1
|
Al-Fahdawi MQ, Aldoghachi AF, Alhassan FH, Al-Doghachi FA, Alshwyeh HA, Rasedee A, Alnasser SM, Al-Qubaisi MS, Ibrahim WN. Physicochemical characterization and cancer cell antiproliferative effect of silver-doped magnesia nanoparticles. Heliyon 2023; 9:e15560. [PMID: 37159701 PMCID: PMC10163622 DOI: 10.1016/j.heliyon.2023.e15560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 05/11/2023] Open
Abstract
Silver-doped magnesia nanoparticles (Ag/MgO) were synthesized using the precipitation method and characterized by various techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA), Brunner-Emmett-Teller (BET) surface area measurements, and dispersive X-ray spectroscopy (EDX). The morphology of Ag/MgO nanoparticles was determined by transmission and scanning electron microscopy, which revealed cuboidal shaped nanoparticles with sizes ranging from 31 to 68 nm and an average size of 43.5 ± 10.6 nm. The anticancer effects of Ag/MgO nanoparticles were evaluated on human colorectal (HT29) and lung adenocarcinoma (A549) cell lines, and their caspase-3, -8, and -9 activities, as well as Bcl-2, Bax, p53, cytochrome C protein expressions were estimated. Ag/MgO nanoparticles showed selective toxicity towards HT29 and A549 cells while remaining relatively innocuous towards the normal human colorectal, CCD-18Co, and lung, MRC-5 cells. The IC50 values of Ag/MgO nanoparticles on the HT29 and A549 cells were found to be 90.2 ± 2.6 and 85.0 ± 3.5 μg/mL, respectively. The Ag/MgO nanoparticles upregulated caspase-3 and -9 activities, downregulated Bcl-2, upregulated Bax and p53 protein expressions in the cancer cells. The morphology of the Ag/MgO nanoparticle treated HT29 and A549 cells was typical of apoptosis, with cell detachment, shrinkage, and membrane blebbing. The results suggest that Ag/MgO nanoparticles induce apoptosis in cancer cells and exhibit potential as a promising anticancer agent.
Collapse
Affiliation(s)
| | - Ahmed Faris Aldoghachi
- Faculty of Medicine and Health Sciences, University Putra Malaysia, UPM, Serdang, 43300, Malaysia
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras, 43000, Malaysia
| | - Fatah H. Alhassan
- Department of Applied Chemistry and Technology, College of Science and Arts, Alkamel University of Jeddah, Jeddah, 21589, Saudi Arabia
- Department of Nanoscience and Nanotechnology, Africa City of Technology, Khartoum Bahari, Khartoum, Sudan
| | | | - Hussah Abdullah Alshwyeh
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
- Basic & Applied Scientific Research Center, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Abdullah Rasedee
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Corresponding author.Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | | | | | - Wisam Nabeel Ibrahim
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
- Corresponding author. Department of Biomedical sciences, College of Health sciences, QU Health, Qatar University, Qatar.
| |
Collapse
|
2
|
Farooqi AS, Adnan SNFB, Setiabudi HD, Muhammad SAFS, Ismail S, Aslam S, Abdullah B. Syngas Production via Bi-Reforming of Methane Over Fibrous KCC-1 Stabilized Ni Catalyst. Top Catal 2023. [DOI: 10.1007/s11244-022-01713-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
3
|
Zhang Q, Ma Q, Guo J, Li H, Wang Y, Wang X. Surface oxygen vacancies modified ridge-like CeO2/ZnO nanobelts for enhancing photocatalytic activity. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
High Active Co/Mg1-xCex3+O Catalyst: Effects of Metal-Support Promoter Interactions on CO2 Reforming of CH4 Reaction. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2021. [DOI: 10.9767/bcrec.16.1.9969.97-110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Co/Mg1−XCe3+XO (x = 0, 0.03, 0.07, 0.15; 1 wt% cobalt each) catalysts for the dry reforming of methane (DRM) reaction were prepared using the co-precipitation method with K2CO3 as precipitant. Characterization of the catalysts was achieved by X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction (H2-TPR), Brunauer–Emmett–Teller (BET), transmission electron microscopy (TEM), and thermal gravimetric analysis (TGA). The role of several reactant and catalyst concentrations, and reaction temperatures (700–900 °C) on the catalytic performance of the DRM reaction was measured in a tubular fixed-bed reactor under atmospheric pressure at various CH4/CO2 concentration ratios (1:1 to 2:1). Using X-ray diffraction, a surface area of 19.2 m2.g−1 was exhibited by the Co/Mg0.85Ce3+0.15O catalyst and MgO phase (average crystallite size of 61.4 nm) was detected on the surface of the catalyst. H2 temperature programmed reaction revealed a reduction of CoO particles to metallic Co0 phase. The catalytic stability of the Co/Mg0.85Ce3+0.15O catalyst was achieved for 200 h on-stream at 900 °C for the 1:1 CH4:CO2 ratio with an H2/CO ratio of 1.0 and a CH4, CO2 conversions of 75% and 86%, respectively. In the present study, the conversion of CH4 was improved (75%–84%) when conducting the experiment at a lower flow of oxygen (1.25%). Finally, the deposition of carbon on the spent catalysts was analyzed using TEM and Temperature programmed oxidation-mass spectroscopy (TPO-MS) following 200 h under an oxygen stream. Better anti-coking activity of the reduced catalyst was observed by both, TEM, and TPO-MS analysis. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
5
|
Abstract
The conversion of CO2 and CH4, the main components of the greenhouse gases, into synthesis gas are in the focus of academic and industrial research. In this review, the activity and stability of different supported noble metal catalysts were compared in the CO2 + CH4 reaction on. It was found that the efficiency of the catalysts depends not only on the metal and on the support but on the particle size, the metal support interface, the carbon deposition and the reactivity of carbon also influences the activity and stability of the catalysts. The possibility of the activation and dissociation of CO2 and CH4 on clean and on supported noble metals were discussed separately. CO2 could dissociate on metal surfaces, this reaction could proceed via the formation of carbonate on the support, or on the metal–support interface but in the reaction the hydrogen assisted dissociation of CO2 was also suggested. The decrease in the activity of the catalysts was generally attributed to carbon deposition, which can be formed from CH4 while others suggest that the source of the surface carbon is CO2. Carbon can occur in different forms on the surface, which can be transformed into each other depending on the temperature and the time elapsed since their formation. Basically, two reaction mechanisms was proposed, according to the mono-functional mechanism the activation of both CO2 and CH4 occurs on the metal sites, but in the bi-functional mechanism the CO2 is activated on the support or on the metal–support interface and the CH4 on the metal.
Collapse
|
6
|
Wang WY, Wang GC. The first-principles-based microkinetic simulation of the dry reforming of methane over Ru(0001). Catal Sci Technol 2021. [DOI: 10.1039/d0cy01942a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As the temperature was increased, the generation rate of H2 and CO in the DRM reaction on Ru(0001) gradually increased along with the ratio of H2/CO generation rate.
Collapse
Affiliation(s)
- Wan-Ying Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and
- The Tianjin Key Lab and Molecule-based Material Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Gui-Chang Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and
- The Tianjin Key Lab and Molecule-based Material Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
7
|
Zhang Y, Yao YF, Qiao YY, Wang GC. First-principles theoretical study on dry reforming of methane over perfect and boron-vacancy-containing h-BN sheet-supported Ni catalysts. Phys Chem Chem Phys 2021; 23:617-627. [PMID: 33331372 DOI: 10.1039/d0cp04732e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The entire reaction mechanism of the dry reforming of methane (DRM) as well as the competition processes over perfect and boron-vacancy-containing h-BN sheet-supported Ni-catalysts (labeled Ni2/h-BN and Ni2/h-BN-B-D) was studied by density functional theory calculations in the present work. Our calculation results show that B-defected h-BN strongly binds to the Ni2 active sites (i.e., shows a strong metal-support interaction (SMSI) character) due to the better electron transfer between Ni2 sites and the support. It was found that CH4 is easier to activate than molecular CO2. The activation of CO2 occurs on the surface of Ni2/h-BN through a direct route, whereas it is prone to follow a hydrogen-assisted path for Ni2/h-BN-B-D via the COOH* intermediate, and the results show that the oxidant O* is easily formed on the surface of Ni2/h-BN-B-D. It was also found that O* is the main oxidant agent for CHx* intermediates through the CH3-O oxidation mechanism. The reaction kinetic analysis indicated that the reverse water gas shift reaction (RWGS) is much more favorable than DRM (1.30 vs. 1.72 eV) over the Ni2/h-BN system, whereas the RWGS and DRM are comparable on Ni2/h-BN-B-D (1.77 vs. 1.66 eV), suggesting a high DRM activity on Ni2/h-BN-B-D. Moreover, neither methane cracking nor a Boudouard reaction to form C* species is thermodynamically and kinetically unfavorable over Ni2/h-BN-B-D; hence, Ni2/h-BN-B-D has strong resistance to carbon deposition. Compared to Ni(111), both Ni2/h-BN-B-D and Ni2/h-BN show strong resistance to carbon deposition. Our results provide a further mechanistic understanding of the DRM over an Ni-based catalyst through the SMSI characteristic and the SMSI favors strong resistance to carbon deposition.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and the Tianjin Key Lab and Molecule-based Material Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | | | | | | |
Collapse
|
8
|
Enhancement of CO2 Reforming of CH4 Reaction Using Ni,Pd,Pt/Mg1−xCex4+O and Ni/Mg1−xCex4+O Catalysts. Catalysts 2020. [DOI: 10.3390/catal10111240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Catalysts Ni/Mg1−xCex4+O and Ni,Pd,Pt/Mg1−xCex4+O were developed using the co-precipitation–impregnation methods. Catalyst characterization took place using XRD, H2-TPR, XRF, XPS, Brunauer–Emmett–Teller (BET), TGA TEM, and FE-SEM. Testing the catalysts for the dry reforming of CH4 took place at temperatures of 700–900 °C. Findings from this study revealed a higher CH4 and CO2 conversion using the tri-metallic Ni,Pd,Pt/Mg1−xCex4+O catalyst in comparison with Ni monometallic systems in the whole temperature ranges. The catalyst Ni,Pd,Pt/Mg0.85Ce4+0.15O also reported an elevated activity level (CH4; 78%, and CO2; 90%) and an outstanding stability. Carbon deposition on spent catalysts was analyzed using TEM and Temperature programmed oxidation-mass spectroscopy (TPO-MS) following 200 h under an oxygen stream. The TEM and TPO-MS analysis results indicated a better anti-coking activity of the reduced catalyst along with a minimal concentration of platinum and palladium metals.
Collapse
|
9
|
Effect of La2O3 as a Promoter on the Pt,Pd,Ni/MgO Catalyst in Dry Reforming of Methane Reaction. Catalysts 2020. [DOI: 10.3390/catal10070750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pt,Pd,Ni/MgO, Pt,Pd,Ni/Mg0.97La3+0.03O, Pt,Pd,Ni/Mg0.93La3+0.07O, and Pt,Pd,Ni/Mg0.85La3+0.15O (1% of each of the Ni, Pd, and Pt) catalysts were prepared by a surfactant-assisted co-precipitation method. Samples were characterized by the XRD, XPS, XRF, FT-IR, H2-TPR, TEM, the Brunauer–Emmett–Teller (BET) method, and TGA and were tested for the dry reforming of methane (DRM). TEM and thermal gravimetric analysis (TGA) methods were used to analyze the carbon deposition on spent catalysts after 200 h at 900 °C. At a temperature of 900 °C and a 1:1 CH4:CO2 ratio, the tri-metallic Pt,Pd,Ni/Mg0.85La3+0.15O catalyst with a lanthanum promoter showed a higher conversion of CH4 (85.01%) and CO2 (98.97%) compared to the Ni,Pd,Pt/MgO catalysts in the whole temperature range. The selectivity of H2/CO decreased in the following order: Pt,Pd,Ni/Mg0.85La3+0.15O > Pt,Pd,Ni/Mg0.93La3+0.07O > Pt,Pd,Ni/Mg0.97La3+0.03O > Ni,Pd,Pt/MgO. The results indicated that among the catalysts, the Pt,Pd,Ni/Mg0.85La23+0.15O catalyst exhibited the highest activity, making it the most suitable for the dry reforming of methane reaction.
Collapse
|
10
|
Pino L, Italiano C, Laganà M, Vita A, Recupero V. Kinetic study of the methane dry (CO 2) reforming reaction over the Ce 0.70La 0.20Ni 0.10O 2−δ catalyst. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02192b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The kinetic behaviour of the Ce0.70La0.20Ni0.10O2−δ catalyst during the methane dry reforming reaction was investigated in a fixed bed reactor in the temperature range of 923–1023 K with the partial pressure of CH4 and CO2 ranging between 5 and 50 kPa.
Collapse
Affiliation(s)
- Lidia Pino
- CNR Istituto di Tecnologie Avanzate per l'Energia “Nicola Giordano”
- 98126 Messina
- Italy
| | - Cristina Italiano
- CNR Istituto di Tecnologie Avanzate per l'Energia “Nicola Giordano”
- 98126 Messina
- Italy
| | - Massimo Laganà
- CNR Istituto di Tecnologie Avanzate per l'Energia “Nicola Giordano”
- 98126 Messina
- Italy
| | - Antonio Vita
- CNR Istituto di Tecnologie Avanzate per l'Energia “Nicola Giordano”
- 98126 Messina
- Italy
| | - Vincenzo Recupero
- CNR Istituto di Tecnologie Avanzate per l'Energia “Nicola Giordano”
- 98126 Messina
- Italy
| |
Collapse
|
11
|
Li L, Liu X, He H, Zhang N, Liu Z, Zhang G. A novel two-dimensional MgO-h-BN nanomaterial supported Pd catalyst for CO oxidation reaction. Catal Today 2019. [DOI: 10.1016/j.cattod.2018.07.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Al-Swai BM, Osman N, Alnarabiji MS, Adesina AA, Abdullah B. Syngas Production via Methane Dry Reforming over Ceria–Magnesia Mixed Oxide-Supported Nickel Catalysts. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b03671] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Basem M. Al-Swai
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610 Perak, Malaysia
| | - Noridah Osman
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610 Perak, Malaysia
| | - Mohamad Sahban Alnarabiji
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610 Perak, Malaysia
| | | | - Bawadi Abdullah
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610 Perak, Malaysia
- CO2 Utilization Group, Institute Contaminant Management for Oil and Gas, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610 Perak, Malaysia
| |
Collapse
|
13
|
Al-Doghachi FAJ, Taufiq-Yap YH. CO2
Reforming of Methane over Ni/MgO Catalysts Promoted with Zr and La Oxides. ChemistrySelect 2018. [DOI: 10.1002/slct.201701883] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Yun Hin Taufiq-Yap
- Department of Chemistry, Faculty of Science; University Putra Malaysia; 43400 UPM Serdang, Selangor Malaysia
- Catalysis Science and Technology Research Centre, Faculty of Science; University Putra Malaysia; 43400, UPM Serdang, Selangor Malaysia
| |
Collapse
|
14
|
Syngas production from the
$$\hbox {CO}_{2}$$
CO
2
reforming of methane over
$$\hbox {Co}/\hbox {Mg}_{1-\mathrm{x}}\hbox {Ni}_{\mathrm{x}}\hbox {O}$$
Co
/
Mg
1
-
x
Ni
x
O
catalysts. J CHEM SCI 2017. [DOI: 10.1007/s12039-017-1396-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
|