1
|
Pascual LMH, Devy J, Colin M, Chazée L, Guillaneuf A, Marin B, Plantier-Royon R, Gatard S. Biosourced Au(III) Complexes from D-Xylose: Synthesis and Biological Evaluation. ChemMedChem 2025; 20:e202400565. [PMID: 39429067 DOI: 10.1002/cmdc.202400565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
A series of xylose-based ligands was obtained using a convenient approach, in a few steps from D-xylose. The complexation properties of these ligands towards Au3+ cations have been studied through different methods (multinuclear NMR, mass spectrometry, elemental analysis). The biological properties (antibacterial and anti-tumoral) of all the isolated xyloside Au(III) complexes were investigated in vitro. The xyloside Au(III) complexes gave the highest activities against E. coli (vs P. aeruginosa, S. aureus and S. epidermidis). The study also revealed that the nature of the sugar may play an important role in determining the selectivity of the antibacterial effect. Preliminary anti-tumoral evaluations showed that one complex containing a polyamine chain, exhibited interesting anti-proliferative activities on breast tumor cell lines MDA-MB-231 and BT-20. The anti-migratory effect of this complex also showed an average 35 % reduction in cell migration on the same two cancer cell lines.
Collapse
Affiliation(s)
- Laura M H Pascual
- Université de Reims Champagne-Ardenne, CNRS, ICMR, Reims, 51687, Reims Cedex 2, France
| | - Jérôme Devy
- Université de Reims Champagne-Ardenne, CNRS, MEDyC, Reims, France
| | - Marius Colin
- Université de Reims Champagne-Ardenne, BIOS, Reims, France
| | - Lise Chazée
- Université de Reims Champagne-Ardenne, CNRS, MEDyC, Reims, France
| | | | - Béatrice Marin
- Université de Reims Champagne-Ardenne, GEGENAA, Reims, France
| | | | - Sylvain Gatard
- Université de Reims Champagne-Ardenne, CNRS, ICMR, Reims, 51687, Reims Cedex 2, France
| |
Collapse
|
2
|
Chavda VR, Bhatt SB, Umaretiya VR, Gajera HP, Padhiyar SM, Kandoliya UK, Parakhia MV. Characterization and metabolomic profiling of endophytic bacteria isolated from Moringa oleifera and Piper betel leaves. Sci Rep 2025; 15:632. [PMID: 39753876 PMCID: PMC11698722 DOI: 10.1038/s41598-024-84840-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025] Open
Abstract
Endophytes are microorganisms residing in plant tissues without causing harm and their relevance in medicinal plants has grown due to their biomolecules used in pharmaceuticals. This study isolated two endophytic bacterial strains from the leaves of M. oleifera and P. betel collected from Junagadh Agricultural University. The isolates were characterized morphologically and physio-biochemically, confirming them as gram-positive or gram-negative rods and cocci. Identification using 16S rRNA gene sequencing identified isolates belonging to various genera, including Priestia aryabhattai and Kocuria rhizophila The SEM characterization of the five selected isolates revealed diverse morphological structures, including coccus and rod shapes, organized in various formations. Isolates varied in size, with N3 (Kocuria rhizophila) cocci and S5 (Priestia aryabhattai) rods. Metabolomic analysis using GC/MS and LC-MS revealed diverse metabolic profiles with key compounds like n-Hexadecanoic acid, Pyrrolo[1,2-a]pyrazine-1,4-dione, Dihydrocapsaicin, and β-Homoproline, highlighting the potential of these endophytic bacteria in agricultural applications due to their roles in membrane integrity, antioxidant properties, stress response, and antibacterial activity.
Collapse
Affiliation(s)
- V R Chavda
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, India
| | - S B Bhatt
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, India.
| | - V R Umaretiya
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, India
| | - H P Gajera
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, India
| | - S M Padhiyar
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, India
| | - U K Kandoliya
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, India
| | - M V Parakhia
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, India
| |
Collapse
|
3
|
Li N, Xia H, Jiang Y, Xiong J, Lou W. Co-immobilization of β-xylosidase and endoxylanase on zirconium based metal-organic frameworks for improving xylosidase activity at high temperature and in acetone. BIORESOURCE TECHNOLOGY 2023:129240. [PMID: 37247794 DOI: 10.1016/j.biortech.2023.129240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 05/31/2023]
Abstract
Improving the activity of β-xylosidase at high temperature and organic solvents is important for the conversion of xylan, phytochemicals and some hydroxyl-containing substances to produce xylose and bioactive substances. In this study, a β-xylosidase R333H and an endoxylanase were simultaneously co-immobilized on the metal-organic framework UiO-66-NH2. Compared with the single R333H immobilization system, the co-immobilization enhanced the activity of R333H at high temperature and high concentration of acetone, and the relative activities at 95°C and 50% acetone solution were > 95%. The Km value of co-immobilized R333H towards p-Nitrophenyl-β-D-xylopyranoside (pNPX) shifted from 2.04 to 0.94 mM, which indicated the enhanced affinity towards pNPX. After 5 cycles, the relative activities of the co-immobilized enzymes towards pNPX and corncob xylan were 52% and 70% respectively, and the accumulated amount of reducing sugars obtained by co-immobilized enzymes degrading corncob xylan in 30% (v/v) acetone solution was 1.7 times than that with no acetone.
Collapse
Affiliation(s)
- Na Li
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huan Xia
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yanbin Jiang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China; School of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China.
| | - Jun Xiong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wenyong Lou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
4
|
Li N, Zhang R, Zhou J, Huang Z. Structures, Biochemical Characteristics, and Functions of β-Xylosidases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7961-7976. [PMID: 37192316 DOI: 10.1021/acs.jafc.3c01425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The complete degradation of abundant xylan derived from plants requires the participation of β-xylosidases to produce the xylose which can be converted to xylitol, ethanol, and other valuable chemicals. Some phytochemicals can also be hydrolyzed by β-xylosidases into bioactive substances, such as ginsenosides, 10-deacetyltaxol, cycloastragenol, and anthocyanidins. On the contrary, some hydroxyl-containing substances such as alcohols, sugars, and phenols can be xylosylated by β-xylosidases into new chemicals such as alkyl xylosides, oligosaccharides, and xylosylated phenols. Thus, β-xylosidases shows great application prospects in food, brewing, and pharmaceutical industries. This review focuses on the molecular structures, biochemical properties, and bioactive substance transformation function of β-xylosidases derived from bacteria, fungi, actinomycetes, and metagenomes. The molecular mechanisms of β-xylosidases related to the properties and functions are also discussed. This review will serve as a reference for the engineering and application of β-xylosidases in food, brewing, and pharmaceutical industries.
Collapse
Affiliation(s)
- Na Li
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Kunming 650500, People's Republic of China
| | - Rui Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Kunming 650500, People's Republic of China
| | - Junpei Zhou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Kunming 650500, People's Republic of China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Kunming 650500, People's Republic of China
| |
Collapse
|
5
|
Chin SY, Shahruddin S, Chua GK, Samsudin NA, Mudalip SKA, Ghazali NFS, Jemaat Z, Salleh SF, Said FM, Nadir N, Ismail NL, Ng SH. Toward Sustainable Production of Sugar-Based Alkyl Polyglycoside Surfactant─A Comprehensive Review on Synthesis Route and Downstream Processing. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Affiliation(s)
- Sim Yee Chin
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang Darul Makmur Malaysia
| | - Sara Shahruddin
- PETRONAS Research Sdn. Bhd., Lot 3288 and 3289, Off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor Darul Ehsan Malaysia
| | - Gek Kee Chua
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang Darul Makmur Malaysia
| | - Nur Amalina Samsudin
- PETRONAS Research Sdn. Bhd., Lot 3288 and 3289, Off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor Darul Ehsan Malaysia
| | - Siti Kholijah Abdul Mudalip
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang Darul Makmur Malaysia
| | - Noor Fadhila Syahida Ghazali
- PETRONAS Research Sdn. Bhd., Lot 3288 and 3289, Off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor Darul Ehsan Malaysia
| | - Zulkifly Jemaat
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang Darul Makmur Malaysia
| | - Siti Fatihah Salleh
- PETRONAS Research Sdn. Bhd., Lot 3288 and 3289, Off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor Darul Ehsan Malaysia
| | - Farhan Mohd Said
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang Darul Makmur Malaysia
| | - Najiah Nadir
- PETRONAS Research Sdn. Bhd., Lot 3288 and 3289, Off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor Darul Ehsan Malaysia
| | - Nur Liyana Ismail
- PETRONAS Research Sdn. Bhd., Lot 3288 and 3289, Off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor Darul Ehsan Malaysia
| | - Su Han Ng
- PETRONAS Research Sdn. Bhd., Lot 3288 and 3289, Off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor Darul Ehsan Malaysia
| |
Collapse
|
6
|
The Impact of Biomass and Acid Loading on Methanolysis during Two-Step Lignin-First Processing of Birchwood. Catalysts 2021. [DOI: 10.3390/catal11060750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We optimized the solvolysis step in methanol for two-step lignin-first upgrading of woody biomass. Birchwood was first converted via sulfuric acid methanolysis to cellulose pulp and a lignin oil intermediate, which comprises a mixture of lignin oligomers and C5 sugars in the methanol solvent. The impact of reaction temperature (140–200 °C), acid loading (0.24–0.81 wt%, dry biomass), methanol/biomass ratio (2.3/1–15.8/1 w/w) and reaction time (2 h and 0.5 h) was investigated. At high biomass loadings (ratio < 6.3/1 w/w), operation at elevated pressure facilitates delignification by keeping methanol in the liquid phase. A high degree of delignification goes together to a large extent with C5 sugar release, mostly in the form of methyl xylosides. Gel permeation chromatography and heteronuclear single quantum coherence NMR of lignin fractions obtained at high acid (0.81 wt%) and low biomass (15.8/1 w/w) loading revealed extensive cleavage of β-O-4′ bonds during acidolysis at 180 °C for 2 h. At an optimized methanol/biomass ratio of 2.3/1 w/w and acid loading (0.24 wt%), more β-O-4′ bonds could be preserved, i.e., about 33% after 2 h and 47% after 0.5 h. The high reactivity of the extracted lignin fragments was confirmed by a second hydrogenolysis step. Reductive treatment with Pd/C under mild conditions led to disappearance of ether linkages and molecular weight reduction in the hydrotreated lignin oil.
Collapse
|
7
|
Zullo V, Iuliano A, Guazzelli L. Sugar-Based Ionic Liquids: Multifaceted Challenges and Intriguing Potential. Molecules 2021; 26:2052. [PMID: 33916695 PMCID: PMC8038380 DOI: 10.3390/molecules26072052] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 01/29/2023] Open
Abstract
Carbohydrates represent a promising option in transitioning from oil-based chemical resources to renewable ones, with the goal of developing chemistries for a sustainable future. Cellulose, hemicellulose, and largely available monosaccharides already provide useful chemical building blocks, so-called platform chemicals, such as levulinic acid and hydroxymethyl furfural, as well as solvents like cyrene or gamma-valerolactone. Therefore, there is great anticipation for novel applications involving materials and chemicals derived from sugars. In the field of ionic liquids (ILs), sugar-based ILs have been overlooked for a long time, mainly on account of their multistep demanding preparation. However, exploring new strategies for accessing sugar-based ILs, their study, and their exploitation, are attracting increasing interest. This is due to the growing concerns about the negative (eco)toxicity profile of most ILs in conjunction with their non-sustainable nature. In the present review, a literature survey concerning the development of sugar-based ILs since 2011 is presented. Their preparation strategies and thermal behavior analyses, sorted by sugar type, make up the first two sections with the intention to provide the reader with a useful guide. A final overview of the potential applications of sugar-based ILs and their future perspectives complement the present analysis.
Collapse
Affiliation(s)
- Valerio Zullo
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Moruzzi 13, 56124 Pisa, Italy; (V.Z.); (A.I.)
| | - Anna Iuliano
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Moruzzi 13, 56124 Pisa, Italy; (V.Z.); (A.I.)
| | - Lorenzo Guazzelli
- Dipartimento di Farmacia, Università di Pisa, via Bonanno 33, 56126 Pisa, Italy
| |
Collapse
|
8
|
Eneyskaya EV, Bobrov KS, Kashina MV, Borisova AS, Kulminskaya AA. A novel acid-tolerant β-xylanase from Scytalidium candidum 3C for the synthesis of o-nitrophenyl xylooligosaccharides. J Basic Microbiol 2020; 60:971-982. [PMID: 33103248 DOI: 10.1002/jobm.202000303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/31/2020] [Accepted: 09/15/2020] [Indexed: 11/06/2022]
Abstract
Endo-β-xylanases are hemicellulases involved in the conversion of xylans in plant biomass. Here, we report a novel acidophilic β-xylanase (ScXynA) with high transglycosylation abilities that was isolated from the filamentous fungus Scytalidium candidum 3C. ScXynA was identified as a glycoside hydrolase family 10 (GH10) dimeric protein, with a molecular weight of 38 ± 5 kDa per subunit. The enzyme catalyzed the hydrolysis of different xylans under acidic conditions and was stable in the pH range 2.6-4.5. The kinetic parameters of ScXynA were determined in hydrolysis reactions with p-nitrophenyl-β-d-cellobioside (pNP-β-Cel) and p-nitrophenyl-β-d-xylobioside (pNP-β-Xyl2 ), and kcat /Km was found to be 0.43 ± 0.02 (s·mM)-1 and 57 ± 3 (s·mM)-1 , respectively. In the catalysis of the transglycosylation o-nitrophenyl-β-d-xylobioside (oNP-β-Xyl2 ) acted both as a donor and an acceptor, resulting in the efficient production of o-nitrophenyl xylooligosaccharides, with a degree of polymerization of 3-10 and o-nitrophenyl-β-d-xylotetraose (oNP-β-Xyl4 ) as the major product (18.5% yield). The modeled ScXynA structure showed a favorable position for ligand entry and o-nitrophenyl group accommodation in the relatively open -3 subsite, while the cleavage site was covered with an extended loop. These structural features provide favorable conditions for transglycosylation with oNP-β-Xyl2 . The acidophilic properties and high transglycosylation activity make ScXynA a suitable choice for various biotechnological applications, including the synthesis of valuable xylooligosaccharides.
Collapse
Affiliation(s)
- Elena V Eneyskaya
- Molecular and Radiation Biophysics Division, Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center, Kurchatov Institute, Gatchina, Leningrad Region, Russia.,Kurchatov Genome Center - PNPI, Gatchina, Leningrad Region, Russia
| | - Kirill S Bobrov
- Molecular and Radiation Biophysics Division, Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center, Kurchatov Institute, Gatchina, Leningrad Region, Russia.,Kurchatov Genome Center - PNPI, Gatchina, Leningrad Region, Russia
| | - Maria V Kashina
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Anna S Borisova
- Molecular and Radiation Biophysics Division, Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center, Kurchatov Institute, Gatchina, Leningrad Region, Russia.,VTT Technical Research Center of Finland Ltd., Otaniemi, Finland
| | - Anna A Kulminskaya
- Molecular and Radiation Biophysics Division, Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center, Kurchatov Institute, Gatchina, Leningrad Region, Russia.,Kurchatov Genome Center - PNPI, Gatchina, Leningrad Region, Russia
| |
Collapse
|
9
|
Fortunato M, Gimbert Y, Rousset E, Lameiras P, Martinez A, Gatard S, Plantier-Royon R, Jaroschik F. Diastereoselective Synthesis of Axially Chiral Xylose-Derived 1,3-Disubstituted Alkoxyallenes: Scope, Structure, and Mechanism. J Org Chem 2020; 85:10681-10694. [DOI: 10.1021/acs.joc.0c01240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Moustapha Fortunato
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims Champagne-Ardenne, 51687 Reims, France
| | - Yves Gimbert
- Département de Chimie Moléculaire, UMR CNRS 5250, Université Grenoble Alpes, 38058 Grenoble, France
| | - Elodie Rousset
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims Champagne-Ardenne, 51687 Reims, France
| | - Pedro Lameiras
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims Champagne-Ardenne, 51687 Reims, France
| | - Agathe Martinez
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims Champagne-Ardenne, 51687 Reims, France
| | - Sylvain Gatard
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims Champagne-Ardenne, 51687 Reims, France
| | - Richard Plantier-Royon
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims Champagne-Ardenne, 51687 Reims, France
| | | |
Collapse
|
10
|
Gérard D, Méline T, Muzard M, Deleu M, Plantier-Royon R, Rémond C. Enzymatically-synthesized xylo-oligosaccharides laurate esters as surfactants of interest. Carbohydr Res 2020; 495:108090. [PMID: 32807358 DOI: 10.1016/j.carres.2020.108090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/12/2020] [Accepted: 07/01/2020] [Indexed: 01/29/2023]
Abstract
Lipase-catalyzed synthesis of xylo-oligosaccharides esters from pure xylobiose, xylotriose and xylotetraose in the presence of vinyl laurate was investigated. The influence of different experimental parameters such as the loading of lipase, the reaction duration or the use of a co-solvent was studied and the reaction conditions were optimized with xylobiose. Under the best conditions, a regioselective esterification occurred to yield a monoester with the acyl chain at the OH-4 of the xylose unit at the non-reducing end. Surface-active properties of these pure xylo-oligosaccharides fatty esters have been evaluated. They display interesting surfactant activities that differ according to the degree of polymerization (DP) of the glycone moiety.
Collapse
Affiliation(s)
- D Gérard
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51686, Reims, France; Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, 51687, Reims Cedex, France
| | - T Méline
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51686, Reims, France
| | - M Muzard
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, 51687, Reims Cedex, France
| | - M Deleu
- Université de Liège, Gembloux Agro-Bio Tech, Laboratoire de Biophysique Moléculaire Aux Interfaces, 2 Passage des Déportés, B-5030, Gembloux, Belgium
| | - R Plantier-Royon
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, 51687, Reims Cedex, France
| | - C Rémond
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51686, Reims, France.
| |
Collapse
|
11
|
Ren P, Miao X, Tang T, Wu Y, Wang J, Zeng Y, Li Y, Gao K, Yang YL. Construction of a meroterpenoid-like compound collection by precursor-assisted biosynthesis. Org Biomol Chem 2020; 18:5850-5856. [PMID: 32692341 DOI: 10.1039/d0ob01235a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Natural products (NPs) and their derivatives play a pivotal role in drug discovery due to their complexity and diversity. The strategies to rapidly generate NP-like compounds offer unique opportunities to access bioactive compounds. Here we present a new approach, precursor-assisted biosynthesis (PAB), for the creation of NP-like compounds by combination of artificial supplementation of common precursors and divergent post-modifications of precursor-deficient fungi. This method was applied to construct a meroterpenoid-like compound collection containing 43 compounds with diverse molecular scaffolds. Extensive bioactive screening of the collection revealed novel STING (stimulator of interferon genes) inhibitors, cytotoxic and antifungal compounds. This result indicates that PAB is an effective methodology for producing compound collections for the purpose of drug discovery.
Collapse
Affiliation(s)
- Panlong Ren
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Xinyu Miao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Ting Tang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Yueting Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Jing Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Ying Zeng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yun Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Yan-Long Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
12
|
Nieto-Domínguez M, Martínez-Fernández JA, de Toro BF, Méndez-Líter JA, Cañada FJ, Prieto A, de Eugenio LI, Martínez MJ. Exploiting xylan as sugar donor for the synthesis of an antiproliferative xyloside using an enzyme cascade. Microb Cell Fact 2019; 18:174. [PMID: 31601204 PMCID: PMC6788083 DOI: 10.1186/s12934-019-1223-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/29/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Currently, industrial societies are seeking for green alternatives to conventional chemical synthesis. This demand has merged with the efforts to convert lignocellulosic biomass into value-added products. In this context, xylan, as one of main components of lignocellulose, has emerged as a raw material with high potential for advancing towards a sustainable economy. RESULTS In this study, the recombinant endoxylanase rXynM from the ascomycete Talaromyces amestolkiae has been heterologously expressed in Pichia pastoris and used as one of the catalysts of an enzyme cascade developed to synthesize the antiproliferative 2-(6-hydroxynaphthyl) β-D-xylopyranoside, by transglycosylation of 2,6-dihydroxynaphthalene. The approach combines the use of two fungal xylanolytic enzymes, rXynM and the β-xylosidase rBxTW1 from the same fungus, with the cost-effective substrate xylan. The reaction conditions for the cascade were optimized by a Central Composite Design. Maximal productions of 0.59 and 0.38 g/L were reached using beechwood xylan and birchwood xylan, respectively. For comparison, xylans from other sources were tested in the same reaction, suggesting that a specific optimization is required for each xylan variety. The results obtained using this enzyme cascade and xylan were similar or better to those previously reported for a single catalyst and xylobiose, an expensive sugar donor. CONCLUSIONS Beechwood and birchwood xylan, two polysaccharides easily available from biomass, were used in a novel enzyme cascade to synthetize an antiproliferative agent. The approach represents a green alternative to the conventional chemical synthesis of 2-(6-hydroxynaphthyl) β-D-xylopyranoside using a cost-effective substrate. The work highlights the role of xylan as a raw material for producing value-added products and the potential of fungal xylanolytic enzymes in the biomass conversion.
Collapse
Affiliation(s)
- Manuel Nieto-Domínguez
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - José Alberto Martínez-Fernández
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Beatriz Fernández de Toro
- NMR and Molecular Recognition Group, Centro de Investigaciones Biológicas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Juan A Méndez-Líter
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Francisco Javier Cañada
- NMR and Molecular Recognition Group, Centro de Investigaciones Biológicas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Alicia Prieto
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Laura I de Eugenio
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - María Jesús Martínez
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
13
|
He J, Li H, Saravanamurugan S, Yang S. Catalytic Upgrading of Biomass-Derived Sugars with Acidic Nanoporous Materials: Structural Role in Carbon-Chain Length Variation. CHEMSUSCHEM 2019; 12:347-378. [PMID: 30407741 DOI: 10.1002/cssc.201802113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/08/2018] [Indexed: 05/07/2023]
Abstract
Shifting from petroleum-based resources to inedible biomass for the production of valuable chemicals and fuels is one of the significant aspects in sustainable chemistry for realizing the sustainable development of our society. Various renowned biobased platform molecules, such as 5-hydroxymethylfurfural, furfural, levulinic acid, and lactic acid, are successfully accessible from the transformation of biobased sugars. To achieve the specific reaction routes, heterogeneous nanoporous acidic materials have served as promising catalysts for the conversion of bio-sugars in the past decade. This Review summarizes advances in various nanoporous acidic materials for bio-sugar conversion, in which the number of carbon atoms is variable and controllable with the assistance of the switchable structure of nanoporous materials. The major focus of this Review is on possible reaction pathways/mechanisms and the relationships between catalyst structure and catalytic performance. Moreover, representative examples of catalytic upgrading of biobased platform molecules to biochemicals and fuels through selective C-C cleavage and coupling strategies over nanoporous acidic materials are also discussed.
Collapse
Affiliation(s)
- Jian He
- State Key Laboratory Breeding Base of Green Pesticide, & Agricultural Bioengineering, Key Laboratory of Green Pesticide, & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, PR China
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide, & Agricultural Bioengineering, Key Laboratory of Green Pesticide, & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, PR China
| | - Shunmugavel Saravanamurugan
- Laboratory of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Mohali, 140 306, Punjab, India
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide, & Agricultural Bioengineering, Key Laboratory of Green Pesticide, & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, PR China
| |
Collapse
|
14
|
Yao Y, Xiong CP, Zhong YL, Bian GW, Huang NY, Wang L, Zou K. Intramolecular and Ferrier Rearrangement Strategy for the Construction of C1-β-d-xylopyranosides: Synthesis, Mechanism and Biological Activity Study. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yuan Yao
- Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences; China Three Gorges University, Yichang; Hubei 443002 People's Republic of China
| | - Cai-Ping Xiong
- Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences; China Three Gorges University, Yichang; Hubei 443002 People's Republic of China
| | - Ya-Ling Zhong
- Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences; China Three Gorges University, Yichang; Hubei 443002 People's Republic of China
| | - Guo-Wei Bian
- Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences; China Three Gorges University, Yichang; Hubei 443002 People's Republic of China
| | - Nian-Yu Huang
- Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences; China Three Gorges University, Yichang; Hubei 443002 People's Republic of China
| | - Long Wang
- College of Materials and Chemical Engineering; China Three Gorges University, Yichang; Hubei 443002 People's Republic of China
| | - Kun Zou
- Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences; China Three Gorges University, Yichang; Hubei 443002 People's Republic of China
| |
Collapse
|
15
|
Doyle LM, Meany FB, Murphy PV. Lewis acid promoted anomerisation of alkyl O- and S-xylo-, arabino- and fucopyranosides. Carbohydr Res 2019; 471:85-94. [PMID: 30508660 DOI: 10.1016/j.carres.2018.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
Abstract
Pentopyranoside and 6-deoxyhexopyranosides, such as those from d-xylose, l-arabinose and l-fucose are components of natural products, oligosaccharides or polysaccharides. Lewis acid promoted anomerisation of some of their alkyl O- and S-glycopyranosides is reported here. SnCl4 was more successful than TiCl4, with the latter giving the glycosyl chloride by-product in some cases, and both were superior to BF3OEt2. Kinetics study using 1H NMR spectroscopy showed an order of reactivity: O-xylopyranoside > O-arabinopyranoside > O-fucopyranoside. Benzoylated glycosides were more reactive than acetylated glycosides. The reactivity of S-glycosides was greater than that of O-glycosides for both arabinose and fucose derivatives; the reactivity of O- and S-xylopyranosides was similar. The highest stereoselectivities were observed for fucopyranosides. The β-d-xylopyranoside and α-l-arabinopyranoside reactants are conformationally more flexible than β-l-fucopyranosides.
Collapse
Affiliation(s)
- Lisa M Doyle
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Fiach B Meany
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Paul V Murphy
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland.
| |
Collapse
|
16
|
Jérôme F, Marinkovic S, Estrine B. Transglycosylation: A Key Reaction to Access Alkylpolyglycosides from Lignocellulosic Biomass. CHEMSUSCHEM 2018; 11:1395-1409. [PMID: 29488350 DOI: 10.1002/cssc.201800265] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Indexed: 06/08/2023]
Abstract
An overview is provided on the recent advances in transglycosylation of cellulose and hemicellulose with either short-chain or long-chain alkyl alcohols. Catalytic processes are compared in terms of yield, selectivity and space-time yield, with a view to identifying the most promising pathways for future developments. In this context, the synthesis of alkylpolyglycosides directly from lignocellulosic biomass is discussed while keeping in mind the impact of the botanical origin on the transglycosylation reaction and the product distribution. A section dedicated to the physicochemical properties and ecological footprint of alkylpolyglycosides is also included.
Collapse
Affiliation(s)
- François Jérôme
- Institut de Chimie des Milieux et Matériaux de Poitiers, CNRS, Université de Poitiers, 1 rue marcel Doré, ENSIP, 86073, Poitiers, France
| | - Sinisa Marinkovic
- Agro-industrie Recherches et Développements, Green Chemistry Department, Route de Bazancourt, 51110, Pomacle, France
| | - Boris Estrine
- Agro-industrie Recherches et Développements, Green Chemistry Department, Route de Bazancourt, 51110, Pomacle, France
| |
Collapse
|
17
|
Exploring the aglycone subsite of a GH11 xylanase for the synthesis of xylosides by transglycosylation reactions. J Biotechnol 2018; 272-273:56-63. [PMID: 29501471 DOI: 10.1016/j.jbiotec.2018.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/18/2018] [Accepted: 02/27/2018] [Indexed: 11/22/2022]
Abstract
Xylanases Tx-xyn10 and Tx-xyn11 were compared for their transxylosylation abilities in the presence of various acceptors. Tx-xyn10 exhibited a broad specificity for various acceptors, whereas xylanase Tx-xyn11 catalysed transxylosylation reactions only in presence of polyphenolic acceptors. A modelling approach was developed to study the molecular bottlenecks into the active site of the enzyme that could be responsible for this restricted specificity. The glycosyl-enzyme intermediate of Tx-xyn11 was modelled, and a rotamer of the Y78 residue was integrated. In silico mutations of some residues from the (+1) and (+2) subsites were tested for the deglycosylation step in the presence of non-polyphenolic acceptors. The results indicated that the mutant W126A was able to use aliphatic alcohols and benzyl alcohol as acceptors for transxylosylation. Experimental validation was tested by mutating the xylanase Tx-xyn11 at position W126 into alanine. The specific activity and catalytic efficiency of the W126A mutant during the hydrolysis of xylans decreased by 2-fold and 4-fold, respectively, compared to wild-type xylanase. Among tested acceptors, transxylosylation catalysed by mutant W126A was improved with benzyl alcohol leading to a 2-fold higher concentration of benzyl xylobioside, as predicted by in silico mutation. This improved transxylosylation in the presence of benzyl alcohol leading to higher synthesis of benzyl xylobioside could likely be explained by lowest steric hindrance in the aglycone subsite of the mutated xylanase. No secondary hydrolysis of benzyl xylobioside occurred for both wild-type and mutant xylanases. Finally, our results demonstrated that the modelling approach was limited and that accounting for protein dynamics can lead to improved models.
Collapse
|
18
|
Goulart PN, da Silva CO, Widmalm G. The importance of orientation of exocyclic groups in a naphthoxyloside: A specific rotation calculation study. J PHYS ORG CHEM 2017. [DOI: 10.1002/poc.3708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory; Stockholm University; Stockholm Sweden
| |
Collapse
|
19
|
Prasad YS, Miryala S, Lalitha K, Ranjitha K, Barbhaiwala S, Sridharan V, Maheswari CU, Srinandan CS, Nagarajan S. Disassembly of Bacterial Biofilms by the Self-Assembled Glycolipids Derived from Renewable Resources. ACS APPLIED MATERIALS & INTERFACES 2017; 9:40047-40058. [PMID: 29096062 DOI: 10.1021/acsami.7b12225] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
More than 80% of chronic infections of bacteria are caused by biofilms. It is also a long-term survival strategy of the pathogens in a nonhost environment. Several amphiphilic molecules have been used in the past to potentially disrupt biofilms; however, the involvement of multistep synthesis, complicated purification and poor yield still remains a major problem. Herein, we report a facile synthesis of glycolipid based surfactant from renewable feedstocks in good yield. The nature of carbohydrate unit present in glycolipid influence the ring chain tautomerism, which resulted in the existence of either cyclic structure or both cyclic and acyclic structures. Interestingly, these glycolipids self-assemble into gel in highly hydrophobic solvents and vegetable oils, and displayed foam formation in water. The potential application of these self-assembled glycolipids to disrupt preformed biofilm was examined against various pathogens. It was observed that glycolipid 6a disrupts Staphylococcus aureus and Listeria monocytogenes biofilm, while the compound 6c was effective in disassembling uropathogenic E. coli and Salmonella enterica Typhimurium biofilms. Altogether, the supramolecular self-assembled materials, either as gel or as surfactant solution could be potentially used for surface cleansing in hospital environments or the food processing industries to effectively reduce pathogenic biofilms.
Collapse
Affiliation(s)
- Yadavali Siva Prasad
- Organic Synthesis Group, Department of Chemistry and CeNTAB, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, Tamil Nadu, India
| | - Sandeep Miryala
- Biofilm Biology Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, Tamil Nadu, India
| | - Krishnamoorthy Lalitha
- Organic Synthesis Group, Department of Chemistry and CeNTAB, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, Tamil Nadu, India
| | - K Ranjitha
- Organic Synthesis Group, Department of Chemistry and CeNTAB, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, Tamil Nadu, India
| | - Shehnaz Barbhaiwala
- Biofilm Biology Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, Tamil Nadu, India
| | - Vellaisamy Sridharan
- Organic Synthesis Group, Department of Chemistry and CeNTAB, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, Tamil Nadu, India
| | - C Uma Maheswari
- Organic Synthesis Group, Department of Chemistry and CeNTAB, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, Tamil Nadu, India
| | - C S Srinandan
- Biofilm Biology Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, Tamil Nadu, India
| | - Subbiah Nagarajan
- Organic Synthesis Group, Department of Chemistry and CeNTAB, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, Tamil Nadu, India
| |
Collapse
|
20
|
Gatard S, Plantier-Royon R, Rémond C, Muzard M, Kowandy C, Bouquillon S. Preparation of new β-D-xyloside- and β-D-xylobioside-based ionic liquids through chemical and/or enzymatic reactions. Carbohydr Res 2017; 451:72-80. [PMID: 28968549 DOI: 10.1016/j.carres.2017.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 11/16/2022]
Abstract
Several tetraalkylphosphonium and tetraalkylammonium salts containing xyloside- and xylobioside-based anionic moieties have been prepared. Two stereoselective routes have been developed: i) a chemical pathway in four steps from D-xylose, and ii) a chemoenzymatic pathway directly from biomass-derived xylans. These salts displayed interesting properties as ionic liquids. Their structures have been correlated to their thermal properties (melting, glass transition and decomposition temperatures).
Collapse
Affiliation(s)
- S Gatard
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex, France.
| | - R Plantier-Royon
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex, France
| | - C Rémond
- UMR FARE 614, Fractionnement des AgroRessources et Environnement, Chaire AFERE, Université de Reims-Champagne-Ardenne, INRA, 51686 Reims Cedex, France
| | - M Muzard
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex, France
| | - C Kowandy
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex, France
| | - S Bouquillon
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex, France.
| |
Collapse
|
21
|
Affiliation(s)
- You Yang
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Biao Yu
- State
Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
22
|
Chatron-Colliet A, Brusa C, Bertin-Jung I, Gulberti S, Ramalanjaona N, Fournel-Gigleux S, Brézillon S, Muzard M, Plantier-Royon R, Rémond C, Wegrowski Y. 'Click'-xylosides as initiators of the biosynthesis of glycosaminoglycans: Comparison of mono-xylosides with xylobiosides. Chem Biol Drug Des 2017; 89:319-326. [PMID: 27618481 DOI: 10.1111/cbdd.12865] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/27/2016] [Accepted: 06/02/2016] [Indexed: 11/28/2022]
Abstract
Different mono-xylosides and their corresponding xylobiosides obtained by a chemo-enzymatic approach featuring various substituents attached to a triazole ring were probed as priming agents for glycosaminoglycan (GAG) biosynthesis in the xylosyltransferase-deficient pgsA-745 Chinese hamster ovary cell line. Xylosides containing a hydrophobic aglycone moiety were the most efficient priming agents. Mono-xylosides induced higher GAG biosynthesis in comparison with their corresponding xylobiosides. The influence of the degree of polymerization of the carbohydrate part on the priming activity was investigated through different experiments. We demonstrated that in case of mono-xylosides, the cellular uptake as well as the affinity and the catalytic efficiency of β-1,4-galactosyltransferase 7 were higher than for xylobiosides. Altogether, these results indicate that hydrophobicity of the aglycone and degree of polymerization of glycone moiety were critical factors for an optimal priming activity for GAG biosynthesis.
Collapse
Affiliation(s)
- Aurore Chatron-Colliet
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, UFR de Médecine, Université de Reims Champagne Ardenne, Reims Cedex, France
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, UFR de Médecine, Université de Reims Champagne Ardenne, Reims Cedex, France
| | - Charlotte Brusa
- Institut de Chimie Moléculaire de Reims (ICMR), CNRS UMR 7312, UFR des Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims Cedex 2, France
- UMR614 Fractionnement des AgroRessources et Environnement, Université de Reims Champagne-Ardenne, Reims Cedex, France
- UMR614 Fractionnement des AgroRessources et Environnement, INRA, Reims Cedex, France
| | - Isabelle Bertin-Jung
- MolCelTEG Team and Glyco-Fluo platform (UMR 7365 and FR3209) Biopôle - Faculté de Médecine, UMR 7365 CNRS-Université de Lorraine, Vandoeuvre-lès-Nancy Cedex, France
| | - Sandrine Gulberti
- MolCelTEG Team and Glyco-Fluo platform (UMR 7365 and FR3209) Biopôle - Faculté de Médecine, UMR 7365 CNRS-Université de Lorraine, Vandoeuvre-lès-Nancy Cedex, France
| | - Nick Ramalanjaona
- MolCelTEG Team and Glyco-Fluo platform (UMR 7365 and FR3209) Biopôle - Faculté de Médecine, UMR 7365 CNRS-Université de Lorraine, Vandoeuvre-lès-Nancy Cedex, France
| | - Sylvie Fournel-Gigleux
- MolCelTEG Team and Glyco-Fluo platform (UMR 7365 and FR3209) Biopôle - Faculté de Médecine, UMR 7365 CNRS-Université de Lorraine, Vandoeuvre-lès-Nancy Cedex, France
| | - Stéphane Brézillon
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, UFR de Médecine, Université de Reims Champagne Ardenne, Reims Cedex, France
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, UFR de Médecine, Université de Reims Champagne Ardenne, Reims Cedex, France
| | - Murielle Muzard
- Institut de Chimie Moléculaire de Reims (ICMR), CNRS UMR 7312, UFR des Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims Cedex 2, France
| | - Richard Plantier-Royon
- Institut de Chimie Moléculaire de Reims (ICMR), CNRS UMR 7312, UFR des Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims Cedex 2, France
| | - Caroline Rémond
- UMR614 Fractionnement des AgroRessources et Environnement, Université de Reims Champagne-Ardenne, Reims Cedex, France
- UMR614 Fractionnement des AgroRessources et Environnement, INRA, Reims Cedex, France
| | - Yanusz Wegrowski
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, UFR de Médecine, Université de Reims Champagne Ardenne, Reims Cedex, France
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, UFR de Médecine, Université de Reims Champagne Ardenne, Reims Cedex, France
| |
Collapse
|