1
|
Ahmed YM, Eldin MA, Galal A, Atta NF. Electrochemical sensor for simultaneous determination of trifluoperazine and dopamine in human serum based on graphene oxide-carbon nanotubes/iron-nickel nanoparticles. RSC Adv 2023; 13:25209-25217. [PMID: 37622009 PMCID: PMC10445055 DOI: 10.1039/d3ra04334g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
Trifluoperazine (TFLP) is an important psychiatric medication that balances the dopamine (DA) level in the brain for patients suffering from neurological disorder diseases. An efficient electrochemical sensor is developed for detecting TFLP in real human serum samples. The sensor is fabricated by casting the GC surface with two consecutive thin layers, namely a graphene oxide-carbon nanotubes mixture (GRO-CNT), and iron-nickel nanoparticles (Fe-Ni). The diffusion-controlled oxidation process of TFLP at the composite surface includes one electron transfer process. Under optimized conditions, the sensor in human serum shows excellent catalytic effect for simultaneous determination of TFLP and dopamine (DA) in the same concentration range (0.5 μM to 18 μM) with low detection limits of 0.13 μM and 0.32 μM respectively. The combined effect of a large conductive surface area and the excellent catalytic activity of the nanocomposite improves the sensor's performance. The sensor exhibits a stable current response over four weeks, excellent reproducibility, and insignificant interference from common species present in human serum samples. The reliability test of using the sensor in serum samples shows good recovery of TFLP.
Collapse
Affiliation(s)
- Yousef M Ahmed
- Chemistry Department, Faculty of Science, Cairo University 12613 Giza Egypt
| | - Mahmoud A Eldin
- Chemistry Department, Faculty of Science, Cairo University 12613 Giza Egypt
| | - Ahmed Galal
- Chemistry Department, Faculty of Science, Cairo University 12613 Giza Egypt
| | - Nada F Atta
- Chemistry Department, Faculty of Science, Cairo University 12613 Giza Egypt
| |
Collapse
|
2
|
Malanina A, Kuzin Y, Khadieva A, Shibaeva K, Padnya P, Stoikov I, Evtugyn G. Voltammetric Sensor for Doxorubicin Determination Based on Self-Assembled DNA-Polyphenothiazine Composite. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2369. [PMID: 37630955 PMCID: PMC10459114 DOI: 10.3390/nano13162369] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023]
Abstract
A novel voltammetric sensor based on a self-assembled composite formed by native DNA and electropolymerized N-phenyl-3-(phenylimino)-3H-phenothiazin-7-amine has been developed and applied for sensitive determination of doxorubicin, an anthracycline drug applied for cancer therapy. For this purpose, a monomeric phenothiazine derivative has been deposited on the glassy carbon electrode from the 0.4 M H2SO4-acetone mixture (1:1 v/v) by multiple potential cycling. The DNA aliquot was either on the electrode modified with electropolymerized film or added to the reaction medium prior to electropolymerization. The DNA entrapment and its influence on the redox behavior of the underlying layer were studied by scanning electron microscopy and electrochemical impedance spectroscopy. The DNA-doxorubicin interactions affected the charge distribution in the surface layer and, hence, altered the redox equilibrium of the polyphenothiazine coating. The voltametric signal was successfully applied for the determination of doxorubicin in the concentration range from 10 pM to 0.2 mM (limit of detection 5 pM). The DNA sensor was tested on spiked artificial plasma samples and two commercial medications (recovery of 90-95%). After further testing on real clinical samples, the electrochemical DNA sensor developed can find application in monitoring drug release and screening new antitumor drugs able to intercalate DNA.
Collapse
Affiliation(s)
- Anastasiya Malanina
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia
| | - Yurii Kuzin
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia
| | - Alena Khadieva
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia
| | - Kseniya Shibaeva
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia
| | - Pavel Padnya
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia
| | - Ivan Stoikov
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia
| | - Gennady Evtugyn
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia
- Analytical Chemistry Department, Chemical Technology Institute, Ural Federal University, 19 Mira Street, Ekaterinburg 620002, Russia
| |
Collapse
|
3
|
Khoshraftar R, Reza Shishehbore M, Sheibani A. Synthesis and characterization of graphene oxide- Cu NPs-Fe-MOF nanocomposite and its application to simultaneous determination of Eskazina and Dopamine in real samples. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
4
|
Xie J, Zhang L, Liu Z, Ling G, Zhang P. Application of electrochemical sensors based on nanomaterials modifiers in the determination of antipsychotics. Colloids Surf B Biointerfaces 2022; 214:112442. [PMID: 35278857 DOI: 10.1016/j.colsurfb.2022.112442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 01/08/2023]
Abstract
At present, the content of antipsychotics in samples is always analyzed by traditional detection methods, including mass spectrometry (MS), spectrophotometry, fluorescence, capillary electrophoresis (CE). However, conventional methods are cumbersome and complex, require a large sample volume, many pre-processing steps, long analysis cycles, expensive instruments, and need well-trained detection capabilities personnel. In addition, patients with schizophrenia require frequent and painful blood collection procedures, which adds additional treatment costs and time burdens. In view of these factors, electrochemical methods have become the most promising candidate technology for timely analysis due to their low cost, simple operation, excellent sensitivity and specificity. As we all know, nanomaterials play an extremely important role in electrochemical sensing applications. As the sensor modifiers, nanomaterials enable electrochemical analysis to overcome the time-consuming and labor-intensive shortcomings of traditional detection methods, and greatly reduce the research cost. Nanomaterials modified electrodes can be used as sensors to determine the concentration of antipsychotics in organisms quickly and accurately, which is a bright spot in the application of nanomaterials. The combination of different nanomaterials can even form a nanocomposite with a synergistic effect. This paper firstly reviews the application of nanomaterials-modified sensors on the basis of research in the past ten years, reviews the use of nanomaterial-modified sensors to quickly and accurately determine the concentration of antipsychotics in biological samples, and demonstrates a new idea of using nanomaterials sensors for drug monitoring and determination. At the end of this review, a brief overview is given of the limitations and the future prospects of nanomaterial sensors for the determination of antipsychotics concentrations.
Collapse
Affiliation(s)
- Jiao Xie
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Lijing Zhang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Zhiling Liu
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
5
|
Hassan Pour B, Haghnazari N, Keshavarzi F, Ahmadi E, Rahimian Zarif B. High sensitive electrochemical sensor for imatinib based on metal-organic frameworks and multiwall carbon nanotubes nanocomposite. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Alizadeh T, Shojaeianfar M, Reza Ganjali M. Preparation of a New Copper/Mercury‐Based Amalgam Electrode with Minimal Mercury Content and Its Application for the Determination of Azathioprine in Biological Fluids. ChemistrySelect 2021. [DOI: 10.1002/slct.202000546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Taher Alizadeh
- Department of Analytical Chemistry, Faculty of Chemistry University College of Science, University of Tehran Tehran, Iran, P.O. Box 14155-6455 Tehran Iran
| | - Moslem Shojaeianfar
- Department of Analytical Chemistry, Faculty of Chemistry University College of Science, University of Tehran Tehran, Iran, P.O. Box 14155-6455 Tehran Iran
| | - Mohammad Reza Ganjali
- Department of Analytical Chemistry, Faculty of Chemistry University College of Science, University of Tehran Tehran, Iran, P.O. Box 14155-6455 Tehran Iran
| |
Collapse
|
7
|
Yence M, Cetinkaya A, Ozcelikay G, Kaya SI, Ozkan SA. Boron-Doped Diamond Electrodes: Recent Developments and Advances in View of Electrochemical Drug Sensors. Crit Rev Anal Chem 2021; 52:1122-1138. [PMID: 33464132 DOI: 10.1080/10408347.2020.1863769] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Conductive boron-doped diamond (BDD), in addition to its superior material properties, offers many important advantages that make it an interesting material for electroanalytical studies. It has been considered as an excellent electrode material for electrooxidation of drug active compounds in their dosage forms or in biological materials due to its good physical and chemical properties. It contains not only the largest solvent working potential window compared to other electrode materials, but also it has low background and capacitive currents; lower problems with passivation and it has the ability to withstand extreme potentials, corrosive, and high temperature/pressure environments. The aim of this review is not only to provide a state-of-the-art of diamond electrochemistry but also to serve as a reference point for any researcher wishing to commence work with diamond electrodes and understand electrochemical data. Therefore, it is focused on the carbon-based materials, electrochemical properties of the BDD film electrode, its fundamental research, and its electrochemical pretreatment process are discussed in detail. In this case, there are important studies to show the effective BDD drug sensors for the detection and determination of drugs and the present review critically summarizes the available data in this field between 2015 and 2020.
Collapse
Affiliation(s)
- Merve Yence
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - Ahmet Cetinkaya
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - Goksu Ozcelikay
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - S Irem Kaya
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey.,Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Turkey
| | - Sibel A Ozkan
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| |
Collapse
|
8
|
Cost-effective single-step synthesis of flower-like cerium-ruthenium-sulfide for the determination of antipsychotic drug trifluoperazine in human urine samples. Anal Chim Acta 2020; 1131:35-44. [PMID: 32928478 DOI: 10.1016/j.aca.2020.07.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/16/2020] [Accepted: 07/14/2020] [Indexed: 11/22/2022]
Abstract
Nanostructured binary metal sulfides are considered as a promising electrode material because of their excellent electron transfer and good sensing behavior rather than metal oxides. As a result, the binary metal sulfides were applied in energy and electrochemical sensor applications. Herein, we propose the electrochemical sensor method based on flower-like cerium-ruthenium sulfide nanostructure (Ce-Ru-S NS) for the electrochemical sensing of trifluoperazine (TFPZ). The Ce-Ru-S NS prepared using the cost-effective one-pot hydrothermal synthesis technique. Then, the resultant materials were characterized through suitable spectrophotometric techniques and the electrocatalytic properties of the fabricated sensor were investigated by EIS, CV, and amperometric (i-t) techniques. The Ce-Ru-S material has good electrocatalytic activity towards the electrochemical oxidation of TFPZ. Significantly, the fabricated sensor demonstrates the distinct amperometric response with the lowest limit of detection (LOD) of 0.322 nM (S/N = 3), high sensitivity 2.682 μA μM-1 cm-2 and lowest oxidation potential of +0.64 V (Ag/AgCl). Furthermore, the Ce-Ru-S NS displays excellent selectivity, good reproducibility, and long-term stability. The practicability of the TFPZ sensor tested in a human urine sample.
Collapse
|
9
|
Rezvani Jalal N, Madrakian T, Afkhami A, Ghoorchian A. In Situ Growth of Metal-Organic Framework HKUST-1 on Graphene Oxide Nanoribbons with High Electrochemical Sensing Performance in Imatinib Determination. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4859-4869. [PMID: 31908170 DOI: 10.1021/acsami.9b18097] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Metal-organic frameworks (MOFs) have been previously investigated as electrode materials for developing electrochemical sensors. They have usually been reported to suffer from poor conductivity and improvement in the conductivity of MOFs is still a great challenge. Here, we reported the fabrication of an electrochemical sensor based on the in situ growth of framework HKUST-1 on conductive graphene oxide nanoribbons (GONRs)-modified glassy carbon electrode (GCE) (HKUST-1/GONRs/GCE). The as-fabricated modified electrode was characterized using field emission scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, Fourier transform infrared, X-ray diffraction, electrochemical impedance spectroscopy, cyclic voltammetry, and Raman spectroscopy. The voltammetric response of HKUST-1/GONRs/GCE toward Imatinib (IMA), as an anticancer drug, is dramatically higher than HKUST-1/GCE because of the synergic effect of the GONRs and HKUST-1 framework. The calibration curve at the HKUST-1/GONRs/GCE for IMA covered two linear dynamic ranges, 0.04-1.0 and 1.0-80 μmol L-1, with a detection limit of 0.006 μmol L-1 (6 nmol L-1). Taking advantage of the conductivity of GONRs and large surface area of HKUST-1, a sensitive modified electrode was developed for the electrochemical determination of IMA. The present method provides an effective strategy to solve the poor conductivity of the MOFs. Finally, the obtained electrochemical performance made this modified electrode promising in the determination of IMA in urine and serum samples.
Collapse
Affiliation(s)
| | - Tayyebeh Madrakian
- Faculty of Chemistry , Bu-Ali Sina University , Hamedan 6517838695 , Iran
| | - Abbas Afkhami
- Faculty of Chemistry , Bu-Ali Sina University , Hamedan 6517838695 , Iran
| | - Arash Ghoorchian
- Faculty of Chemistry , Bu-Ali Sina University , Hamedan 6517838695 , Iran
| |
Collapse
|
10
|
Ghapanvari M, Madrakian T, Afkhami A, Ghoorchian A. A modified carbon paste electrode based on Fe3O4@multi-walled carbon nanotubes@polyacrylonitrile nanofibers for determination of imatinib anticancer drug. J APPL ELECTROCHEM 2020. [DOI: 10.1007/s10800-019-01388-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Abstract
Introduction:Schizophrenia is seizures accompanied by severe psychotic symptoms, and a steady state of continuation in the form of periods of stagnation. Antipsychotics are now the basis of treatment for schizophrenia and there is no other molecule that is antipsychotic priority in treatment. Antipsychotics can be classified into two groups; dopamine receptor antagonists such as promazine, fluphenazine etc. and serotonin-dopamine antagonists including risperidone, olanzapine, ziprasidone, aripiprazole etc.Materials and Methods:Electrochemical methods have been used for the determination of antipsychotic agent just as used in the determination of many drug agents. Nearly all of the antipsychotics are electroactive and can be analyzed by electrochemical methods. Electroanalytical methods offer generally high sensitivity, are compatible with modern techniques, have low cost, low requirements, and compact design. Among the most commonly used types, there are cyclic voltammetry, differential pulse voltammetry, square wave voltammetry and linear sweep voltammetry.Conclusion:The aim of this review is to evaluate the main line and the advantages and uses of electroanalytical methods that employed for the determination of antipsychotic medication agents used in schizophrenia. Moreover, applications of the methods to pharmaceutical analysis of Antipsychotics upto- date is also summarized in a table.
Collapse
Affiliation(s)
- Leyla Karadurmus
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Duru Kır
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Sevinc Kurbanoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Sibel A. Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
12
|
Sousa CP, Ribeiro FWP, Oliveira TMBF, Salazar‐Banda GR, de Lima‐Neto P, Morais S, Correia AN. Electroanalysis of Pharmaceuticals on Boron‐Doped Diamond Electrodes: A Review. ChemElectroChem 2019. [DOI: 10.1002/celc.201801742] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Camila P. Sousa
- Departamento de Química Analítica e Físico-Química Centro de CiênciasUniversidade Federal do Ceará Bloco 940, Campus do Pici Pici Fortaleza CE 60440-900 Brazil
| | - Francisco W. P. Ribeiro
- Instituto de Formação de EducadoresUniversidade Federal do Cariri Rua Olegário Emídio de Araújo Centro 63260-000 Brejo Santo, CE Brazil
| | - Thiago M. B. F. Oliveira
- Centro de Ciência e TecnologiaUniversidade Federal do Cariri Av. Tenente Raimundo Rocha, Cidade Universitária 63048-080 Juazeiro do Norte, CE Brazil
| | - Giancarlo R. Salazar‐Banda
- Instituto de Tecnologia e Pesquisa/ Programa de Pós-Graduação em Engenharia de ProcessosUniversidade Tiradentes 49032-490 Aracaju, SE Brazil
| | - Pedro de Lima‐Neto
- Departamento de Química Analítica e Físico-Química Centro de CiênciasUniversidade Federal do Ceará Bloco 940, Campus do Pici Pici Fortaleza CE 60440-900 Brazil
| | - Simone Morais
- REQUIMTE-LAQVInstituto Superior de Engenharia do Porto Instituto Politécnico do Porto R. Dr. António Bernardino de Almeida 431
| | - Adriana N. Correia
- Departamento de Química Analítica e Físico-Química Centro de CiênciasUniversidade Federal do Ceará Bloco 940, Campus do Pici Pici Fortaleza CE 60440-900 Brazil
| |
Collapse
|
13
|
Jevtić S, Vukojević V, Djurdjić S, Pergal MV, Manojlović DD, Petković BB, Stanković DM. First electrochemistry of herbicide pethoxamid and its quantification using electroanalytical approach from mixed commercial product. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
A. Mohamed M, Saad AS, Koshek SH, El-Ghobashy MR. Smart electrochemical sensing platform for the simultaneous determination of psychotic disorder drugs isopropamide iodide and trifluoperazine hydrochloride. NEW J CHEM 2018. [DOI: 10.1039/c8nj01600c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Schematic representation of carboxylation of multiwalled carbon nanotubes.
Collapse
Affiliation(s)
- Mona A. Mohamed
- Pharmaceutical Chemistry Department
- National Organization for Drug Control and Research
- Giza
- Egypt
- Institute of Electronics
| | - Ahmed S. Saad
- Cairo University
- Faculty of Pharmacy
- Analytical Chemistry Department
- Cairo
- Egypt
| | - Sara H. Koshek
- Pharmaceutical Chemistry Department
- National Organization for Drug Control and Research
- Giza
- Egypt
| | | |
Collapse
|
15
|
Malikireddy P, Siddan G, Madurai S, Chandramouleeswaran S, Srinivasakannan L. 10-Methyl-10 H-phenothiazine. IUCRDATA 2016. [DOI: 10.1107/s2414314616012992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In the title compound C13H11NS, the phenothiazine unit has a non-planar butterfly structure, and the central six-membered ring adopts a boat conformation. The dihedral angle between the two outer aromatic rings of the phenothiazine unit is 39.53 (10)°. In the crystal, a π–π interaction with a centroid–centroid distance of 3.6871 (12) Å is observed between the aromatic rings of neighbouring molecules.
Collapse
|