1
|
Suhag R, Dhiman A. α-tending emulsifiers, microencapsulated improver powder and bakery applications. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:39-52. [PMID: 38192712 PMCID: PMC10771408 DOI: 10.1007/s13197-022-05644-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/01/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
To date majority of bakery products are manufactured using emulsifiers in paste or gel form that restricts and causes many problems of storage, processing, and handling at the commercial level. Therefore, new developments are required to resolve the issues of the bakery industry. This review discusses the importance of α-tending emulsifiers in the bakery industry and the action of the α-form to produce superior quality products. Further, to produce desired results α-form of emulsifiers blend should be stable and functional at different operating and storage conditions. Emulsifiers in gel or paste form do not maintain the active α-gel phase over a longer storage period. Using emulsifiers blend in powder form can be a solution to all the mentioned difficulties. With the development of new technologies like spray drying and encapsulation has opened new doors to utilize emulsifiers blend in powder form. Few manufactures have tapped this opportunity and have developed improver powder that offers superior quality products as well as processing, storage, and handling benefits and is easy to use. Improver powder maintains its active and functional α-form when stored at ambient temperature. This development also increases the scope of dry premixes in the market and consumers can make products of their choice in the kitchen with minimal effort.
Collapse
Affiliation(s)
- Rajat Suhag
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| | - Atul Dhiman
- Department of Food Science and Technology, Dr. Y S Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh 173230 India
| |
Collapse
|
2
|
Oleogel-structured emulsions: A review of formation, physicochemical properties and applications. Food Chem 2023; 404:134553. [DOI: 10.1016/j.foodchem.2022.134553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
|
3
|
Zhang H, Zhao X, Chen X, Xu X. Thoroughly review the recent progresses in improving O/W interfacial properties of proteins through various strategies. Front Nutr 2022; 9:1043809. [DOI: 10.3389/fnut.2022.1043809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Along with the future food market developing world widely, the personalized nutrition and rational function food design are found to be urgently attracted. Oil in a water (O/W) emulsion system has an excellent ability to maintain nutraceuticals and thus plays a promising role in producing future functional foods. Understanding the interfacial related mechanisms involved are essential for improving the quality of food products. Protein can effectively reduce interfacial tension and stable immiscible phases. The interfacial properties of proteins directly affect the emulsion qualities, which have gradually become a prospective topic. This review will first briefly discuss the interfacial-related fundamental factors of proteins. Next, the paper thoroughly overviewed current physical and chemical strategies tailored to improving the interfacial and emulsion properties of proteins. To be summarized, a higher flexibility could allow protein to be more easily unfolded and adsorbed onto the interface but could also possibly form a softer interfacial film. Several physical strategies, such as thermal, ultrasound and especially high-pressure homogenization are well applied to improve the interfacial properties. The interfacial behavior is also altered by various green chemical strategies, such as pH adjustment, covalent modification, and low molecular weight (LMW) surfactant addition. These strategies upgraded emulsion properties by increasing adsorption load, accelerating diffusion and adsorption rate, associated with lowering interfacial tension, and promoting interfacial protein interactions. Future researches targeted at elucidating interfacial-bulk protein interactions, unraveling interfacial behavior through in silico tools, exploring connection between interfacial-industrial processing properties, and clarifying the interfacial-sensory-digestive relationships of O/W emulsions is needed to develop emulsion applications.
Collapse
|
4
|
Yang Q, Yang J, Sun S, Zhao J, Liang S, Feng Y, Liu M, Zhang J. Rhodojaponin III-Loaded Chitosan Derivatives-Modified Solid Lipid Nanoparticles for Multimodal Antinociceptive Effects in vivo. Int J Nanomedicine 2022; 17:3633-3653. [PMID: 35996527 PMCID: PMC9392492 DOI: 10.2147/ijn.s362443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/04/2022] [Indexed: 12/28/2022] Open
Abstract
Background Rhodojaponin III (RJ-III) is a bioactive diterpenoid, which is mainly found in Rhododendron molle G. Don (Ericaceae), a potent analgesia in traditional Chinese medicine with several years of clinical applications in the country. However, its clinical use is limited by its acute toxicity and poor pharmacokinetic profiles. To reduce such limitations, the current study incorporated RJ-III into the colloidal drug delivery system of hydroxypropyl trimethyl ammonium chloride chitosan (HACC)-modified solid lipid nanoparticles (SLNs) to improve its sustained release and antinociceptive effects in vivo for oral delivery. Results The optimized RJ-III@HACC-SLNs were close to spherical, approximately 134 nm in size, and with a positive zeta potential. In vitro experiments showed that RJ-III@HACC-SLNs were stable in the simulated gastric fluid and had a prolonged release in PBS (pH = 6.8). Pharmacokinetic results showed that after intragastric administration in mice, the relative bioavailability of RJ-III@HACC-SLNs was 87.9%. Further, it was evident that the peak time, half-time, and mean retention time of RJ-III@HACC-SLNs were improved than RJ-III after the administration. In addition, pharmacodynamic studies revealed that RJ-III@HACC-SLNs markedly reduced the acetic acid, hot, and formalin-induced nociceptive responses in mice (P < 0.001), and notably increased the analgesic time (P < 0.01). Moreover, RJ-III@HACC-SLNs not only showed good biocompatibility with Caco-2 cells in vitro but its LD50 value was also increased by 1.8-fold as compared with that of RJ-III in vivo. Conclusion These results demonstrated that RJ-III@HACC-SLNs improved the pharmacokinetic characteristics of the RJ-III, thereby exhibiting toxicity-attenuating potential and antinociceptive enhancing properties. Consequently, HACC-SLNs loaded with RJ-III could become a promising oral formulation for pain management that deserves further investigation in the future.
Collapse
Affiliation(s)
- Qingyun Yang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Jian Yang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Shuigen Sun
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Jingyi Zhao
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Shuang Liang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Yi Feng
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Minchen Liu
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Jiquan Zhang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| |
Collapse
|
5
|
Dousti M, Sari S, Saffari M, Kelidari H, Asare-Addo K, Nokhodchi A. Loading Pistacia atlantica essential oil in solid lipid nanoparticles and its effect on apoptosis of breast cancer cell line MDA-MB-231. Pharm Dev Technol 2021; 27:63-71. [PMID: 34939892 DOI: 10.1080/10837450.2021.2022693] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pistacia atlantica has an anti-cancer effect due to its essential oil which is the major constituent of P. atlantica. Unfortunately, this essential oil evaporates easily and make it less effective. The current research, therefore, aimed to improve the anti-cancer effect of P. atlantica essential oil (PAEO) in solid lipid nanoparticles (SLN). The chemical components of PAEO were assessed by gas chromatography. PAEO-SLNs were prepared by the probe-ultrasonication method, and their particle size, polydispersity index and zeta potential were determined. Encapsulation Efficiency (EE) and Loading Capacity (LC) of formulations was also calculated. Transmission electron microscopy was employed to determine the morphology of optimal formulation (PAEO-SLN4). Furthermore, the anticancer effects of PAEO-SLN4 against MDA-MB-231 cells were evaluated by cellular assays. The results showed that the type of surfactant and loading of the essential oil had a significant effect on size distribution, zeta potential and the polydispersity index. The encapsulation efficiency (EE%) and loading capacity for PAEO-SLN4 were 97.3% and 9.6%, respectively. The cellular assay demonstrates that PAEO-SLN4 could lead MDA-MB-231 cells to apoptosis. The findings also revealed that PAEO-SLN4 can stimulate apoptosis in MDA-MB-231 cells more than the placebo and free PAEO thereby indicating PAEO-SLN4 to be beneficial in breast cancer treatment.
Collapse
Affiliation(s)
- Mojde Dousti
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Soyar Sari
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mostafa Saffari
- Department of Pharmaceutics, Islamic Azad University, Tehran, Iran
| | - Hamidreza Kelidari
- Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Arundel Building, Brighton, BNI 9QJ, UK
| |
Collapse
|
6
|
Preparation and In Vivo Evaluation of a Lidocaine Self-Nanoemulsifying Ointment with Glycerol Monostearate for Local Delivery. Pharmaceutics 2021; 13:pharmaceutics13091468. [PMID: 34575544 PMCID: PMC8464853 DOI: 10.3390/pharmaceutics13091468] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
Lidocaine, a commonly used local anesthetic, has recently been developed into a number of ointment products to treat hemorrhoids. This study examined its efficient delivery to the dermis through the pharmaceutical improvement of hemorrhoid treatment ointments. We attempted to increase the amount of skin deposition of lidocaine by forming a nanoemulsion through the self-nanoemulsifying effect that occurs when glycerol monostearate (GMS) is saturated with water. Using Raman mapping, the depth of penetration of lidocaine was visualized and confirmed, and the local anesthetic effect was evaluated via an in vivo tail-flick test. Evaluation of the physicochemical properties confirmed that lidocaine was amorphous and evenly dispersed in the ointment. The in vitro dissolution test confirmed that the nanoemulsifying effect of GMS accelerated the release of the drug from the ointment. At a specific concentration of GMS, lidocaine penetrated deeper into the dermis; the in vitro permeation test showed similar results. When compared with reference product A in the tail-flick test, the L5 and L6 compounds containing GMS had a significantly higher anesthetic effect. Altogether, the self-nanoemulsifying effect of GMS accelerated the release of lidocaine from the ointment. The compound with 5% GMS, the lowest concentration that saturated the dermis, was deemed most appropriate.
Collapse
|
7
|
Du L, Li S, Jiang Q, Tan Y, Liu Y, Meng Z. Interfacial interaction of small molecular emulsifiers tea saponin and monoglyceride: Relationship to the formation and stabilization of emulsion gels. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Ashkar A, Sosnik A, Davidovich-Pinhas M. Structured edible lipid-based particle systems for oral drug-delivery. Biotechnol Adv 2021; 54:107789. [PMID: 34186162 DOI: 10.1016/j.biotechadv.2021.107789] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/12/2021] [Accepted: 06/23/2021] [Indexed: 12/18/2022]
Abstract
Oral administration is the most popular and patient-compliant route for drug delivery, though it raises great challenges due to the involvement of the gastro-intestine (GI) system and the drug bioavailability. Drug bioavailability is directly related to its ability to dissolve, transport and/or absorb through the physiological environment. A great number of drugs are characterized with low water solubility due to their hydrophobic nature, thus limiting their oral bioavailability and clinical use. Therefore, new strategies aiming to provide a protective shell through the GI system and improve drug solubility and permeability in the intestine were developed to overcome this limitation. Lipid-based systems have been proposed as good candidates for such a task owing to their hydrophobic nature which allows high drug loading, drug micellization ability during intestinal digestion due to the lipid content, and the vehicle physical protective environment. The use of edible lipids with high biocompatibility paves the bench-to-bedside translation. Four main types of structured lipid-based drug delivery systems differing in the physical state of the lipid phase have been described in the literature, namely emulsions, solid lipid nanoparticles, nanostructured lipid carriers, and oleogel-based particles. The current review provides a comprehensive overview of the different structured edible lipid-based oral delivery systems investigated up to date and emphasizes the contribution of each system component to the delivery performance, and the oral delivery path of lipids.
Collapse
Affiliation(s)
- Areen Ashkar
- Laboratory of Lipids and Soft Matter, Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Maya Davidovich-Pinhas
- Laboratory of Lipids and Soft Matter, Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel; Russell-Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel..
| |
Collapse
|
9
|
Preparation and characterization of glycerol monostearate and polyglycerol stearate oleogels with selected amphiphiles. FOOD STRUCTURE 2021. [DOI: 10.1016/j.foostr.2021.100192] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Progressing Towards the Sustainable Development of Cream Formulations. Pharmaceutics 2020; 12:pharmaceutics12070647. [PMID: 32659962 PMCID: PMC7407566 DOI: 10.3390/pharmaceutics12070647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 01/26/2023] Open
Abstract
This work aims at providing the assumptions to assist the sustainable development of cream formulations. Specifically, it envisions to rationalize and predict the effect of formulation and process variability on a 1% hydrocortisone cream quality profile, interplaying microstructure properties with product performance and stability. This tripartite analysis was supported by a Quality by Design approach, considering a three-factor, three-level Box-Behnken design. Critical material attributes and process parameters were identified from a failure mode, effects, and criticality analysis. The impact of glycerol monostearate amount, isopropyl myristate amount, and homogenization rate on relevant quality attributes was estimated crosswise. The significant variability in product droplet size, viscosity, thixotropic behavior, and viscoelastic properties demonstrated a noteworthy influence on hydrocortisone release profile (112 ± 2–196 ± 7 μg/cm2/√h) and permeation behavior (0.16 ± 0.03–0.97 ± 0.08 μg/cm2/h), and on the assay, instability index and creaming rate, with values ranging from 81.9 to 120.5%, 0.031 ± 0.012 to 0.28 ± 0.13 and from 0.009 ± 0.000 to 0.38 ± 0.07 μm/s, respectively. The release patterns were not straightforwardly correlated with the permeation behavior. Monitoring the microstructural parameters, through the balanced adjustment of formulation and process variables, is herein highlighted as the key enabler to predict cream performance and stability. Finally, based on quality targets and response constraints, optimal working conditions were successfully attained through the establishment of a design space.
Collapse
|
11
|
Tailoring Properties of Mixed-Component Oleogels: Wax and Monoglyceride Interactions Towards Flaxseed Oil Structuring. Gels 2020; 6:gels6010005. [PMID: 32023926 PMCID: PMC7151330 DOI: 10.3390/gels6010005] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/26/2020] [Accepted: 01/30/2020] [Indexed: 01/09/2023] Open
Abstract
The combination of oleogelators in oil structuring has an untapped potential, since effective pairs have usually been found by serendipity. The aim of this work was to evaluate the combination of berry (BEW) or sunflower wax (SHW) with glycerol monostearate (GMS) in flaxseed oil (FXO) at 5 and 25 °C. The thermal and mechanical properties, microstructure, and stability of oleogels were investigated. Self-standing and translucent gels were obtained from BEW in FXO. However, the mixture BEW:GMS resulted in a decrease of dynamic moduli. Moreover, changes in the crystal network and a reduction of oil binding capacity were noticed. Thus, the GMS prevented the complete organization of BEW in polyunsaturated chains of FXO. Conversely, a positive interaction was found for GMS:SHW, since both alone were not able to impart the structure in FXO. Interestingly, gel was formed with improved properties, even with a small addition of GMS, although an ideal ratio of 1:1 (GMS50:50SHW) was found. Oxidative stability analysis showed that all gels resembled the behavior of liquid oil (~12.00 meqO2/kg) over 30 days storage. Therefore, semi-solid systems with nutritional and techno-functional claims were created by using waxes and fatty-acid derivative oleogelator in a rational fashion; this opened the opportunity to tailor oleogel properties.
Collapse
|
12
|
Talele P, Sahu S, Mishra AK. Physicochemical characterization of solid lipid nanoparticles comprised of glycerol monostearate and bile salts. Colloids Surf B Biointerfaces 2018; 172:517-525. [PMID: 30212689 DOI: 10.1016/j.colsurfb.2018.08.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/22/2018] [Accepted: 08/30/2018] [Indexed: 11/15/2022]
Abstract
Successful applications of solid lipid nanoparticles (SLNs) rely on their physicochemical properties which are mainly governed by their comprising materials (e.g., lipids, emulsifiers) and preparation methods. We have prepared biocompatible solid lipid nanoparticles with glycerol monostearate as lipid and varying combinations of bile salts sodium deoxycholate and sodium cholate (bile salts to lipid ratio 8% w/w) as emulsifiers. The detailed characterization of solid lipid nanoparticles was performed using a combination of light scattering, microscopic, calorimetric, and spectroscopic techniques. It was seen that different compositions of bile salts yield nanoparticles with different sizes. The use of only sodium deoxycholate (8% w/w) produces nanoparticles with average sizes ∼487 nm. The average particle size increases with increasing cholate fraction. A higher average particle size around ∼652 nm is obtained with 8% (w/w) sodium cholate. All the SLNs show good physical stability at room temperature and do not show polymorphic transformation during the storage. In order to study the microenvironments, solid lipid nanoparticles are loaded with an external fluorescent-probe fisetin (probe to lipid ratio 1% w/w). Photophysical properties of fisetin loaded SLNs indicate the micro-heterogenicity inside the nanoparticles.
Collapse
Affiliation(s)
- Paurnima Talele
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Saugata Sahu
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Ashok Kumar Mishra
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
13
|
Tanaka K, Hirai Y, Suzuki T, Sakai K, Sakai H. Phase Diagram of Monohexadecyl Phosphate Neutralized by L-Arginine: α-Gel Formation Ability. J Oleo Sci 2018; 67:851-857. [DOI: 10.5650/jos.ess18006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Keisuke Tanaka
- NIKKOL GROUP Cosmos Technical Center Co., Ltd
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
| | - Yuki Hirai
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
| | - Toshiyuki Suzuki
- NIKKOL GROUP Cosmos Technical Center Co., Ltd
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
| | - Kenichi Sakai
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
- Research Institute for Science and Technology, Tokyo University of Science
| | - Hideki Sakai
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
- Research Institute for Science and Technology, Tokyo University of Science
| |
Collapse
|
14
|
Wang FC, Marangoni AG. Advances in the application of food emulsifier α-gel phases: Saturated monoglycerides, polyglycerol fatty acid esters, and their derivatives. J Colloid Interface Sci 2016; 483:394-403. [DOI: 10.1016/j.jcis.2016.08.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/01/2016] [Accepted: 08/03/2016] [Indexed: 11/27/2022]
|
15
|
Microstructural basis for water release from glycerol monostearate structured emulsions upon transformation from the α-gel to the coagel phase. FOOD STRUCTURE-NETHERLANDS 2016. [DOI: 10.1016/j.foostr.2015.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|