1
|
Park H, Roy Chowdhury S, Kim HY, Oh K. Catalytic Aerobic Carbooximation of Alkenes Using Secondary Nitroalkanes as Both α-Nitro Alkyl Radical and Nitrogen Monoxide Sources. Org Lett 2025; 27:444-449. [PMID: 39722479 DOI: 10.1021/acs.orglett.4c04483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Aerobic nitro-nitrite isomerization of secondary nitroalkanes is postulated to proceed via the intermediacy of the α-nitro alkyl radical, where the corresponding Nef-type products, ketones, and nitrogen monoxide can be obtained as byproducts. To explore the catalytic aerobic carbooximation of alkenes using secondary nitroalkanes, phase-transfer catalysis of KSeCN and TBAI has been developed. The current aerobic carbooximation of alkenes utilizes nitroalkanes as both radical and nitrogen monoxide sources in water without external oxidants and prefunctionalized nitroalkanes.
Collapse
Affiliation(s)
- Hyesoo Park
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Soumyadeep Roy Chowdhury
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Hun Young Kim
- Department of Global Innovative Drugs, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Kyungsoo Oh
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| |
Collapse
|
2
|
Malykhin RS, Sukhorukov AY. Electrophilic Intermediates in the Nef and Meyer Reactions: A Computational Study. J Org Chem 2024; 89:18109-18121. [PMID: 39644508 DOI: 10.1021/acs.joc.4c01933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
The generation, interconversion, and reactivity of electrophilic species generated upon activation of nitroalkanes with protic acids (the Nef and Meyer reactions) were investigated by quantum-chemical calculations. N,N-Bis(hydroxy)iminium (R2C═N+(OH)2) and N-oxoiminium (R2C═N+═O) cations were shown to be produced independently from aci-nitroalkanes, while N-hydroxynitrilium cations (RC≡N+-OH) were formed via nearly barrierless C-H bond cleavage in N-oxoiminium cations. The N-oxoiminium and N-hydroxynitrilium cations whose formation is favored under highly acidic anhydrous conditions are strong electrophiles capable of reacting even with nonactivated arenes under ambient conditions. The N-oxoiminium cations R2C═N+═O are highly unusual ambident species containing three contiguous electrophilic centers (C, N, and O atoms). Nucleophilic addition at the oxygen atom is less preferred than the C- and N-attack yet possible in an intramolecular variant. These computational results shed light on some key aspects of the mechanisms of the Nef and Meyer reactions and predict the possibility of numerous interrupted versions of these reactions.
Collapse
Affiliation(s)
- Roman S Malykhin
- Laboratory of organic and metal-organic nitrogen-oxygen systems, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect, 47, Moscow 119991, Russian Federation
| | - Alexey Yu Sukhorukov
- Laboratory of organic and metal-organic nitrogen-oxygen systems, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect, 47, Moscow 119991, Russian Federation
| |
Collapse
|
3
|
Hong P, Wang L, Zhu X, Huang M, Wan Y. Copper-Catalyzed One-Pot Protocol for Reductive N-Arylation of Nitroarenes with (Hetero)aryl Chlorides in Water. Org Lett 2024; 26:10769-10773. [PMID: 39651935 DOI: 10.1021/acs.orglett.4c03753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
A novel protocol for the Cu-catalyzed reductive N-arylation of nitroarenes with (hetero)aryl chlorides in water has been realized. Combining N-(9H-carbazol-9-yl)-6-hydroxypicolinamide (L2) with oxalohydrazide is vital to realize the method at 90 °C with a loading of 5 mol % of Cu2O/L2. Various nitroarenes and aryl chlorides have been successfully coupled in good to excellent isolated yields. Further, two diarylamine-containing key intermediates, 3f and 4u, have been smoothly synthesized on a gram scale using this method.
Collapse
Affiliation(s)
- Peng Hong
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Lifang Wang
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Xinhai Zhu
- Instrument Analysis & Research Center, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Manna Huang
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Yiqian Wan
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, P. R. China
| |
Collapse
|
4
|
Chen PH, Hsu SJ, Chen CC, Fu JC, Hou DR. Synthesis of Diarylamines via Nitrosonium-Initiated C-N Bond Formation. J Org Chem 2024; 89:10316-10326. [PMID: 38950197 PMCID: PMC11267615 DOI: 10.1021/acs.joc.4c01220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/03/2024]
Abstract
Electron-rich diarylamines, exemplified by anisole-derived amines, play pivotal roles in process chemistry, pharmaceuticals, and materials. In this study, homo-diarylamines were synthesized directly from the C-H activation of electron-rich arenes by sodium nitrate/trifluoroacetic acid and the successive treatment of iron powder. Mechanistic investigations reveal that nitrosoarene serves as the reaction intermediate, and the formation of the second C-N bond between the resulting nitrosoarene and electron-rich arene is catalyzed by the nitrosonium ion (NO+). Thus, hetero-diarylamines were synthesized using preformed nitrosoarenes and various electron-rich arenes. This reaction complements a range of cross-coupling reactions catalyzed by transition metal catalysts.
Collapse
Affiliation(s)
| | | | - Cheng-Chun Chen
- Department of Chemistry, National Central University, 300 Jhong-Da Rd., Jhong-Li, Taoyuan 320317, Taiwan
| | - Jui-Chen Fu
- Department of Chemistry, National Central University, 300 Jhong-Da Rd., Jhong-Li, Taoyuan 320317, Taiwan
| | - Duen-Ren Hou
- Department of Chemistry, National Central University, 300 Jhong-Da Rd., Jhong-Li, Taoyuan 320317, Taiwan
| |
Collapse
|
5
|
Ramesh K, Kim HY, Oh K. Catalytic Aerobic N-Nitrosation by Secondary Nitroalkanes in Water: A Tandem Diazotization of Aryl Amines and Azo Coupling. Org Lett 2023; 25:449-453. [PMID: 36626165 DOI: 10.1021/acs.orglett.2c04353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Secondary nitroalkanes underwent oxygen-mediated nitro-nitrite isomerization, serving as versatile N-nitrosating agents under aerobic conditions. To capitalize on the newly discovered aerobic nitro-nitrite isomerization phenomenon, a phase-transfer catalysis system employing KSeCN and TBAI was developed, in which the tandem diazotization and azo coupling with nitroalkanes as well as N-nitrosation of amines were accomplished. The current tandem diazotization and azo coupling strategy provides a facile synthesis of areneazo-2-(2-nitro)propane derivatives, a safe synthetic alternative to aryl diazonium salts.
Collapse
Affiliation(s)
- Karu Ramesh
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Hun Young Kim
- Department of Global Innovative Drugs, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Kyungsoo Oh
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| |
Collapse
|
6
|
Ghosh MK, Sharma KS, Pandey G. Regioselective C(sp 2)-H imidation of arenes by redox neutral visible-light photocatalysis. Org Biomol Chem 2023; 21:538-550. [PMID: 36537241 DOI: 10.1039/d2ob02040h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report herein a redox neutral visible light-induced regioselective C(sp2)-H imidation of electron-rich arenes and heteroarenes using conceptually designed redox-active 1 as a source of the N-centered imidyl radical. Structurally diverse aromatic imides were obtained in moderate to good yields. This methodology has been successfully employed for the late stage imidation of complex molecules and has also been applied towards the formal total synthesis of the marine natural products carpatamides A, B and D. It has further been shown that the generated imides can easily be converted to the corresponding anilines in situ directly.
Collapse
Affiliation(s)
- Manoj Kumar Ghosh
- Department of Chemistry, Institute of Science, Banaras Hindu University (B. H. U.), Varanasi-221005, U.P., India.
| | - Kumari Swati Sharma
- Department of Chemistry, Institute of Science, Banaras Hindu University (B. H. U.), Varanasi-221005, U.P., India.
| | - Ganesh Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University (B. H. U.), Varanasi-221005, U.P., India.
| |
Collapse
|
7
|
Grishin IY, Malyuga VV, Aksenov DА, Kirilov NK, Abakarov GM, Ovcharov SN, Sarapii AV, Aksenov NА, Aksenov AV. A sequence of acylamination and acylation reactions in polyphosphoric acid – a novel approach to the Friedländer synthesis of 2-arylquinolines. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-022-03090-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Electrophilically activated nitroalkanes in the synthesis of substituted 1,3,4-oxadiazoles from amino acid derivatives. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-022-03053-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Aksenov AV, Grishin IY, Aksenov NA, Malyuga VV, Aksenov DA, Nobi MA, Rubin M. Electrophilically Activated Nitroalkanes in Synthesis of 3,4-Dihydroquinozalines. Molecules 2021; 26:4274. [PMID: 34299549 PMCID: PMC8306411 DOI: 10.3390/molecules26144274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 11/22/2022] Open
Abstract
Nitroalkanes activated with polyphosphoric acid serve as efficient electrophiles in reactions with various nucleophilic amines. Strategically placed second functionality allows for the design of annulation reactions enabling preparation of various heterocycles. This strategy was employed to develop an innovative synthetic approach towards 3,4-dihydroquinazolines from readily available 2-(aminomethyl)anilines.
Collapse
Affiliation(s)
- Alexander V. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355017 Stavropol, Russia; (I.Y.G.); (N.A.A.); (V.V.M.); (D.A.A.)
| | - Igor Yu. Grishin
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355017 Stavropol, Russia; (I.Y.G.); (N.A.A.); (V.V.M.); (D.A.A.)
| | - Nicolai A. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355017 Stavropol, Russia; (I.Y.G.); (N.A.A.); (V.V.M.); (D.A.A.)
| | - Vladimir V. Malyuga
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355017 Stavropol, Russia; (I.Y.G.); (N.A.A.); (V.V.M.); (D.A.A.)
| | - Dmitrii A. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355017 Stavropol, Russia; (I.Y.G.); (N.A.A.); (V.V.M.); (D.A.A.)
| | - Mezvah A. Nobi
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, KS 66045, USA;
| | - Michael Rubin
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355017 Stavropol, Russia; (I.Y.G.); (N.A.A.); (V.V.M.); (D.A.A.)
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, KS 66045, USA;
| |
Collapse
|
10
|
Aksenov DA, Arutiunov NA, Maliuga VV, Aksenov AV, Rubin M. Synthesis of imidazo[1,5- a]pyridines via cyclocondensation of 2-(aminomethyl)pyridines with electrophilically activated nitroalkanes. Beilstein J Org Chem 2020; 16:2903-2910. [PMID: 33299488 PMCID: PMC7705866 DOI: 10.3762/bjoc.16.239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/19/2020] [Indexed: 12/21/2022] Open
Abstract
Imidazo[1,5-a]pyridines were efficiently prepared via the cyclization of 2-picolylamines with nitroalkanes electrophilically activated in the presence of phosphorous acid in polyphosphoric acid (PPA) medium.
Collapse
Affiliation(s)
- Dmitrii A Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russian Federation
| | - Nikolai A Arutiunov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russian Federation
| | - Vladimir V Maliuga
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russian Federation
| | - Alexander V Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russian Federation
| | - Michael Rubin
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russian Federation
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, KS 66045, USA
| |
Collapse
|
11
|
Preparation of 1,3,4-oxadiazoles and 1,3,4-thiadiazoles via chemoselective сyclocondensation of electrophilically activated nitroalkanes to (thio)semicarbazides or thiohydrazides. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02775-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Velikorodov AV, Kutlalieva EN, Stepkina NN, Shustova EA, Poddubny OY. Amination, Acetamidation, and Amidation of Substituted Aromatic Carbamates in Polyphosphoric Acid. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428020090110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Aksenov NA, Aksenov AV, Ovcharov SN, Aksenov DA, Rubin M. Electrophilically Activated Nitroalkanes in Reactions With Carbon Based Nucleophiles. Front Chem 2020; 8:77. [PMID: 32117896 PMCID: PMC7026128 DOI: 10.3389/fchem.2020.00077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 01/23/2020] [Indexed: 11/30/2022] Open
Abstract
Unusual reactivity of nitroalkanes, involving formation of aci-forms (nitronic acids or nitronates) and their subsequent interaction with carbon-based nucleophiles, is surveyed in this review.
Collapse
Affiliation(s)
- Nicolai A Aksenov
- Department of Chemistry, North Caucasus Federal University, Stavropol, Russia
| | - Alexander V Aksenov
- Department of Chemistry, North Caucasus Federal University, Stavropol, Russia
| | - Sergei N Ovcharov
- Department of Chemistry, North Caucasus Federal University, Stavropol, Russia
| | - Dmitrii A Aksenov
- Department of Chemistry, North Caucasus Federal University, Stavropol, Russia
| | - Michael Rubin
- Department of Chemistry, North Caucasus Federal University, Stavropol, Russia.,Department of Chemistry, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
14
|
Aksenov AV, Aksenov NA, Arutiunov NA, Malyuga VV, Ovcharov SN, Rubin M. Electrophilically activated nitroalkanes in reaction with aliphatic diamines en route to imidazolines. RSC Adv 2019; 9:39458-39465. [PMID: 35540681 PMCID: PMC9076073 DOI: 10.1039/c9ra08630g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/25/2019] [Indexed: 01/15/2023] Open
Abstract
A novel synthetic methodology for the assembly of imidazolines via an unusual reaction between nitroalkanes and aliphatic 1,2-diamines in the presence of phosphorous acid is described. In contrast to the related highly efficient preparation of benzimidazoles from aromatic amines, this process represents a major synthetic challenge and for a long time was elusive. Analysis of the method limitations is provided. Imidazolines were assembled via an unusual reaction between nitroalkanes and aliphatic 1,2-diamines in the presence of phosphorous acid.![]()
Collapse
Affiliation(s)
- Alexander V. Aksenov
- Department of Chemistry
- North Caucasus Federal University
- Stavropol 355009
- Russian Federation
| | - Nicolai A. Aksenov
- Department of Chemistry
- North Caucasus Federal University
- Stavropol 355009
- Russian Federation
| | - Nikolai A. Arutiunov
- Department of Chemistry
- North Caucasus Federal University
- Stavropol 355009
- Russian Federation
| | - Vladimir V. Malyuga
- Department of Chemistry
- North Caucasus Federal University
- Stavropol 355009
- Russian Federation
| | - Sergey N. Ovcharov
- Department of Chemistry
- North Caucasus Federal University
- Stavropol 355009
- Russian Federation
| | - Michael Rubin
- Department of Chemistry
- North Caucasus Federal University
- Stavropol 355009
- Russian Federation
- Department of Chemistry
| |
Collapse
|
15
|
Konovalov AI, Antipin IS, Burilov VA, Madzhidov TI, Kurbangalieva AR, Nemtarev AV, Solovieva SE, Stoikov II, Mamedov VA, Zakharova LY, Gavrilova EL, Sinyashin OG, Balova IA, Vasilyev AV, Zenkevich IG, Krasavin MY, Kuznetsov MA, Molchanov AP, Novikov MS, Nikolaev VA, Rodina LL, Khlebnikov AF, Beletskaya IP, Vatsadze SZ, Gromov SP, Zyk NV, Lebedev AT, Lemenovskii DA, Petrosyan VS, Nenaidenko VG, Negrebetskii VV, Baukov YI, Shmigol’ TA, Korlyukov AA, Tikhomirov AS, Shchekotikhin AE, Traven’ VF, Voskresenskii LG, Zubkov FI, Golubchikov OA, Semeikin AS, Berezin DB, Stuzhin PA, Filimonov VD, Krasnokutskaya EA, Fedorov AY, Nyuchev AV, Orlov VY, Begunov RS, Rusakov AI, Kolobov AV, Kofanov ER, Fedotova OV, Egorova AY, Charushin VN, Chupakhin ON, Klimochkin YN, Osyanin VA, Reznikov AN, Fisyuk AS, Sagitullina GP, Aksenov AV, Aksenov NA, Grachev MK, Maslennikova VI, Koroteev MP, Brel’ AK, Lisina SV, Medvedeva SM, Shikhaliev KS, Suboch GA, Tovbis MS, Mironovich LM, Ivanov SM, Kurbatov SV, Kletskii ME, Burov ON, Kobrakov KI, Kuznetsov DN. Modern Trends of Organic Chemistry in Russian Universities. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2018. [DOI: 10.1134/s107042801802001x] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Tabolin AA, Sukhorukov AY, Ioffe SL. α-Electrophilic Reactivity of Nitronates. CHEM REC 2018; 18:1489-1500. [PMID: 29667300 DOI: 10.1002/tcr.201800009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/09/2018] [Indexed: 11/10/2022]
Abstract
Chemistry of covalent nitronates regarding nucleophilic addition to C=N bond is described. Various types of electrophilic activation of nitronates and stability of formed products are discussed with main attention paid to authors' work in the area.
Collapse
Affiliation(s)
- A A Tabolin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leniinsky prosp. 47, Moscow, 119991, Russian Federation
| | - A Yu Sukhorukov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leniinsky prosp. 47, Moscow, 119991, Russian Federation
| | - S L Ioffe
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leniinsky prosp. 47, Moscow, 119991, Russian Federation
| |
Collapse
|
17
|
Antipin IS, Kazymova MA, Kuznetsov MA, Vasilyev AV, Ishchenko MA, Kiryushkin AA, Kuznetsova LM, Makarenko SV, Ostrovskii VA, Petrov ML, Solod OV, Trishin YG, Yakovlev IP, Nenaidenko VG, Beloglazkina EK, Beletskaya IP, Ustynyuk YA, Solov’ev PA, Ivanov IV, Malina EV, Sivova NV, Negrebetskii VV, Baukov YI, Pozharskaya NA, Traven’ VF, Shchekotikhin AE, Varlamov AV, Borisova TN, Lesina YA, Krasnokutskaya EA, Rogozhnikov SI, Shurov SN, Kustova TP, Klyuev MV, Khelevina OG, Stuzhin PA, Fedorov AY, Gushchin AV, Dodonov VA, Kolobov AV, Plakhtinskii VV, Orlov VY, Kriven’ko AP, Fedotova OV, Pchelintseva NV, Charushin VN, Chupakhin ON, Klimochkin YN, Klimochkina AY, Kuryatnikov VN, Malinovskaya YA, Levina AS, Zhuravlev OE, Voronchikhina LI, Fisyuk AS, Aksenov AV, Aksenov NA, Aksenova IV. Organic chemistry. History and mutual relations of universities of Russia. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1070428017090019] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Roscales S, Csákÿ AG. Synthesis of Di(hetero)arylamines from Nitrosoarenes and Boronic Acids: A General, Mild, and Transition-Metal-Free Coupling. Org Lett 2018; 20:1667-1671. [DOI: 10.1021/acs.orglett.8b00473] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Silvia Roscales
- Instituto Pluridisciplinar, Universidad Complutense, Campus de Excelencia Internacional Moncloa, Paseo de Juan XXIII, 1, 28040 Madrid, Spain
| | - Aurelio G. Csákÿ
- Instituto Pluridisciplinar, Universidad Complutense, Campus de Excelencia Internacional Moncloa, Paseo de Juan XXIII, 1, 28040 Madrid, Spain
| |
Collapse
|
19
|
Kattamuri PV, Yin J, Siriwongsup S, Kwon DH, Ess DH, Li Q, Li G, Yousufuddin M, Richardson PF, Sutton SC, Kürti L. Practical Singly and Doubly Electrophilic Aminating Agents: A New, More Sustainable Platform for Carbon-Nitrogen Bond Formation. J Am Chem Soc 2017; 139:11184-11196. [PMID: 28648054 DOI: 10.1021/jacs.7b05279] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Given the importance of amines in a large number of biologically active natural products, active pharmaceutical ingredients, agrochemicals, and functional materials, the development of efficient C-N bond-forming methods with wide substrate scope continues to be at the frontier of research in synthetic organic chemistry. Here, we present a general and fundamentally new synthetic approach for the direct, transition-metal-free preparation of symmetrical and unsymmetrical diaryl-, arylalkyl-, and dialkylamines that relies on the facile single or double addition of readily available C-nucleophiles to the nitrogen atom of bench-stable electrophilic aminating agents. Practical single and double polarity reversal (i.e., umpolung) of the nitrogen atom is achieved using sterically and electronically tunable ketomalonate-derived imines and oximes. Overall, this novel approach represents an operationally simple, scalable, and environmentally friendly alternative to transition-metal-catalyzed C-N cross-coupling methods that are currently used to access structurally diverse secondary amines.
Collapse
Affiliation(s)
- Padmanabha V Kattamuri
- Department of Chemistry, Rice University, BioScience Research Collaborative , Houston, Texas 77005, United States
- Institute of Chemistry & BioMedical Sciences, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University , Nanjing, 210093, P. R. China
| | - Jun Yin
- Department of Chemistry, Rice University, BioScience Research Collaborative , Houston, Texas 77005, United States
| | - Surached Siriwongsup
- Department of Chemistry, Rice University, BioScience Research Collaborative , Houston, Texas 77005, United States
| | - Doo-Hyun Kwon
- Department of Chemistry and Biochemistry, Brigham Young University , Provo, Utah 84602, United States
| | - Daniel H Ess
- Department of Chemistry and Biochemistry, Brigham Young University , Provo, Utah 84602, United States
| | - Qun Li
- Institute of Chemistry & BioMedical Sciences, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University , Nanjing, 210093, P. R. China
| | - Guigen Li
- Institute of Chemistry & BioMedical Sciences, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University , Nanjing, 210093, P. R. China
- Department of Chemistry and Biochemistry, Texas Tech University , Lubbock, Texas 79409, United States
| | - Muhammed Yousufuddin
- Life and Health Sciences Department, University of North Texas at Dallas , Dallas, Texas 75241, United States
| | - Paul F Richardson
- Medicinal Sciences, Pfizer Worldwide Research and Development , 10770 Science Center Drive, San Diego, California 92121, United States
| | - Scott C Sutton
- Medicinal Sciences, Pfizer Worldwide Research and Development , 10770 Science Center Drive, San Diego, California 92121, United States
| | - László Kürti
- Department of Chemistry, Rice University, BioScience Research Collaborative , Houston, Texas 77005, United States
| |
Collapse
|
20
|
Taniguchi K, Jin X, Yamaguchi K, Nozaki K, Mizuno N. Versatile routes for synthesis of diarylamines through acceptorless dehydrogenative aromatization catalysis over supported gold-palladium bimetallic nanoparticles. Chem Sci 2017; 8:2131-2142. [PMID: 28507665 PMCID: PMC5407272 DOI: 10.1039/c6sc04455g] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/26/2016] [Indexed: 12/13/2022] Open
Abstract
Diarylamines are an important class of widely utilized chemicals, and development of diverse procedures for their synthesis is of great importance. Herein, we have successfully developed novel versatile catalytic procedures for the synthesis of diarylamines through acceptorless dehydrogenative aromatization. In the presence of a gold-palladium alloy nanoparticle catalyst (Au-Pd/TiO2), various symmetrically substituted diarylamines could be synthesized starting from cyclohexylamines. The observed catalysis of Au-Pd/TiO2 was heterogeneous in nature and Au-Pd/TiO2 could be reused several times without severe loss of catalytic performance. This transformation needs no oxidants and generates molecular hydrogen (three equivalents with respect to cyclohexylamines) and ammonia as the side products. These features highlight the environmentally benign nature of the present transformation. Furthermore, in the presence of Au-Pd/TiO2, various kinds of structurally diverse unsymmetrically substituted diarylamines could successfully be synthesized starting from various combinations of substrates such as (i) anilines and cyclohexanones, (ii) cyclohexylamines and cyclohexanones, and (iii) nitrobenzenes and cyclohexanols. The role of the catalyst and the reaction pathways were investigated in detail for the transformation of cyclohexylamines. The catalytic performance was strongly influenced by the nature of the catalyst. In the presence of a supported gold nanoparticle catalyst (Au/TiO2), the desired diarylamines were hardly produced. Although a supported palladium nanoparticle catalyst (Pd/TiO2) gave the desired diarylamines, the catalytic activity was inferior to that of Au-Pd/TiO2. Moreover, the activity of Au-Pd/TiO2 was superior to that of a physical mixture of Au/TiO2 and Pd/TiO2. The present Au-Pd/TiO2-catalyzed transformation of cyclohexylamines proceeds through complex pathways comprising amine dehydrogenation, imine disproportionation, and condensation reactions. The amine dehydrogenation and imine disproportionation reactions are effectively promoted by palladium (not by gold), and the intrinsic catalytic performance of palladium is significantly improved by alloying with gold. One possible explanation of the alloying effect is the formation of electron-poor palladium species that can effectively promote the β-H elimination step in the rate-limiting amine dehydrogenation.
Collapse
Affiliation(s)
- Kento Taniguchi
- Department of Applied Chemistry , School of Engineering , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan . ;
| | - Xiongjie Jin
- Department of Applied Chemistry , School of Engineering , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan . ;
| | - Kazuya Yamaguchi
- Department of Applied Chemistry , School of Engineering , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan . ;
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology , School of Engineering , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan
| | - Noritaka Mizuno
- Department of Applied Chemistry , School of Engineering , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan . ;
| |
Collapse
|
21
|
Aksenov A, Ovcharov DS, Aksenov NA, Aksenov DA, Nadein ON, Rubin M. Dual role of polyphosphoric acid-activated nitroalkanes in oxidative peri-annulations: efficient synthesis of 1,3,6,8-tetraazapyrenes. RSC Adv 2017. [DOI: 10.1039/c7ra04751g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Electrophilically activated nitroalkanes play a dual role in the novel reaction with diaminoperimidines, promoting their oxidative peri-annulation to access tetraazapyrenes.
Collapse
Affiliation(s)
- Alexander V. Aksenov
- Department of Chemistry
- North Caucasus Federal University
- Stavropol 355009
- Russian Federation
| | - Dmitrii S. Ovcharov
- Department of Chemistry
- North Caucasus Federal University
- Stavropol 355009
- Russian Federation
| | - Nicolai A. Aksenov
- Department of Chemistry
- North Caucasus Federal University
- Stavropol 355009
- Russian Federation
- Department of Organic Chemistry
| | - Dmitrii A. Aksenov
- Department of Chemistry
- North Caucasus Federal University
- Stavropol 355009
- Russian Federation
| | - Oleg N. Nadein
- Department of Chemistry
- North Caucasus Federal University
- Stavropol 355009
- Russian Federation
| | - Michael Rubin
- Department of Chemistry
- North Caucasus Federal University
- Stavropol 355009
- Russian Federation
- Department of Chemistry
| |
Collapse
|
22
|
|
23
|
Aksenov AV, Aksenov NA, Ovcharov DS, Aksenov DA, Griaznov G, Voskressensky LG, Rubin M. Rational design of an efficient one-pot synthesis of 6H-pyrrolo[2,3,4-gh]perimidines in polyphosphoric acid. RSC Adv 2016. [DOI: 10.1039/c6ra17269e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Several highly efficient one-pot synthetic protocols were developed, enabling polyphosphoric acid-activated nitroalkanes to act as electrophiles in reactions with aminonapthalenes.
Collapse
Affiliation(s)
- Alexander V. Aksenov
- Department of Chemistry
- North Caucasus Federal University
- Stavropol 355009
- Russian Federation
| | - Nicolai A. Aksenov
- Department of Chemistry
- North Caucasus Federal University
- Stavropol 355009
- Russian Federation
- Department of Organic Chemistry
| | - Dmitrii S. Ovcharov
- Department of Chemistry
- North Caucasus Federal University
- Stavropol 355009
- Russian Federation
| | - Dmitrii A. Aksenov
- Department of Chemistry
- North Caucasus Federal University
- Stavropol 355009
- Russian Federation
| | - Georgii Griaznov
- Department of Chemistry
- North Caucasus Federal University
- Stavropol 355009
- Russian Federation
| | | | - Michael Rubin
- Department of Chemistry
- North Caucasus Federal University
- Stavropol 355009
- Russian Federation
- Department of Chemistry
| |
Collapse
|