water, biocompatibility and biodegradability are important. Cellophane microfluidic systems complement existing cellulose-based paper microfluidic systems, and provide an alternative to other materials used in microfluidics, such as synthetic polymers or glass. Cellulose films are plausible materials for uses in integrated microfluidic systems for diagnostics, analyses, cell-culture, and MEMS.
Collapse
Affiliation(s)
- Mahiar M Hamedi
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
| | - Barış Ünal
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
| | - Emily Kerr
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA. and Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, Victoria 3220, Australia
| | - Ana C Glavan
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
| | - M Teresa Fernandez-Abedul
- Departamento de Química Física y Analítica, Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Asturias, Spain
| | - George M Whitesides
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA. and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| |
Collapse
|
16
|
Zhu S, Lin X, Wang Q, Xia Q, Ran P, Fu Y. A Novel Solid-state Electrochemiluminescent Enantioselective Sensor for Ascorbic Acid and Isoascorbic Acid. ELECTROANAL 2016. [DOI: 10.1002/elan.201600329] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Shu Zhu
- Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering; Southwest University; Chongqing 400715 China
| | - Xia Lin
- Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering; Southwest University; Chongqing 400715 China
| | - Qinghong Wang
- Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering; Southwest University; Chongqing 400715 China
| | - Qiao Xia
- Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering; Southwest University; Chongqing 400715 China
| | - Peiyao Ran
- Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering; Southwest University; Chongqing 400715 China
| | - Yingzi Fu
- Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering; Southwest University; Chongqing 400715 China
| |
Collapse
|