1
|
Tok M, Say B, Dölek G, Tatar B, Özgür DÖ, Kurukavak ÇK, Kuş M, Dede Y, Çakmak Y. Substitution effects in distyryl BODIPYs for near infrared organic photovoltaics. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2
|
Miao J, Wang Y, Liu J, Wang L. Organoboron molecules and polymers for organic solar cell applications. Chem Soc Rev 2021; 51:153-187. [PMID: 34851333 DOI: 10.1039/d1cs00974e] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Organic solar cells (OSCs) are emerging as a new photovoltaic technology with the great advantages of low cost, light-weight, flexibility and semi-transparency. They are promising for portable energy-conversion products and building-integrated photovoltaics. Organoboron chemistry offers an important toolbox to design novel organic/polymer optoelectronic materials and to tune their optoelectronic properties for OSC applications. At present, organoboron small molecules and polymers have become an important class of organic photovoltaic materials. Power conversion efficiencies (PCEs) of 16% and 14% have been realized with organoboron polymer electron donors and electron acceptors, respectively. In this review, we summarize the research progress in various kinds of organoboron photovoltaic materials for OSC applications, including organoboron small molecular electron donors, organoboron small molecular electron acceptors, organoboron polymer electron donors and organoboron polymer electron acceptors. This review also discusses how to tune their opto-electronic properties and active layer morphology for enhancing OSC device performance. We also offer our insight into the opportunities and challenges in improving the OSC device performance of organoboron photovoltaic materials.
Collapse
Affiliation(s)
- Junhui Miao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Yinghui Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| |
Collapse
|
3
|
Squeo BM, Ganzer L, Virgili T, Pasini M. BODIPY-Based Molecules, a Platform for Photonic and Solar Cells. Molecules 2020; 26:E153. [PMID: 33396319 PMCID: PMC7794854 DOI: 10.3390/molecules26010153] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/22/2020] [Accepted: 12/27/2020] [Indexed: 12/13/2022] Open
Abstract
The 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-based molecules have emerged as interesting material for optoelectronic applications. The facile structural modification of BODIPY core provides an opportunity to fine-tune its photophysical and optoelectronic properties thanks to the presence of eight reactive sites which allows for the developing of a large number of functionalized derivatives for various applications. This review will focus on BODIPY application as solid-state active material in solar cells and in photonic devices. It has been divided into two sections dedicated to the two different applications. This review provides a concise and precise description of the experimental results, their interpretation as well as the conclusions that can be drawn. The main current research outcomes are summarized to guide the readers towards the full exploitation of the use of this material in optoelectronic applications.
Collapse
Affiliation(s)
- Benedetta Maria Squeo
- Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche (CNR), Via A. Corti 12, 20133 Milano, Italy;
| | - Lucia Ganzer
- Istituto di Fotonica e Nanotecnologie (IFN), Consiglio Nazionale delle Ricerche (CNR), Dipartimento di Fisica, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20132 Milano, Italy;
| | - Tersilla Virgili
- Istituto di Fotonica e Nanotecnologie (IFN), Consiglio Nazionale delle Ricerche (CNR), Dipartimento di Fisica, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20132 Milano, Italy;
| | - Mariacecilia Pasini
- Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche (CNR), Via A. Corti 12, 20133 Milano, Italy;
| |
Collapse
|
4
|
Zając D, Sołoducho J, Cabaj J. Organic Triads for Solar Cells Application: A Review. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824666200311151421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The need to find alternative sources of energy and environmental protection has
resulted in the significant development of organic photovoltaics. The synthesis of organic
compounds that will ensure the efficiency of the cells has become a key issue. In this
work, we present an overview of materials based on donor-linker-acceptor structural motifs,
and summarize the current state of research which can help in the design of new, effective
photovoltaic materials.
Collapse
Affiliation(s)
- Dorota Zając
- Wroclaw University of Science and Technology, Faculty of Chemistry, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Jadwiga Sołoducho
- Wroclaw University of Science and Technology, Faculty of Chemistry, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Joanna Cabaj
- Wroclaw University of Science and Technology, Faculty of Chemistry, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
5
|
Guo Y, Xia D, Liu B, Wu H, Li C, Tang Z, Xiao C, Li W. Small Band gap Boron Dipyrromethene-Based Conjugated Polymers for All-Polymer Solar Cells: The Effect of Methyl Units. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01525] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yiting Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dongdong Xia
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Baiqiao Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hongbo Wu
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zheng Tang
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Chengyi Xiao
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Weiwei Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
6
|
Ho D, Ozdemir R, Kim H, Earmme T, Usta H, Kim C. BODIPY-Based Semiconducting Materials for Organic Bulk Heterojunction Photovoltaics and Thin-Film Transistors. Chempluschem 2018; 84:18-37. [PMID: 31950740 DOI: 10.1002/cplu.201800543] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/22/2018] [Indexed: 12/31/2022]
Abstract
The rapid emergence of organic (opto)electronics as a promising alternative to conventional (opto)electronics has been achieved through the design and development of novel π-conjugated systems. Among various semiconducting structural platforms, 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) π-systems have recently attracted attention for use in organic thin-films transistors (OTFTs) and organic photovoltaics (OPVs). This Review article provides an overview of the developments in the past 10 years on the structural design and synthesis of BODIPY-based organic semiconductors and their application in OTFT/OPV devices. The findings summarized and discussed here include the most recent breakthroughs in BODIPYs with record-high charge carrier mobilities and power conversion efficiencies (PCEs). The most up-to-date design rationales and discussions providing a strong understanding of structure-property-function relationships in BODIPY-based semiconductors are presented. Thus, this review is expected to inspire new research for future materials developments/applications in this family of molecules.
Collapse
Affiliation(s)
- Dongil Ho
- Department of Chemical and Biomolecular Engineering, Sogang University Mapo-gu, Seoul, 04107, Republic of Korea
| | - Resul Ozdemir
- Department of Materials Science and Nanotechnology Engineering, Abdullah Gul University, Kayseri, 38080, Turkey
| | - Hyungsug Kim
- Department of Chemical and Biomolecular Engineering, Sogang University Mapo-gu, Seoul, 04107, Republic of Korea
| | - Taeshik Earmme
- Department of Chemical Engineering, Hongik University Mapo-gu, Seoul, 04066, Republic of Korea
| | - Hakan Usta
- Department of Materials Science and Nanotechnology Engineering, Abdullah Gul University, Kayseri, 38080, Turkey
| | - Choongik Kim
- Department of Chemical and Biomolecular Engineering, Sogang University Mapo-gu, Seoul, 04107, Republic of Korea
| |
Collapse
|
7
|
Zhang M, Jin R. Rational design of near-infrared dyes based on boron dipyrromethene derivatives for application in organic solar cells. RSC Adv 2018; 8:33659-33665. [PMID: 35548832 PMCID: PMC9086563 DOI: 10.1039/c8ra06940a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/20/2018] [Indexed: 12/02/2022] Open
Abstract
With the aim to further improve the light-absorption efficiency of organic solar cells (OSCs), we have designed a series of novel pyrrolopyrrole boron dipyrromethene (BODIPY) derivatives by replacing the sulfur atom and introducing different fused aromatic heterocycle end-caps. The optical, electronic, and charge transporting properties of the designed molecules have been systematically investigated by applying density functional theory (DFT) and time-dependent DFT (TD-DFT) methodologies. The calculated the frontier molecular orbital (FMO) energies and spectral properties showed that the designed molecules exhibit narrower band gaps and strong absorption in the red/near-infrared (NIR) region, which led to the higher light-absorbing efficiency. Furthermore, the calculated reorganization energies show that the designed molecules are expected to be promising candidates for hole and/or electron transport materials. The results reveal that the designed molecules can serve as high-efficiency red/NIR-active donor materials as well as hole and/or electron transport materials in OSC applications.
Collapse
Affiliation(s)
- Man Zhang
- Inner Mongolia Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Chifeng University Chifeng 024000 China
| | - Ruifa Jin
- Inner Mongolia Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Chifeng University Chifeng 024000 China
| |
Collapse
|
8
|
Xu K, Sukhanov AA, Zhao Y, Zhao J, Ji W, Peng X, Escudero D, Jacquemin D, Voronkova VK. Unexpected Nucleophilic Substitution Reaction of BODIPY: Preparation of the BODIPY-TEMPO Triad Showing Radical-Enhanced Intersystem Crossing. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701724] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kejing Xu
- State Key Laboratory of Fine Chemicals; School of Chemical Engineering; Dalian University of Technology; E-208 West Campus, 2 Ling Gong Rd. 116024 Dalian China
| | - Andrey A. Sukhanov
- Zavoisky Physical-Technical Institute; FIC KazanSC; Russian Academy of Sciences; Sibirsky trakt 10/7 420029 Kazan Russia
| | - Yingjie Zhao
- State Key Laboratory of Fine Chemicals; School of Chemical Engineering; Dalian University of Technology; E-208 West Campus, 2 Ling Gong Rd. 116024 Dalian China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals; School of Chemical Engineering; Dalian University of Technology; E-208 West Campus, 2 Ling Gong Rd. 116024 Dalian China
| | - Wei Ji
- State Key Laboratory of Fine Chemicals; School of Chemical Engineering; Dalian University of Technology; E-208 West Campus, 2 Ling Gong Rd. 116024 Dalian China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals; School of Chemical Engineering; Dalian University of Technology; E-208 West Campus, 2 Ling Gong Rd. 116024 Dalian China
| | - Daniel Escudero
- CEISAM UMR CNRS 6230; Université de Nantes; 2 rue de la Houssinière, BP 92208 44322 Nantes Cedex 3 France
| | - Denis Jacquemin
- CEISAM UMR CNRS 6230; Université de Nantes; 2 rue de la Houssinière, BP 92208 44322 Nantes Cedex 3 France
- Institut Universitaire de France; 1, rue Descartes 75005 Paris Cedex 5 France
| | - Violeta K. Voronkova
- Zavoisky Physical-Technical Institute; FIC KazanSC; Russian Academy of Sciences; Sibirsky trakt 10/7 420029 Kazan Russia
| |
Collapse
|
9
|
Toffoletti A, Wang Z, Zhao J, Tommasini M, Barbon A. Precise determination of the orientation of the transition dipole moment in a Bodipy derivative by analysis of the magnetophotoselection effect. Phys Chem Chem Phys 2018; 20:20497-20503. [DOI: 10.1039/c8cp01984c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Precise determination, in isotropic samples, of the electronic transition dipole moment orientation in the molecular frame by exploiting magnetophotoselection effects.
Collapse
Affiliation(s)
- Antonio Toffoletti
- Dipartimento di Scienze Chimiche
- Università degli Studi di Padova
- 35131 Padova
- Italy
| | - Zhijia Wang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- People's Republic of China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- People's Republic of China
| | - Matteo Tommasini
- Dipartimento di Chimica
- Materiali e Ingegneria Chimica
- Politecnico di Milano
- 20133 Milano
- Italy
| | - Antonio Barbon
- Dipartimento di Scienze Chimiche
- Università degli Studi di Padova
- 35131 Padova
- Italy
| |
Collapse
|
10
|
Liu W, Yao J, Zhan C. A Novel BODIPY-Based Low-Band-Gap Small-Molecule Acceptor for Efficient Non-fullerene Polymer Solar Cells. CHINESE J CHEM 2017. [DOI: 10.1002/cjoc.201700542] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Wenxu Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry; Institute of Chemistry, Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry; Institute of Chemistry, Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Chuanlang Zhan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry; Institute of Chemistry, Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| |
Collapse
|
11
|
Tailoring the photophysical and photovoltaic properties of boron-difluorodipyrromethene dimers. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Li TY, Ma Z, Qiao Z, Körner C, Vandewal K, Zeika O, Leo K. Aza-BODIPY Derivatives Containing BF(CN) and B(CN) 2 Moieties. Chempluschem 2017; 82:190-194. [PMID: 31961543 DOI: 10.1002/cplu.201600479] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/24/2016] [Indexed: 01/26/2023]
Abstract
Two novel aza-BODIPY derivatives are synthesized, with the fluorine atoms in the BF2 moiety replaced by cyano groups. The introduction of cyano groups changes the phenyl substituents on the 3,5 positions from parallel to antiparallel. The HOMO/LUMO energy levels are stabilized gradually upon increasing the number of cyano groups, and the photophysical properties show corresponding shifts. With high thermal stability, the derivatives can be purified by sublimation and used to prepare vacuum-deposited thin films. This research extends the aza-BODIPY family with cyano-substituted derivatives.
Collapse
Affiliation(s)
- Tian-Yi Li
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, George-Bähr-Strasse 1, 01069, Dresden, Germany
| | - Zaifei Ma
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, George-Bähr-Strasse 1, 01069, Dresden, Germany
| | - Zhi Qiao
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, George-Bähr-Strasse 1, 01069, Dresden, Germany
| | - Christian Körner
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, George-Bähr-Strasse 1, 01069, Dresden, Germany
| | - Koen Vandewal
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, George-Bähr-Strasse 1, 01069, Dresden, Germany
| | - Olaf Zeika
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, George-Bähr-Strasse 1, 01069, Dresden, Germany
| | - Karl Leo
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, George-Bähr-Strasse 1, 01069, Dresden, Germany
| |
Collapse
|
13
|
Tang A, Zhan C, Yao J, Zhou E. Design of Diketopyrrolopyrrole (DPP)-Based Small Molecules for Organic-Solar-Cell Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1600013. [PMID: 27859743 DOI: 10.1002/adma.201600013] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 05/11/2016] [Indexed: 06/06/2023]
Abstract
After the first report in 2008, diketopyrrolopyrrole (DPP)-based small-molecule photovoltaic materials have been intensively explored. The power conversion efficiencies (PCEs) for the DPP-based small-molecule donors have been improved up to 8%. Furthermore, through judicious structure modification, DPP-based small molecules can also be converted into electron-acceptor materials, and, recently, some exciting progress has been achieved. The development of DPP-based photovoltaic small molecules is summarized here, and the photovoltaic performance is discussed in relation to structural modifications, such as the variations of donor-acceptor building blocks, alkyl substitutions, and the type of conjugated bridges, as well as end-capped groups. It is expected that the discussion will provide a guideline in the exploration of novel and promising DPP-containing photovoltaic small molecules.
Collapse
Affiliation(s)
- Ailing Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Chuanlang Zhan
- Beijing National Laboratory of Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jiannian Yao
- Beijing National Laboratory of Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Erjun Zhou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Yangtze River Delta Academy of Nanotechnology and Industry Development Research, Jiaxing, Zhejiang Province, 314000, P. R. China
| |
Collapse
|
14
|
Doddi S, Narayanaswamy K, Ramakrishna B, Singh SP, Bangal PR. Synthesis and Spectroscopic Investigation of Diketopyrrolopyrrole - Spiropyran Dyad for Fluorescent Switch Application. J Fluoresc 2016; 26:1939-1949. [PMID: 27492608 DOI: 10.1007/s10895-016-1886-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/18/2016] [Indexed: 11/29/2022]
Abstract
We report the synthesis and characterization of a new fluorescent dyad SP-DPP-SP(9) via efficient palladium-catalyzed Sonogashira coupling of prop-2-yn-1-yl 3-(3',3'dimethyl-6-nitrospiro[chromene-2,2'-indolin]-1'-yl)propanoatespiropyran, SP(8), a well known photochromic accepter, with 3,6-bis(5-bromothiophen-2-yl)-2,5-bis((R)-2-ethylhexyl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione, DPP(4), a highly fluorescent donor. Under visible light exposure the SP unit is in a closed hydrophobic form, whereas under UV irradiation it converts to a polar, hydrophilic open form named Merocyanine (MC), which is responsible for functioning of photo-switch application. The photochemistry pertaining to fluorescence switch, 'on/off' behaviour, of model dyad SP-DPP-SP(9) is experimentally analyzed in solution as well as in solid state in polymer matrices by photoluminescence(PL) and absorption spectroscopy. After absorption of UV light the spiropyran unit of the dyad under goes the rupture of the spiro C-O bond leading to the formation of MC. The absorption band of MC fairly overlaps to the fluorescence of DPP unit resulting quenching of fluorescence via fluorescence resonance energy transfer from exited DPP unit to ground state MC. In contrary, the fluorescence of DPP is fully regained upon transformation of MC to SP by exposure to visible light or thermal stimuli. Hence, the fluorescence intensity of dyad 9 is regulated by reversible conversion among the two states of the photochromic spiropyran units and the fluorescence resonance energy transfer (FRET) between the MC form of SP and the DPP unit. Conversely, these scrutiny of the experiment express that the design of dyad 9 is viable as efficient fluorescent switch molecule in many probable commercial applications, such as, logic gates and photonic and optical communications.
Collapse
Affiliation(s)
- Siva Doddi
- Inorganic and Physical Chemistry Division, Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, India
| | - K Narayanaswamy
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Bheerappagari Ramakrishna
- Inorganic and Physical Chemistry Division, Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, India
| | | | | |
Collapse
|