1
|
Jones TJ, Dutton KG, Dhattarwal HS, Blackburn PT, Saha R, Remsing RC, Lipke MC. Tuning Bro̷nsted Acidity by up to 12 p Ka Units in a Redox-Active Nanopore Lined with Multifunctional Metal Sites. J Am Chem Soc 2025; 147:2086-2098. [PMID: 39746663 DOI: 10.1021/jacs.4c15873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Electrostatic interactions, hydrogen bonding, and solvation effects can alter the free energies of ionizable functional groups in proteins and other nanoporous architectures, allowing such structures to tune acid-base chemistry to support specific functions. Herein, we expand on this theme to examine how metal sites (M = H2, ZnII, CoII, CoI) affect the pKa of benzoic acid guests bound in discrete porphyrin nanoprisms (M3TriCage) in CD3CN. These host-guest systems were chosen to model how porous metalloporphyrin electrocatalysts might influence H+ transfer processes that are needed to support important electrochemical reactions (e.g., reductions of H+, O2, or CO2). Usefully, the cavities of the host-guest complexes become hydrated at low water concentrations (10-40 mM), providing a good representation of the active sites of porous electrocatalysts in water. Under these conditions, Lewis acidic CoII and ZnII ions increase the Bro̷nsted acidities of the guests by 4 and 8 pKa units, respectively, while reduction of the CoII sites to anionic CoI sites produces an electrostatic potential that lowers acidity by ca. 4 units (8 units relative to the CoII state). Lacking functional metal sites, H6TriCage increases the acidity of the guests by just 2.5 pKa units despite the 12+ charge of this host and contributions from other factors (hydrogen bonding, hydration) that might stabilize the deprotonated guests. Thus, the metal sites have dominant effects on acid-base chemistry in the M3TriCages, providing a larger pKa range (12.75 to ≥24.5) for an encapsulated acid than attained via other confinement effects in proteins and artificial porous materials.
Collapse
Affiliation(s)
- Taro J Jones
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Kaitlyn G Dutton
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Harender S Dhattarwal
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - P Thomas Blackburn
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Rupak Saha
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Richard C Remsing
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Mark C Lipke
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
2
|
Lashgari A, Wang X, Krause JA, Sinha S, Jiang JJ. Electrosynthesis of Verdoheme and Biliverdin Derivatives Following Enzymatic Pathways. J Am Chem Soc 2024; 146:15955-15964. [PMID: 38814055 DOI: 10.1021/jacs.4c02847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Artificial syntheses of biologically active molecules have been fruitful in many bioinspired catalysis applications. Specifically, verdoheme and biliverdin, bearing polypyrrole frameworks, have inspired catalyst designs to address energy and environmental challenges. Despite remarkable progress in benchtop synthesis of verdoheme and biliverdin derivatives, all reported syntheses, starting from metalloporphyrins or inaccessible biliverdin precursors, require multiple steps to achieve the final desired products. Additionally, such synthetic procedures use multiple reactants/redox agents and involve multistep purification/extraction processes that often lower the yield. However, in a single step using atmospheric oxygen, heme oxygenases selectively generate verdoheme or biliverdin from heme. Motivated by such enzymatic pathways, we report a single-step electrosynthesis of verdoheme or biliverdin derivatives from their corresponding meso-aryl-substituted metalloporphyrin precursors. Our electrosynthetic methods have produced a copper-coordinating verdoheme analog in >80% yield at an applied potential of 0.65 V vs ferrocene/ferrocenium in air-exposed acetonitrile solution with a suitable electrolyte. These electrosynthetic routes reached a maximum product yield within 8 h of electrolysis at room temperature. The major products of verdoheme and biliverdin derivatives were isolated, purified, and characterized using electrospray mass spectrometry, absorption spectroscopy, cyclic voltammetry, and nuclear magnetic resonance spectroscopy techniques. Furthermore, X-ray crystallographic data were collected for select cobalt (Co)- and Cu-chelating verdoheme and metal-free biliverdin products. Electrosynthesis routes for the selective modification at the macrocycle ring in a single step are not known yet, and therefore, we believe that this report would advance the scopes of electrosynthesis strategies.
Collapse
Affiliation(s)
- Amir Lashgari
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Xiao Wang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Jeanette A Krause
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Soumalya Sinha
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Jianbing Jimmy Jiang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
3
|
Boonyuen S, Shanmugam P, Ramachandran R, Phromsatit T, Teerawatananond T, Tantayanon S, Arpornmaeklong P, Shirosaki Y. Exploring copper (II) porphyrin complexes and their derivatives for electrochemical analysis and biological assessment in the study of breast cancer (MCF-7) cell lines. ENVIRONMENTAL RESEARCH 2024; 250:118489. [PMID: 38373552 DOI: 10.1016/j.envres.2024.118489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/22/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
In this study, several derivatives of tetraphenylporphyrin were synthesized, each with unique meso-substituent groups including phenyl, methoxyphenyl, butyloxyphenyl, octyloxyphenyl, and dectyloxyphenyl. Additionally, their corresponding copper complexes were prepared and thoroughly characterized. The structural confirmation of all compounds was established through CHN elemental analysis, mass spectrometry, and FT-IR spectroscopy. As the number of carbon atoms in the alkyl long-chain increased, a slight red shift in the electronic absorption band was observed, which was attributed to the electronic influence of the alkyl group. DFT analysis indicated that electron density predominantly localized on the porphyrin ring of both the metal free porphyrins and copper (II) porphyrin complexes, with relatively low electron density in the p orbital of the meso-aryl long-chain substituent group. EPR spectroscopy of the Copper (II) ion complexes revealed signals, indicating their paramagnetic properties. Additionally, the Copper (II) tetraphenylporphyrin (CuTPP) complexes displayed two reversible oxidation peaks at +0.97 V and +1.35 V, whereas other derivatives exhibited lower oxidation potentials. The cytotoxicity of these compounds against MCF-7 cell lines was assessed using MTT assay, revealing cytotoxic effects in all cases. Among them, Copper (II) tetrakis (4-methyloxyphenyl)porphyrin (CuTOMPP) demonstrated the highest potential, with an IC50 value of 32.07 μg/mL.
Collapse
Affiliation(s)
- Supakorn Boonyuen
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumthani, 12120, Thailand.
| | - Paramasivam Shanmugam
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumthani, 12120, Thailand
| | - Rajan Ramachandran
- Center of Translational Medicine, Zibo Central Hospital, Zibo, 255036, Shandong, China
| | - Tossapon Phromsatit
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumthani, 12120, Thailand
| | - Thapong Teerawatananond
- Department of Chemistry, Faculty of Science and Technology, Valaya Alongkorn Rajabhat University, Pathumthani, 12120, Thailand
| | - Supawan Tantayanon
- Department of Chemistry, Green Chemistry Research Laboratory, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Yuki Shirosaki
- Department of Materials Science, Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| |
Collapse
|
4
|
Dong Y, Morimoto H, Lv X, Mo X, Chen F, Wu F, Aratani N, Qiu F, Xue S. Synthesis of Hybrid Porphyrin(2.1.2.1)s and Their Complexation. J Org Chem 2024; 89:1626-1632. [PMID: 38252075 DOI: 10.1021/acs.joc.3c02294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Novel hybrid porphyrin(2.1.2.1)s and their boron and copper complexes were synthesized using the "toy bricks" synthetic method. Crystal data, frontier molecular orbital calculations, and electrostatic potential surface maps reveal that hybridization in the porphyrin(2.1.2.1) donor-acceptor unit controls the selective coordination of BF2.
Collapse
Affiliation(s)
- Yuting Dong
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Hirofumi Morimoto
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma ,Nara 630-0192, Japan
| | - Xiaojuan Lv
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xuehuan Mo
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Feng Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Fan Wu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Naoki Aratani
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma ,Nara 630-0192, Japan
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Songlin Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| |
Collapse
|
5
|
Lv X, Gao H, Wu F, Liu N, Ueno S, Yang X, Zhang T, Aratani N, Yamada H, Qiu F, Shen Z, Xue S. Highly Robust and Antiaromatic Rhenium(I) Rosarin. Inorg Chem 2023; 62:4747-4751. [PMID: 36920034 DOI: 10.1021/acs.inorgchem.3c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
1ReH•Cl, a highly robust and antiaromatic rhenium(I) complex of triarylrosarin, is synthesized. The 1H NMR spectrum of 1ReH•Cl shows upfield-shifted pyrrole protons and highly downfield-shifted inner protons that confirm its antiaromatic nature, with density functional theory calculations strongly supporting this interpretation. Antiaromatic 1ReH•Cl absorbs from the UV to near-IR region of the optical spectrum; cyclic voltammetry, thin-layer UV-vis spectroelectrochemistry, and spin-density distributions clearly reveal that the rosarin backbone of 1ReH•Cl undergoes redox chemistry. The X-ray structure of 1ReH•Cl shows a fully coordinated and protonated inner cavity that effectively prevents proton-coupled electron transfer when treated with an acid. A remarkably negative NICS(0) value, clockwise anisotropy of the induced current density ring current, and the aromatic shielded inner cavity in the 2D ICSS(0) map reveal that the T1 state of 1ReH•Cl is aromatic based on Baird's rule.
Collapse
Affiliation(s)
- Xiaojuan Lv
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Hu Gao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Fan Wu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Ningchao Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - So Ueno
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Xiaoliang Yang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Naoki Aratani
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Hiroko Yamada
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Zhen Shen
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Songlin Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| |
Collapse
|
6
|
Lv X, Morimoto H, Liu N, Kuzuhara D, Aratani N, Yamada H, Qiu F, Xue S. Bent Dithienoporphyrin(2.1.2.1): Synthesis, Structure, Optical and Electronic Properties, and Metal Complexation. J Org Chem 2023. [DOI: 10.1021/acs.joc.2c02520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
- Xiaojuan Lv
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Hirofumi Morimoto
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Ningchao Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Daiki Kuzuhara
- Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551, Japan
| | - Naoki Aratani
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Hiroko Yamada
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Songlin Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| |
Collapse
|
7
|
Xue S, Lv X, Liu N, Zhang Q, Lei H, Cao R, Qiu F. Electrocatalytic Hydrogen Evolution of Bent Bis(dipyrrin) Ni(II) Complexes. Inorg Chem 2023; 62:1679-1685. [PMID: 36634365 DOI: 10.1021/acs.inorgchem.2c04097] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Planar Ni(II) porphyrinoid complexes have been widely used in electrochemical carbon dioxide reduction reaction and oxygen reduction reaction as well as hydrogen evolution reaction (HER). However, nonplanar Ni(II) tetra-pyrrolic complexes have not been thoroughly investigated thus far. In this study, three highly bent bis(dipyrrin) Ni(II) complexes have been synthesized to investigate their structure, electronic property, and electrocatalytic HER activities. Cyclic voltammetry and thin-layer UV-visible spectroelectrochemistry studies revealed four redox processes, yielding two reduced species as the final products. The ic/ip values of phenyl- and pentafluorophenyl-bearing bis(dipyrrin) Ni(II) complexes were >30 when trifluoroacetic acid was used as the proton source, and their Faradaic efficiencies for H2 generation were >93%. Density functional theory calculations of the HERs revealed low endothermic energies of bent bis(dipyrrin) Ni(II) complexes.
Collapse
Affiliation(s)
- Songlin Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xiaojuan Lv
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Ningchao Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Qingxin Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| |
Collapse
|
8
|
Lv X, Liu N, Xiao B, Morimoto H, Kuzuhara D, Aratani N, Yamada H, Qiu F, Xue S. Synthesis of Porphyrin(2.1.2.1) with Embedded Naphthalene. J PORPHYR PHTHALOCYA 2022. [DOI: 10.1142/s1088424622500390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Liu N, Osterloh WR, Huang H, Tang X, Mei P, Kuzuhara D, Fang Y, Pan J, Yamada H, Qiu F, Kadish KM, Xue S. Synthesis, Characterization, and Electrochemistry of Copper Dibenzoporphyrin(2.1.2.1) Complexes. Inorg Chem 2022; 61:3563-3572. [PMID: 35167271 DOI: 10.1021/acs.inorgchem.1c03596] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Three copper dibenzoporphyrin(2.1.2.1) complexes having two dipyrromethene units connected through o-phenylen bridges and 4-MePh, Ph, or F5Ph substituents at the meso positions of the dipyrrins were synthesized and characterized according to their spectral, electrochemical, and structural properties. As indicated by the single-crystal X-ray structures, all three derivatives have highly bent molecular structures, with angles between each planar dipyrrin unit ranging from 89° to 85°, indicative of a nonaromatic molecule. The insertion of copper(II) into dibenzoporphyrins(2.1.2.1) induced a change in the macrocyclic cavity shape from rectangular in the case of the free-base precursors to approximately square for the metalated copper derivatives. Solution electron paramagnetic resonance (EPR) spectra at 100 K showed hyperfine coupling of the Cu(II) central metal ion and the N nucleus in the highly bent molecular structures. Electrochemical measurements in CH2Cl2 or N,N-dimethylformamide (DMF) containing 0.1 M tetrabutylammonium perchlorate (TBAP) were consistent with ring-centered electron transfers and, in the case of reduction, were assigned to electron additions involving two equivalent π centers on the bent nonaromatic molecule. The potential separation between the two reversible one-electron reductions ranged from 230 to 400 mV in DMF, indicating a moderate-to-strong interaction between the equivalent redox-active dipyrrin units of the dibenzoporphyrins(2.1.2.1). The experimentally measured highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gaps ranged from 2.14 to 2.04 eV and were smaller than those seen for the planar copper tetraarylporphyrins(1.1.1.1), (Ar)4PCu.
Collapse
Affiliation(s)
- Ningchao Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - W Ryan Osterloh
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Hongliang Huang
- Tianjin Key Laboratory of Green Chemical Engineering Process Engineering, Tiangong University, Tianjin 300387, China
| | - Xinyue Tang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Peifeng Mei
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Daiki Kuzuhara
- Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Yuanyuan Fang
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hiroko Yamada
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Karl M Kadish
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Songlin Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.,Tianjin Key Laboratory of Green Chemical Engineering Process Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
10
|
Yao G, Shao X, Qiu Z, Qiu F, Li Z, Zhang T. Construction of lignin-based nano-adsorbents for efficient and selective recovery of tellurium (IV) from wastewater. CHEMOSPHERE 2022; 287:132058. [PMID: 34474381 DOI: 10.1016/j.chemosphere.2021.132058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Tellurium is massively used as the main light-absorbing layer component in the manufacturing of CdTe thin-film solar cells, a critical component in the photovoltaic industry. However, the process of manufacturing and renewing components has produced large amounts of tellurium-containing wastewater that is difficult to degrade and poses a serious threat to the aquatic ecosystem and human health. Hence, to achieve the recovery of tellurium resources for reducing their damages, a win-win approach was employed to utilize waste lignin to construct functional copper-doped activated lignin (CAL) adsorbents for selective separation and recovery of tellurium from wastewater. CAL exhibited superior adsorption properties towards tellurium (248.45 mg/g), mainly attributed to the adsorption mechanism of coordination interactions. Kinetic and isotherm results elucidated that monolayer chemisorption dominated CAL adsorption process. Besides, CAL had a satisfactory regeneration capability with minimal loss adsorption capacity after six consecutive cycles, which also exhibited high antifouling properties. Meanwhile, CAL achieved high selectivity for tellurium adsorption under the simulated wastewater, revealing the potential of CAL for practical application in wastewater. Therefore, this work provides a promising environmental strategy for exploring the application of lignin-based materials for tellurium recovery from wastewater.
Collapse
Affiliation(s)
- Guanglei Yao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xue Shao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhiwei Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Zhangdi Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China; Institute of Green Chemistry and Chemical Technology, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China.
| |
Collapse
|
11
|
Hou Y, Fang Y, Ou Z, Wang L, Xu W, Kadish KM. Electrochemical characterization of β,β′-butanoporphyrins containing sterically hindered meso-2,6-dihalogenophenyl substituents and first-row transition metal ions in nonaqueous media. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621500450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Six [Formula: see text],[Formula: see text]-butano substituted metalloporphyrins containing sterically hindered meso-dihalogenophenyl substituents and first-row transition metal ions were synthesized and their electrochemical and spectroelectrochemical properties were characterized in nonaqueous media. The investigated compounds have the general formula butano(Y2Ph)4PorM, where Por is a dianion of the porphyrin, M = Mn[Formula: see text]Cl, Fe[Formula: see text]Cl, Co[Formula: see text], Ni[Formula: see text], Cu[Formula: see text] or Zn[Formula: see text]and Y2Ph is a sterically hindered 2,6-F2Ph or 2,6-Cl2Ph group on each of the four meso-positions of the macrocycle. The electrochemistry of each porphyrin was examined in CH2Cl2 or pyridine containing 0.1 M tetra-[Formula: see text]-butylammonium perchlorate. The first one-electron reduction is metal-centered for the manganese(III), iron(III) and cobalt(II) porphyrins to generate the Mn(II), Fe(II) and Co(I) porphyrins, but it is porphyrin ring-centered for the other examined M(II) porphyrins to give porphyrin [Formula: see text]-anion radicals under the given solution conditions. The effect of the [Formula: see text],[Formula: see text]-butano and sterically hindered meso-Y2Ph substituents on redox potentials and electron transfer mechanisms are discussed and compared to what was previously reported for butano-substituted tetraarylporphyrins without hindered meso-substituents.
Collapse
Affiliation(s)
- Yueping Hou
- Department of Chemical Engineering, Zhenjiang Vocational College, Zhenjiang, 212003, P. R. China
| | - Yuanyuan Fang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
- Department of Chemistry, University of Houston, Houston, Texas 77204-500, USA
| | - Zhongping Ou
- Department of Chemistry, University of Houston, Houston, Texas 77204-500, USA
| | - Liping Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
- Department of Chemistry, University of Houston, Houston, Texas 77204-500, USA
| | - Weijie Xu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Karl M. Kadish
- Department of Chemistry, University of Houston, Houston, Texas 77204-500, USA
| |
Collapse
|
12
|
Wang L, Fang Y, Xu W, Ou Z, Kadish KM. Electrochemical and spectroelectrochemical characterization of Cu(II) and Mn(III) tetrabutano- and tetrabenzoporphyrins containing sterically hindered meso -(2,6-difluorophenyl) substituents in nonaqueous media. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619501013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Four tetrabutano and tetrabenzoporphyrins containing sterically hindered meso-(2,6-difluorophenyl) substituents and copper(II) or manganese(III) central metal ions were synthesized and characterized as to their electrochemical and spectroelectrochemical properties in nonaqueous media. The copper(II) derivatives exhibit the expected two one-electron reductions to give [Formula: see text]-anion radicals and dianions in CH2Cl2. Electrochemical and spectroelectrochemical data suggest that a Cu(II) phlorin anion is generated from the doubly reduced Cu(II) butanoporphyrin and it is this species which undergoes the third reduction in pyridine. The first one-electron reduction of the Mn(III) porphyrins is metal-centered to give a Mn(II) compound, while the second and third reductions are macrocycle-centered to give Mn(II) porphyrin [Formula: see text]-anion radicals and dianions in both CH2Cl2 and pyridine. A Mn(II) phlorin anion is also generated from the Mn(II) dianion on the spectroelectrochemical timescale under the given solution conditions. The [Formula: see text],[Formula: see text]-butano and benzo groups have a significant effect on the measured redox potentials. Steric hindrance of the meso-(2,6-difluorophenyl) substituents also has an effect on the potential separation between the first two oxidations of the benzoporphyrins.
Collapse
Affiliation(s)
- Liping Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, USA
| | - Yuanyuan Fang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Weijie Xu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Zhongping Ou
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, USA
| | - Karl M. Kadish
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, USA
| |
Collapse
|
13
|
Ye L, Fang Y, Ou Z, Wang L, Xue S, Lu Y, Kadish KM. Axial coordination reactions with nitrogenous bases and determination of equilibrium constants for zinc tetraarylporphyrins containing four β,β′-fused butano and benzo groups in nonaqueous media. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619500135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The axial coordination properties of six zinc tetraarylporphyrins with seven different nitrogenous bases were examined in CH2Cl2 for derivatives containing four [Formula: see text],[Formula: see text]-fused butano or benzo groups and the equilibrium constants (log[Formula: see text] determined using spectral titration methods. The examined compounds are represented as butano(YPh)4PorZn and benzo(YPh)4PorZn, where Por is the porphyrin dianion and Y is a CH3, H or Cl substituent on the para-position of each meso-phenyl ring of the macrocycle. The initial four-coordinate butano- and benzoporphyrins will axially bind one nitrogenous base to form five-coordinate derivatives in CH2Cl2 and this leads to a 4–22 nm red-shift of the Soret and Q bands. The log[Formula: see text] values range from 1.98 to 4.69 for butano(YPh)4PorZn and from 3.42 to 5.36 for benzo(YPh)4PorZn, with the exact value depending upon the meso and [Formula: see text]-substituents of the porphyrin and the conjugate acid dissociation constants (p[Formula: see text] of the nitrogenous base.
Collapse
Affiliation(s)
- Lina Ye
- College of Computer, Jilin Normal University, Siping 136000, P. R. China
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yuanyuan Fang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Zhongping Ou
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, USA
| | - Liping Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, USA
| | - Songlin Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yang Lu
- College of Computer, Jilin Normal University, Siping 136000, P. R. China
| | - Karl M. Kadish
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, USA
| |
Collapse
|
14
|
Fang Y, Wang L, Xu W, Ou Z, Chen M, Cong L, Shan W, Ke X, Kadish KM. Spectral, Electrochemical, and ESR Characterization of Manganese Tetraarylporphyrins Containing Four β,β'-Pyrrole Fused Butano and Benzo Groups in Nonaqueous Media. Inorg Chem 2019; 58:2576-2587. [PMID: 30721029 DOI: 10.1021/acs.inorgchem.8b03184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two series of β,β'-pyrrole butano- and benzo-substituted mangenese(III) tetraarylporphyrins were synthesized and characterized with regard to their spectral and electrochemical properties. The investigated compounds have the general formula butano(Ar)4PorMnCl and benzo(Ar)4PorMnCl, where Por is the dianion of the porphyrin and Ar is a p-CH3Ph, Ph or p-ClPh group on each of the four meso-positions of the macrocycle. Each manganese(III) butano- or benzoporphyrin was examined in CH2Cl2 and/or pyridine containing 0.1 M tetra- n-butylammonium perchlorate and the data then were compared to that of the parent tetraarylporphyrins having the same meso-substituents. Up to four reductions are observed for each compound, the first being metal-centered to generate a Mn(II) porphyrin, and the second and third being porphyrin ring-centered to give a Mn(II) porphyrin π-anion radical and dianion, respectively. The one-electron reduced manganese porphyrins have an ESR spectrum with signals at g⊥= 5.6-5.8 and g// = 2.0, indicating a mixture of the four- and five-coordinated Mn(II) complexes in a high-spin state (3d5, S = 5/2, I = 5/2). Data from cyclic voltammetry and spectroelectrochemistry both suggest that formation of the porphyrin dianion is followed by a chemical reaction at the electrode surface to give an electroactive phlorin anion. The effects of solvent and porphyrin substituents on ultraviolet-visible light (UV-vis) spectra, redox potentials, and electron transfer mechanisms are discussed.
Collapse
Affiliation(s)
- Yuanyuan Fang
- School of Chemistry and Chemical Engineering , Jiangsu University , Zhenjiang , 212013 , China
| | - Liping Wang
- School of Chemistry and Chemical Engineering , Jiangsu University , Zhenjiang , 212013 , China
| | - Weijie Xu
- School of Chemistry and Chemical Engineering , Jiangsu University , Zhenjiang , 212013 , China
| | - Zhongping Ou
- Department of Chemistry , University of Houston , Houston , Texas 77204-5003 , United States
| | - Mingyuan Chen
- School of Chemistry and Chemical Engineering , Jiangsu University , Zhenjiang , 212013 , China.,Department of Chemistry , University of Houston , Houston , Texas 77204-5003 , United States
| | - Lei Cong
- Department of Chemistry , University of Houston , Houston , Texas 77204-5003 , United States
| | - Wenqian Shan
- Department of Chemistry , University of Houston , Houston , Texas 77204-5003 , United States
| | - Xiangyi Ke
- Department of Chemistry , University of Houston , Houston , Texas 77204-5003 , United States
| | - Karl M Kadish
- Department of Chemistry , University of Houston , Houston , Texas 77204-5003 , United States
| |
Collapse
|
15
|
Grover N, Chaudhri N, Sankar M. β-Functionalized Dibenzoporphyrins with Mixed Substituents Pattern: Facile Synthesis, Structural, Spectral, and Electrochemical Redox Properties. Inorg Chem 2019; 58:2514-2522. [DOI: 10.1021/acs.inorgchem.8b03106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nitika Grover
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Nivedita Chaudhri
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Muniappan Sankar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
16
|
Ye L, Fang Y, Ou Z, Wang L, Xue S, Sun J, Kadish KM. Electrochemistry of zinc tetraarylporphyrins containing fused butano and benzo groups. Effect of solvent and substituents on spectra, potentials and mechanism in nonaqueous media. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s1088424618501067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two series of zinc tetraarylporphyrins containing four [Formula: see text],[Formula: see text]′-pyrrole fused butano or benzo groups were synthesized and characterized as to their electrochemical and spectroelectrochemical properties in nonaqueous media. The examined compounds are represented as butano(Ar)4PorZn and benzo(Ar)4PorZn, where Por is the porphyrin dianion and Ar is a [Formula: see text]-CH3Ph, Ph or [Formula: see text]-ClPh substitutent on [Formula: see text]-positions of the macrocycle. Each Zn(II) butano- and benzoporphyrin undergoes two one-electron reductions to give a [Formula: see text]-anion radical and dianion in CH2Cl2. In contrast, three reductions were observed for the benzoporphyrin derivatives in pyridine, the third of which is assigned as electron addition to a benzophlorin anion generated from the doubly reduced benzoporphyrin. Two overlapped one-electron oxidations were observed for the butanoporphyrins in CH2Cl2, a result not previously observed for any other zinc porphyrin. The electrochemically measured HOMO-LUMO gap of the benzoporphyrins ranges from 1.89 to 1.90 V in CH2Cl2 and from 1.93 to 1.95 V in pyridine. Both values are smaller than the gaps of butanoporphyrins at 2.11-2.13 V in CH2Cl2 and 2.07.2.09 V in pyridine.
Collapse
Affiliation(s)
- Lina Ye
- College of Computer, Jilin Normal University, Siping 136000, P. R. China
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yuanyuan Fang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Zhongping Ou
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, USA
| | - Liping Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, USA
| | - Songlin Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Jing Sun
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Karl M. Kadish
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, USA
| |
Collapse
|
17
|
Sinha S, Warren JJ. Unexpected Solvent Effect in Electrocatalytic CO 2 to CO Conversion Revealed Using Asymmetric Metalloporphyrins. Inorg Chem 2018; 57:12650-12656. [PMID: 30212195 DOI: 10.1021/acs.inorgchem.8b01814] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Rapid and efficient electrochemical CO2 reduction is an ongoing challenge for the production of sustainable fuels and chemicals. In this work, electrochemical CO2 reduction is investigated using metalloporphyrin catalysts (metal = Mn, Fe, Co, Ni, Cu) that feature one hydroxyphenyl group, and three other phenyl groups, in the porphyrin heterocycle (5-(2-hydroxyphenyl)-10,15,20-triphenylporphyrin, TPOH). These complexes, which are minimal versions of related complexes bearing up to eight proton relays, were designed to allow more straightforward determination of the role of the 2-hydroxylphenyl functional group. The iron-substituted version of TPOH supports robust reduction of CO2 in acetonitrile solvent, where carbon monoxide is the only detected product. Addition of weak Brønsted acids (1 M water or 8 mM phenol) gives rise to almost 100-fold enhancement in turnover frequency. Surprisingly, the iron analogue is a poor catalyst when the solvent is changed to dimethylformamide. These results lead to the proposal of a model where the hydroxyphenyl group behaves as a local proton source, a hydrogen bond donor to CO2-bound intermediates, and a hydrogen bonding partner to Brønsted acids. The observations from this model suggest improvements for existing electrocatalytic CO2 reduction systems.
Collapse
Affiliation(s)
- Soumalya Sinha
- Department of Chemistry Simon Fraser University 8888 University Drive Burnaby , British Columbia V5A 1S6 , Canada
| | - Jeffrey J Warren
- Department of Chemistry Simon Fraser University 8888 University Drive Burnaby , British Columbia V5A 1S6 , Canada
| |
Collapse
|
18
|
Xu W, Fang Y, Ou Z, Chen M, Kadish KM. Synthesis, electrochemical and spectroelectrochemical characterization of iron(III) tetraarylporphyrins containing four β,β′-butano and β,β′-benzo fused rings. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s1088424618500517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Six iron(III) tetraarylporphyrins containing four [Formula: see text]-butano or [Formula: see text]-benzo fused rings were synthesized and characterized by electrochemistry and spectroelectrochemistry in nonaqueous media. The examined compounds are represented as butano(TpYPP)FeCl and benzo(TpYPP)FeCl, where TpYPP is a dianion of the meso-substituted porphyrin, Y is a CH[Formula: see text], H or Cl substituent on the para-position of the four meso-phenyl rings and butano and benzo are the [Formula: see text]-substituents on each of the four pyrrole rings of the compound. Up to three reductions are observed for each Fe(III) butano- and benzoporphyrin in CH[Formula: see text]Cl[Formula: see text] or pyridine containing 0.1 M TBAP, the first of which is assigned in each case to a metal-centered electron transfer. The second reduction is also metal-centered in CH[Formula: see text]Cl[Formula: see text] and leads to formation of an Fe(I) porphyrin, but it is porphyrin ring-centered and gives an Fe(II) porphyrin [Formula: see text]-anion radical reduction product when pyridine is used as the solvent. The effects of the solvent and type of fused ring system (butano or benzo) on the UV-vis spectra and electrochemical properties of the Fe(III) porphyrins are discussed and comparisons are made to both the structurally related non-[Formula: see text]-substituted iron porphyrins and earlier described butano- or benzotetraarylporphyrins containing Cu(II) or Co(II) central metal ions.
Collapse
Affiliation(s)
- Weijie Xu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yuanyuan Fang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhongping Ou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
- Department of Chemistry, University of Houston, Houston, TX 77204-5003, USA
| | - Mingyuan Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
- Department of Chemistry, University of Houston, Houston, TX 77204-5003, USA
| | - Karl M. Kadish
- Department of Chemistry, University of Houston, Houston, TX 77204-5003, USA
| |
Collapse
|
19
|
Ye L, Fang Y, Ou Z, Xue S, Kadish KM. Cobalt Tetrabutano- and Tetrabenzotetraarylporphyrin Complexes: Effect of Substituents on the Electrochemical Properties and Catalytic Activity of Oxygen Reduction Reactions. Inorg Chem 2018; 56:13613-13626. [PMID: 29064238 DOI: 10.1021/acs.inorgchem.7b02405] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three series of cobalt tetraarylporphyrins were synthesized and characterized by electrochemistry and spectroelectrochemistry. The investigated compounds have the general formula (TpYPP)Co, butano(TpYPP)CoII, and benzo(TpYPP)CoII, where TpYPP represents the dianion of the meso-substituted porphyrin, Y is a CH3, H, or Cl substituent on the para position of the four phenyl rings, and butano and benzo are respectively the β- and β'-substituted groups on the four pyrrole rings of the compound. Each porphyrin undergoes one or two reductions depending upon the meso substituent and solvent utilized. Two irreversible reductions are observed for (TpYPP)CoII and butano(TpYPP)CoII in CH2Cl2 containing 0.1 M tetra-n-butylammonium perchlorate; the first leads to the formation of a highly reactive cobalt(I) porphyrin, which can then rapidly react with a solvent to give a CoIIICH2Cl as the product. Only one reversible reduction is seen for benzo(TpYPP)CoII under the same solution conditions, and the one-electron-reduction product is assigned as a cobalt(II) porphyrin π-anion radical. Three oxidations can be observed for each examined compound in CH2Cl2. The first oxidation is metal-centered for the (TpYPP)Co and benzo(TpYPP)CoII derivatives, leading to generation of a cobalt(III) porphyrin with an intact π-ring system, but this redox process is ring-centered in the case of butano(TpYPP)CoII and gives a CoII π-cation radical product. Each porphyrin was also examined as a catalyst for oxygen reduction reactions (ORRs) when adsorbed on a graphite electrode in 1.0 M HClO4. The number of electrons transferred (n) during ORRs is 2.0 for the butano(TpYPP)CoII derivatives, consistent with only H2O2 being produced as a product for the reaction with O2. However, the reduction of O2 using the cobalt benzoporphyrins as catalysts gave n values between 2.6 and 3.1 under the same solution conditions, thus producing a mixture of H2O and H2O2 as the reduction product. This result indicates that the β and β' substituents have a significant effect on the catalytic properties of the cobalt porphyrins for ORRs in acid media.
Collapse
Affiliation(s)
- Lina Ye
- School of Computer, Jilin Normal University , Siping 136000, China.,School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, China
| | - Yuanyuan Fang
- School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, China
| | - Zhongping Ou
- School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, China.,Department of Chemistry, University of Houston , Houston, Texas 77204-5003, United States
| | - Songlin Xue
- School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, China
| | - Karl M Kadish
- Department of Chemistry, University of Houston , Houston, Texas 77204-5003, United States
| |
Collapse
|
20
|
Chen M, Ou Z, Feng R, Fang Y, Zhang Y, Kadish KM. Electrochemistry and spectroelectrochemistry of metallohexaphyrins containing bis-copper or bis-zinc central metal ions. J PORPHYR PHTHALOCYA 2017. [DOI: 10.1142/s108842461750016x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two meso-substituted bis-metallohexaphyrins were synthesized and characterized as to their electrochemical and spectroelectrochemical properties in nonaqueous media. The examined compounds are represented as HexaPyM2, where HexaPy represents an expanded macrocycle containing six pyrroles and M [Formula: see text] Cu(II) or Zn(II). Each hexaphyrin undergoes four reversible one-electron reductions and two irreversible oxidations in PhCN or CH2Cl2 containing 0.1 M tetrabutylammonium perchlorate. The HexaPyCu2 is much easier to reduce than the corresponding Cu porphyrin with the same meso-substituents and it is also easier to reduce than a structurally related Cu(II) tripyrrinone. All four reductions of HexaPyM2 are assigned as [Formula: see text]-ring centered electron transfers to give [HexaPyM2][Formula: see text], [HexaPyM2][Formula: see text], [HexaPyM2][Formula: see text] and [HexaPyM2][Formula: see text], respectively. The neutral HexaPyCu2 and HexaPyZn2 also exhibit two oxidations, both of which are irreversible at a scan rate of 0.10 V/s. The peak separation between the first one-electron addition and the first electron abstraction of HexaPyM2 ranges from 1.46 to 1.72 V. These non-thermodynamic HOMO–LUMO gaps are similar to the range of HOMO–LUMO gaps for previously characterized sapphyrins which contain five pyrrole ring in the macrocycle.
Collapse
Affiliation(s)
- Minyuan Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
- Department of Chemistry, University of Houston, Houston, TX 77204-5003, USA
| | - Zhongping Ou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ru Feng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuanyuan Fang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ying Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Karl M. Kadish
- Department of Chemistry, University of Houston, Houston, TX 77204-5003, USA
| |
Collapse
|
21
|
Dudkin SV, Erickson NR, Vologzhanina AV, Novikov VV, Rhoda HM, Holstrom CD, Zatsikha YV, Yusubov MS, Voloshin YZ, Nemykin VN. Preparation, X-ray Structures, Spectroscopic, and Redox Properties of Di- and Trinuclear Iron-Zirconium and Iron-Hafnium Porphyrinoclathrochelates. Inorg Chem 2016; 55:11867-11882. [PMID: 27801586 DOI: 10.1021/acs.inorgchem.6b01936] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The first hybrid di- and trinuclear iron(II)-zirconium(IV) and iron(II)-hafnium(IV) macrobicyclic complexes with one or two apical 5,10,15,20-tetraphenylporphyrin fragments were obtained using transmetalation reaction between n-butylboron-triethylantimony-capped or bis(triethylantimony)-capped iron(II) clathrochelate precursors and dichlorozirconium(IV)- or dichlorohafnium(IV)-5,10,15,20-tetraphenylporphyrins under mild conditions. New di- and trinuclear porphyrinoclathrochelates of general formula FeNx3((Bn-Bu)(MTPP)) and FeNx3(MTPP)2 [M = Zr, Hf; TPP = 5,10,15,20-tetraporphyrinato(2-); Nx = nioximo(2-)] were characterized by one-dimensional (1H and 13C{1H}) and two-dimensional (COSY and HSQC) NMR, high-resolution electrospray ionization mass spectrometry, UV-visible, and magnetic circular dichroism spectra, single-crystal X-ray diffraction experiments, as well as elemental analyses. Redox properties of all complexes were probed using electrochemical and spectroelectrochemical approaches. Electrochemical and spectroelectrochemical data suggestive of a very weak, if any, long-range electronic coupling between two porphyrin π-systems in FeNx3(MTPP)2 complexes. Density functional theory and time-dependent density functional theory calculations were used to correlate spectroscopic signatures and redox properties of new compounds with their electronic structures.
Collapse
Affiliation(s)
- Semyon V Dudkin
- Department of Chemistry & Biochemistry, University of Minnesota Duluth , Duluth, Minnesota 55812, United States.,Department of Technology of Organic Substances & Polymer Materials, Tomsk Polytechnic University , 634050 Tomsk, Russia.,Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , 119991 Moscow, Russia
| | - Nathan R Erickson
- Department of Chemistry & Biochemistry, University of Minnesota Duluth , Duluth, Minnesota 55812, United States
| | - Anna V Vologzhanina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , 119991 Moscow, Russia
| | - Valentin V Novikov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , 119991 Moscow, Russia
| | - Hannah M Rhoda
- Department of Chemistry & Biochemistry, University of Minnesota Duluth , Duluth, Minnesota 55812, United States
| | - Cole D Holstrom
- Department of Chemistry & Biochemistry, University of Minnesota Duluth , Duluth, Minnesota 55812, United States
| | - Yuriy V Zatsikha
- Department of Chemistry & Biochemistry, University of Minnesota Duluth , Duluth, Minnesota 55812, United States.,Department of Chemistry, University of Manitoba , Winnipeg, Manitoba R3T 2N2, Canada
| | - Mekhman S Yusubov
- Department of Technology of Organic Substances & Polymer Materials, Tomsk Polytechnic University , 634050 Tomsk, Russia
| | - Yan Z Voloshin
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , 119991 Moscow, Russia
| | - Victor N Nemykin
- Department of Chemistry & Biochemistry, University of Minnesota Duluth , Duluth, Minnesota 55812, United States.,Department of Chemistry, University of Manitoba , Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
22
|
Wang W, Ou Z, Ye L, Fang Y, Xue S, Song Y, Kadish KM. Synthesis and Electrochemistry of Aryl-Substituted Tripyrrinone Copper Complexes. Comparison of Redox Properties to Structurally Related Porphyrins and Corroles. CHINESE J CHEM 2016. [DOI: 10.1002/cjoc.201600484] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Joslin EE, Zaragoza JPT, Baglia RA, Siegler MA, Goldberg DP. The Influence of Peripheral Substituent Modification on P(V), Mn(III), and Mn(V)(O) Corrolazines: X-ray Crystallography, Electrochemical and Spectroscopic Properties, and HAT and OAT Reactivities. Inorg Chem 2016; 55:8646-60. [PMID: 27529361 DOI: 10.1021/acs.inorgchem.6b01219] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The influence of remote peripheral substitution on the physicochemical properties and reactivity of phosphorus and manganese corrolazine (Cz) complexes was examined. The substitution of p-MeO for p-t-Bu groups on the eight phenyl substituents of the β-carbon atoms of the Cz ring led to changes in UV-vis transitions and redox potentials for each of the complexes. The oxygen atom transfer (OAT) and hydrogen atom transfer (HAT) reactivity of the Mn(V)(O) complexes was also influenced by p-MeO substitution. The OAT reactivity of Mn(V)(O)(MeOP8Cz) (MeOP8Cz = octakis(p-methoxyphenyl)corrolazinato(3-)) with triarylphosphine (PAr3) substrates led to second-order rate constants from 10.2(5) to 3.1(2) × 10(4) M(-1) s(-1). These rates of OAT are slower than those seen for Mn(V)(O)(TBP8Cz) (TBP8Cz = octakis(p-tert-butylphenyl)corrolazinato(3-)). A Hammett study involving para-substituted PAr3 substrates reveals a Hammett ρ-value for Mn(V)(O)(MeOP8Cz) that is more negative than that observed for Mn(V)(O)(TBP8Cz), consistent with a less electrophilic Mn center. The HAT reactivity of Mn(V)(O)(MeOP8Cz) with C-H substrates was examined and revealed second-order rate constants from 6.8(5) × 10(-5) to 1.70(2) × 10(-1) M(-1) s(-1). The rate constants varied with the C-H bond strength of the substrate. Slightly faster HAT rates with C-H substrates were observed with Mn(V)(O)(MeOP8Cz) compared to Mn(V)(O)(TBP8Cz), indicating that the basicity of the putative [Mn(IV)(O)](-) intermediate likely compensates for the more negative redox potential in the driving force for HAT. In addition, the complete, large-scale synthesis of the para-phenyl-substituted porphyrazines RP8PzH2 (R = p-tert-butylphenyl (TB), p-methoxyphenyl (MeO), and p-isopropylphenyl) and corrolazines RP8CzH3 (TBP8CzH3 and MeOP8CzH3) is presented. The crystal structures of the monoprotonated, metal-free corrolazine [(TBP8CzH3)(H)](+)[BArF](-), P(V)(OMe)2(MeOP8Cz), and Mn(III)(MeOP8Cz)(MeOH) are presented. This work provides the first insights into the influence of electronic substituent effects on the corrolazine periphery.
Collapse
Affiliation(s)
- Evan E Joslin
- Department of Chemistry, The Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Jan Paulo T Zaragoza
- Department of Chemistry, The Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Regina A Baglia
- Department of Chemistry, The Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
24
|
Grover N, Sankar M, Song Y, Kadish KM. Asymmetrically Crowded “Push–Pull” Octaphenylporphyrins with Modulated Frontier Orbitals: Syntheses, Photophysical, and Electrochemical Redox Properties. Inorg Chem 2015; 55:584-97. [DOI: 10.1021/acs.inorgchem.5b01339] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nitika Grover
- Department
of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Muniappan Sankar
- Department
of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Yang Song
- Department
of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Karl M. Kadish
- Department
of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| |
Collapse
|