1
|
Liu Y, Ge G, Liu H, Wang Y, Zhou P, Li B, Zhu G. Fast and eco-friendly synthesis of carbon dots from pinecone for highly effective detection of 2,4,6-trinitrophenol in environmental samples. ENVIRONMENTAL TECHNOLOGY 2024:1-12. [PMID: 38887014 DOI: 10.1080/09593330.2024.2367725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/08/2024] [Indexed: 06/20/2024]
Abstract
2,4,6-Trinitrophenol (TNP) has high explosive risks and biological toxicity, and there has been considerable concern over the determination of TNP. In the present work, fluorescent carbon dots (CDs) stemmed from a green carbon source of pinecone by the facile hydrothermal approach. A novel environment- friendly fluorescent probe was developed to efficiently detect TNP by using the obtained CDs with remarkable fluorescence stability. The fluorescent CDs exhibited obvious excitation dependence with the highest peaks for excitation and emission occurring at 321 and 411 nm, respectively. The fluorescence intensity is significantly reduced by TNP owing to the inner filter effect with the CDs. The probe exhibited good linearity with TNP concentrations in the range of 0.025-20 μg mL-1, and the limit of detection was as low as 8.5 ng mL-1. Additionally, the probe proved successful in sensing TNP quantitatively in actual environmental samples with satisfied recoveries of 95.6-99.6%. The developed fluorescent probe offered an environment-friendly, efficient, rapid, and reliable platform for detecting trace TNP in the environmental field.HighlightsNovel carbon dots were synthesised from green precursors of pineal powder.The highly effective quenching process was put down to the inner filter effect.The as-constructed fluorescent probe was successfully utilised for sensing 2,4,6-trinitrophenol in environmental samples.The proposed method was simple, rapid, efficient, economical, and eco-friendly.
Collapse
Affiliation(s)
- Yongli Liu
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, Henan Province's International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang, People's Republic of China
| | - Guobei Ge
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, Henan Province's International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang, People's Republic of China
| | - Huanjia Liu
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, Henan Province's International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang, People's Republic of China
| | - Yuxin Wang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, Henan Province's International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang, People's Republic of China
| | - Penghui Zhou
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, Henan Province's International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang, People's Republic of China
| | - Bin Li
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, Henan Province's International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang, People's Republic of China
| | - Guifen Zhu
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, Henan Province's International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang, People's Republic of China
| |
Collapse
|
2
|
Patir K. Fluorescent Carbon Nitride Nanoparticles for Picric Acid Sensing. J Fluoresc 2024:10.1007/s10895-024-03811-9. [PMID: 38874826 DOI: 10.1007/s10895-024-03811-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Detection of nitroaromatic explosives is essential in the area of environmental safety. Fluorescent carbon nitride nanoparticles is a promising material for this purpose. Herein, we have prepared fluorescent carbon nitride nanoparticles (CNNPs) by one step thermal treatment of formamide. These fluorescent CNNPs is sensitive towards picric acid (PA) than other analytes both in aqueous medium and on test paper which is witnessed by fluorescence quenching based on inner filter effect (IFE). The PA detection with the fluorescent CNNPs is observed in the concentration ranges, 0 µM to 60 µM with linear range of 10 nM to 25 µM. The minimum detection limit in aqueous medium and solid phase are determined to be 26.20 nM and 10 µM respectively. Finally, the fluorescent CNNPs is applied for detection of PA in real water samples. The recoveries are in the ranges from 99.54 to 116.35% with relative standard deviation less than 3.85%. This proposed fluorescent method can act as suitable analytical technique to monitored PA concentration in water samples.
Collapse
Affiliation(s)
- Khemnath Patir
- Department of Applied Science and Humanities, Assam University, Silchar, Assam, 788011, India.
| |
Collapse
|
3
|
De Iacovo A, Mitri F, De Santis S, Giansante C, Colace L. Colloidal Quantum Dots for Explosive Detection: Trends and Perspectives. ACS Sens 2024; 9:555-576. [PMID: 38305121 PMCID: PMC11425854 DOI: 10.1021/acssensors.3c02097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Sensitive, accurate, and reliable detection of explosives has become one of the major needs for international security and environmental protection. Colloidal quantum dots, because of their unique chemical, optical, and electrical properties, as well as easy synthesis route and functionalization, have demonstrated high potential to meet the requirements for the development of suitable sensors, boosting the research in the field of explosive detection. Here, we critically review the most relevant research works, highlighting three different mechanisms for explosive detection based on colloidal quantum dots, namely photoluminescence, electrochemical, and chemoresistive sensing. We provide a comprehensive overview and an extensive discussion and comparison in terms of the most relevant sensor parameters. We highlight advantages, limitations, and challenges of quantum dot-based explosive sensors and outline future research directions for the advancement of knowledge in this surging research field.
Collapse
Affiliation(s)
- Andrea De Iacovo
- Department of Industrial, Electronic and Mechanical Engineering, Roma Tre University, Via Vito Volterra 62, Rome I-00146, Italy
| | - Federica Mitri
- Department of Industrial, Electronic and Mechanical Engineering, Roma Tre University, Via Vito Volterra 62, Rome I-00146, Italy
| | - Serena De Santis
- Department of Industrial, Electronic and Mechanical Engineering, Roma Tre University, Via Vito Volterra 62, Rome I-00146, Italy
| | - Carlo Giansante
- Consiglio Nazionale delle Ricerche, Istituto di Nanotecnologia CNR-NANOTEC, Via Monteroni, Lecce I-73100, Italy
| | - Lorenzo Colace
- Department of Industrial, Electronic and Mechanical Engineering, Roma Tre University, Via Vito Volterra 62, Rome I-00146, Italy
| |
Collapse
|
4
|
Shi X, Wang X, Zhang S, Zhang Z, Meng X, Liu H, Qian Y, Lin Y, Yu Y, Lin W, Wang H. Hydrophobic Carbon Dots Derived from Organic Pollutants and Applications in NIR Anticounterfeiting and Bioimaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5056-5064. [PMID: 37005495 DOI: 10.1021/acs.langmuir.3c00075] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In an effort to fulfill the strategy of sustainable development, Rhodamine B, a common and toxic organic pollutant in the textile industry, was reported for the first time as a single precursor to develop a kind of novel hydrophobic nitrogen-doped carbon dot (HNCD) through a green and facile one-pot solvothermal method. The HNCDs with an average size of 3.6 nm possess left and right water contact angles of 109.56° and 110.34°, respectively. The HNCDs manifest excitation wavelength-tunable and upconverted fluorescence from the ultraviolet (UV) to the near-infrared (NIR) range. Furthermore, the PEGylation of HNCDs enables them to be used as an optical marker for cell and in vivo imaging. Notably, the HNCDs with solvent-dependent fluorescence can be used for invisible inks with a wide range of light responses from UV-vis-NIR spectra. This work not only provides an innovative way to recycle chemical waste but also expands the potential application of HNCDs in NIR security printing and bioimaging.
Collapse
Affiliation(s)
- Xinyi Shi
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Xingyu Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Shaobo Zhang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Anhui Medical University, Hefei 230032, Anhui P.R. China
| | - Zonghui Zhang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Anhui Medical University, Hefei 230032, Anhui P.R. China
| | - Xiangfu Meng
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Hongji Liu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Yong Qian
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Yefeng Lin
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Yanyan Yu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, Shanghai 201400, PR China
| | - Wenchu Lin
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
- Department of Pathology and Pathophysiology, School of Basic Medicine, Anhui Medical University, Hefei 230032, Anhui P.R. China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Hui Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
- Department of Pathology and Pathophysiology, School of Basic Medicine, Anhui Medical University, Hefei 230032, Anhui P.R. China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| |
Collapse
|
5
|
Kayhomayun Z, Ghani K, Zargoosh K. Synthesis of samarium orthoferrite-based perovskite nanoparticles as a turn-on fluorescent probe for trace level detection of picric acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121627. [PMID: 35853251 DOI: 10.1016/j.saa.2022.121627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/21/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Picric acid (2,4,6-trinitrophenol, PA) is a common constituent of many powerful explosives, thus, development of the chemical probes for trace level detection of PA is a crucial current challenge in both public security and environmental protection. In this work, the applicability of the new perovskite-type oxide SmFeO3 nanoparticles as an inorganic fluorescence turn-on probe for the selective and sensitive recognition of PA in organic and aqueous media was investigated. The synthesis of nanoparticles SmFeO3 was carried out using the surfactant-assisted templating approach which proceeds through the sol-gel process based on nonionic surfactant Triton X-100. The synthesized SmFeO3 nanoparticles exhibited strong solvent-dependent emission at 330 nm wavelength with absorption maxima at 225 nm. Among the tested explosives, the probe showed the highest sensitivity and selectivity for detecting PA in water and water/acetonitrile mixture. The response time for detecting PA was less than 5 s. The limits of detection for PA in acetonitrile and water/acetonitrile mixture were 2.1 µM and 1.1 µM, respectively. Furthermore, to investigate the nature of the fluorescence turn-on sensing mechanism, the experimental data of the dynamic light scattering (DLS) technique and zeta-potential were used. Both techniques confirmed the aggregation-induced emission (AIE) mechanism for detection of PA with the synthesized turn-on probe. The results of the present work will have a considerable impact on the development and applications of a new class of inorganic fluorescence turn-on probes for the detection of PA.
Collapse
Affiliation(s)
- Zohreh Kayhomayun
- Department of Chemistry, Malek-Ashtar University of Technology, Shahin-Shahr, Isfahan, Iran
| | - Kamal Ghani
- Department of Chemistry, Malek-Ashtar University of Technology, Shahin-Shahr, Isfahan, Iran.
| | - Kiomars Zargoosh
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
6
|
Liu F, Pan T, Ren X, Bao W, Wang J, Hu J. Research on Preparation and Benzene Adsorption Performance of HCDs@MIL-100(Fe) Adsorbents. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22020074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Synthetic Approaches, Modification Strategies and the Application of Quantum Dots in the Sensing of Priority Pollutants. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112411580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and nitro-aromatic compounds (NACs) are two classifications of environmental pollutants that have become a source of health concerns. As a result, there have been several efforts towards the development of analytical methods that are efficient and affordable that can sense these pollutants. In recent decades, a wide range of techniques has been developed for the detection of pollutants present in the environment. Among these different techniques, the use of semiconductor nanomaterials, also known as quantum dots, has continued to gain more attention in sensing because of the optical properties that make them useful in the identification and differentiation of pollutants in water bodies. Reported studies have shown great improvement in the sensing of these pollutants. This review article starts with an introduction on two types of organic pollutants, namely polycyclic aromatic hydrocarbons and nitro-aromatic explosives. This is then followed by different quantum dots used in sensing applications. Then, a detailed discussion on different groups of quantum dots, such as carbon-based quantum dots, binary and ternary quantum dots and quantum dot composites, and their application in the sensing of organic pollutants is presented. Different studies on the comparison of water-soluble quantum dots and organic-soluble quantum dots of a fluorescence sensing mechanism are reviewed. Then, different approaches on the improvement of their sensitivity and selectivity in addition to challenges associated with some of these approaches are also discussed. The review is concluded by looking at different mechanisms in the sensing of polycyclic aromatic hydrocarbons and nitro-aromatic compounds.
Collapse
|
8
|
Philip S, Kuriakose S, Mathew T. Designing of a
β‐Cyclodextrin
‐based supramolecular fluorescent sensor doped with superparamagnetic
α‐Fe
2
O
3
nanoparticles with improved light fastness, thermal, and photoluminescent properties. J Appl Polym Sci 2021. [DOI: 10.1002/app.51004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sherin Philip
- Research and Post‐Graduate Department of Chemistry St. Thomas College, Mahatma Gandhi University Kottayam India
| | - Sunny Kuriakose
- Research and Post‐Graduate Department of Chemistry St. Thomas College, Mahatma Gandhi University Kottayam India
| | - Tessymol Mathew
- Department of Chemistry St. George's College, Aruvithura, Mahatma Gandhi University Kottayam India
| |
Collapse
|
9
|
Blue-emitting carbon quantum dots: Ultrafast microwave synthesis, purification and strong fluorescence in organic solvents. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
10
|
Ayilliath SK, Nair SR, Lakshmi GC, Kunnatheery S. Functionalised Graphene Quantum Dots for Cholesterol Detection in Human Blood Serum. J Fluoresc 2021; 31:847-852. [PMID: 33761068 DOI: 10.1007/s10895-021-02712-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 03/03/2021] [Indexed: 10/21/2022]
Abstract
The varied applications of nanotechnology have paved way for several breakthroughs in the realm of biomedical technology. In this challenging era when illness multiplies, timely and accurate disease diagnosis is very important. Thus, well founded novel approaches matter very much in areas like disease diagnosis and monitoring. Nanomedicine has tremendous implications in the given context. An elevated cholesterol concentration in blood is risky and is associated with cardiovascular diseases (CVD). CVD remains the No. 1 global cause of death and hence there is an urge to understand cholesterol level and take preventive measures. Highly fluorescent graphene quantum dots (GQs) are well known for their biocompatibility, non toxicity and aqueous solubility. Here in we report an easy and sensitive non enzymatic based cholesterol detection using digitonin conjugated graphene quantum dots (GDG). Selectivity studies and the cholesterol detection in human blood serum suggests the probe to be reliable and selective for blood cholesterol monitoring. Digitonin conjugated fluorescent graphene quantumdots, an efficient probe for cholesterol sensing.
Collapse
Affiliation(s)
- Shanti Krishna Ayilliath
- Laboratory for Polymer Analysis, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, 695012, India.
| | | | - Gopu Chandrasekharan Lakshmi
- Laboratory for Polymer Analysis, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, 695012, India
| | - Sreenivasan Kunnatheery
- Laboratory for Polymer Analysis, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, 695012, India
| |
Collapse
|
11
|
Roshni V, Gujar V, Muntjeeb S, Doshi P, Ottoor D. Novel and Reliable Chemosensor Based on C. dots from Sunflower seeds for the Distinct Detection of Picric Acid and Bilirubin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119354. [PMID: 33387803 DOI: 10.1016/j.saa.2020.119354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/24/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Based on the green chemistry approach, highly fluorescent and novel carbon dots (C. dots) were synthesized from naturally available and cost effective sunflower seeds. The obtained C. dots showed a fluorescence quantum yield (Q.Y) of 9.5% with high water dispersibility and photostability. The obtained C. dots were employed for the detection of picric acid (PA) and bilirubin. A good linear relationship in the range of 20-60 nM was obtained for PA with a limit of detection (LOD) as low as 3.86 nM. C. dots were successfully incorporated in the agarose matrix which enabled them to be employed as a solid platform for the in situ detection of PA. The fluorescence of C. dots was selectively quenched by bilirubin compared to other biomolecules with a LOD of 2.03 μM. Use of C. dots as potential candidate for bilirubin detection was verified by real sample analysis. Further, the separation of C. dots was performed using column chromatography and the optical properties of the two different fractions obtained were studied. The blue fraction of C. dots was found to exhibit a higher fluorescence Q.Y and excitation independent emission, with an improved detection of PA and bilirubin.
Collapse
Affiliation(s)
- V Roshni
- Department of Chemistry, Savitribai Phule Pune University, Pune, India
| | - Varsha Gujar
- Department of Chemistry, Savitribai Phule Pune University, Pune, India
| | - Syed Muntjeeb
- Department of Chemistry, Savitribai Phule Pune University, Pune, India
| | - Pooja Doshi
- Department of Chemistry, Savitribai Phule Pune University, Pune, India
| | - Divya Ottoor
- Department of Chemistry, Savitribai Phule Pune University, Pune, India.
| |
Collapse
|
12
|
Kainth S, Maity B, Basu S. Label-free detection of creatinine using nitrogen-passivated fluorescent carbon dots. RSC Adv 2020; 10:36253-36264. [PMID: 35517961 PMCID: PMC9056981 DOI: 10.1039/d0ra06512a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/24/2020] [Indexed: 12/28/2022] Open
Abstract
In the field of biochemistry and biosensing, the passivation of carbon dots using nitrogen dopants has attracted great attention, as this can control their photoluminescence (PL) properties and quantum yield. To date, in the fabrication of a sensing probe, the impact of the chemical composition of the passivating molecule remained unexplored. In this work, we chose a series of different nitrogen-rich precursors (such as urea, thiourea, cysteine, and glycine) and ascorbic acid to synthesize nitrogen-doped carbon dots (NCDs). A significant change in their surface states was obtained due to the evolution of variable contents of amino, pyridinic and pyrrolic nitrogen species, which is evident from X-ray photoelectron spectroscopy, and this leads to an increment in their PL quantum yields (PLQY ∼ 58%) and average lifetime values. Spectroscopic analysis revealed that a rise in the ratio of pyrrolic : amino groups on the surface of carbon dots cause a bathochromic shift and generate excitation-dependent properties of NCDs. Besides, these NCDs were used as fluorescence off–on sensing probes, where a PA-infested NCD solution was used to detect creatinine. Chiefly, fluorescence restoration was achieved due to the formation of Jaffe chromogen between creatinine and PA. However, all nitrogen-passivated carbon dot surfaces do not respond similarly towards creatinine and only non-amino-rich NCDs exhibit the maximum (50%) PL turn-on response. The PL turn-off–on methodology showed a satisfactory good linearity range between 0 and 150 μM with a detection limit of 0.021 nM for creatinine. Three input molecular logic gates were also designed based on the turn-off–on response of the NCDs@PA towards creatinine. Additionally, for analytical method validation, real-sample analysis was performed for creatinine, which showed good recoveries (93–102%) and verified that nitrogen passivation tailored the physicochemical properties and enhanced the sensing ability. The role of passivation in CDs using different nitrogen precursors to evaluate its sensing proficiency towards creatinine quantification.![]()
Collapse
Affiliation(s)
- Shagun Kainth
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala 147004 India
| | - Banibrata Maity
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala 147004 India .,School of Chemistry and Biochemistry, Affiliate Faculty-TIET-Virginia Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology Patiala-147004 India
| | - Soumen Basu
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala 147004 India .,School of Chemistry and Biochemistry, Affiliate Faculty-TIET-Virginia Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology Patiala-147004 India
| |
Collapse
|
13
|
Zhao D, Zhang Z, Li C, Xiao X, Li J, Liu X, Cheng H. Yellow-Emitting Hydrophobic Carbon Dots via Solid-Phase Synthesis and Their Applications. ACS OMEGA 2020; 5:22587-22595. [PMID: 32923818 PMCID: PMC7482243 DOI: 10.1021/acsomega.0c03239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/11/2020] [Indexed: 05/04/2023]
Abstract
The preparation and application of hydrophobic carbon dots (HCDs) are now the hotspots in the field of nanomaterials. This paper reports the fast synthesis of long-wavelength-emitting HCDs (yellow-emitting, λem = 541 nm) through a solid-phase route, with l-cysteine hydrochloride anhydrous and citric acid as carbon sources and dicyclohexylcarbodiimide as a dehydrating agent, reacting at 180 °C for 40 min, with a quantum yield of 30%. The solid-phase route avoids the usage of organic reagents during the synthesis process and is thus environmentally friendly. The obtained HCDs can be simply separated into HCDs-L (less density) and HCDs-W (higher density) with differences in physical (polarity, density), optical, and chemical properties. The differences in HCDs-L, HCDs-W, and water-soluble CDs (WCDs) were compared through various characterization methods, and the synthesis and luminescence mechanisms of HCDs were investigated. Meanwhile, HCDs were employed in the fields of LED lamp production and solid fluorescent shaping material. The prepared HCDs were then modified into WCDs through the liposomal embedding method. The HCDs prepared by the new solid-phase route exhibit stable and highly efficient photoluminescence ability and will have a promising outlook in their applications in various fields.
Collapse
|
14
|
Nitrogen/sulfur-co-doped carbon quantum dots: a biocompatible material for the selective detection of picric acid in aqueous solution and living cells. Anal Bioanal Chem 2020; 412:3753-3763. [PMID: 32300842 DOI: 10.1007/s00216-020-02629-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/20/2020] [Accepted: 03/30/2020] [Indexed: 10/24/2022]
Abstract
Here, a fast and eco-friendly one-pot hydrothermal technique is utilized for the synthesis of nitrogen/sulfur-co-doped fluorescent carbon quantum dots (NS-CQDs) from a simple precursor of citric acid (CA) and thiosemicarbazide (TSC). The obtained NS-CQDs exhibited strong blue emission under UV light, with fluorescence quantum yield (QY) of ~37.8%. The Commission internationale de l'eclairage (CIE) coordinates originated at (0.15, 0.07), which confirmed the blue fluorescence of the synthesized NS-CQDs. Interestingly, the prepared NS-CQDs were successfully used as a selective nanoprobe for the monitoring of environmentally hazardous explosive picric acid (PA) in different nitro- and non-nitro-aromatic derivatives of PA. The mechanism of the NS-CQDs was also explored, and was posited to occur via the fluorescence resonance electron transfer (FRET) process and non-fluorescent complex formation. Importantly, this system possesses excellent biocompatibility and low cytotoxicity in HeLa cervical cancer cells; hence, it can potentially be used for PA detection in analytical, environmental, and pathological applications. Furthermore, the practical applicability of the proposed sensing system to pond water demonstrated the feasibility of our system along with good recovery. Graphical abstract.
Collapse
|
15
|
Kadian S, Manik G. A highly sensitive and selective detection of picric acid using fluorescent sulfur-doped graphene quantum dots. LUMINESCENCE 2020; 35:763-772. [PMID: 31984670 DOI: 10.1002/bio.3782] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/18/2019] [Accepted: 01/12/2020] [Indexed: 02/06/2023]
Abstract
The development of an analytical probe to monitor highly mutagenic picric acid (PA) carries enormous significance for the environment and for health. A novel, simple and rapid fluorescence analytical assay using sulfur-doped graphene quantum dots (SGQDs) was designed for the highly sensitive and selective detection of PA. SGQDs were synthesized via simple pyrolysis of 3-mercaptopropionic acid and citric acid and characterized using advanced analytical techniques. Fluorescence intensity (FI) of SGQDs was markedly quenched by addition of PA, attributed to the inner filter effect and dominating static quenching mechanism between the two, in addition to a significant colour change. The calibration curve of the proposed assay exhibited a favourable linearity between quenched FI and PA concentration over the 0.1-100 μΜ range with a lowest detection limit of 0.093 μΜ and a correlation coefficient of 0.9967. The analytical assay was investigated for detection of trace amounts of PA in pond and rain water samples and showed great potential for practical applications with both acceptable recovery (98.0-100.8%) and relative standard deviation (1.24-4.67%). Analytical performance of the assay in terms of its detection limit, linearity range, and recovery exhibited reasonable superiority over previously reported methods, thereby holding enormous promise as a simple, sensitive, and selective method for detection of PA.
Collapse
Affiliation(s)
- Sachin Kadian
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Gaurav Manik
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
16
|
Wang X, Zhang X, Cao H, Huang Y. A facile and rapid approach to synthesize uric acid-capped Ti3C2 MXene quantum dots for the sensitive determination of 2,4,6-trinitrophenol both on surfaces and in solution. J Mater Chem B 2020; 8:10837-10844. [DOI: 10.1039/d0tb02078h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The UA@Ti3C2 QDs with blue light emission were synthesized by a simple and green microwave-assisted method, and used as a sensitive and selective probe for the detection of TNP both on surfaces and in solution.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Xiaodan Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Haiyan Cao
- Key Laboratory of Chongqing Inorganic Special Functional Materials
- College of Chemistry and Chemical Engineering
- Yangtze Normal University
- Chongqing 408100
- China
| | - Yuming Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|
17
|
Bora A, Mohan K, Dolui SK. Carbon Dots as Cosensitizers in Dye-Sensitized Solar Cells and Fluorescence Chemosensors for 2,4,6-Trinitrophenol Detection. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b05056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Anindita Bora
- Department of Chemical Sciences, Tezpur University, Napaam 784028, Assam, India
| | - Kiranjyoti Mohan
- Department of Chemical Sciences, Tezpur University, Napaam 784028, Assam, India
| | - Swapan Kumar Dolui
- Department of Chemical Sciences, Tezpur University, Napaam 784028, Assam, India
| |
Collapse
|
18
|
Luminescent sensors for nitroaromatic compound detection: Investigation of mechanism and evaluation of suitability of using in screening test in forensics. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Yen YT, Lin YS, Chen TY, Chyueh SC, Chang HT. Carbon dots functionalized papers for high-throughput sensing of 4-chloroethcathinone and its analogues in crime sites. ROYAL SOCIETY OPEN SCIENCE 2019; 6:191017. [PMID: 31598318 PMCID: PMC6774952 DOI: 10.1098/rsos.191017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
Sensitive and selective assays are demanded for quantitation of new psychoactive substances such as 4-chloroethcathinone that is a π-conjugated keto compound. Carbon dots (C-dots) prepared from L-arginine through a hydrothermal route have been used for quantitation of 4-chloroethcathinone in aqueous solution and on C-dot-functionalized papers (CDFPs). To prepare CDFPs, chromatography papers, each with a pattern of 8 × 12 circles (wells), are first fabricated through a solid-ink printing method and then the C-dots are coated into the wells. π-Conjugated keto or ester compounds induce photoluminescence quenching of C-dots through an electron transfer process. At pH 7.0, the CDFPs allow screening of abused drugs such as cocaine, heroin and cathinones. Because of poor solubility of heroin and cocaine at pH 11.0, the C-dot probe is selective for cathinones. The C-dots in aqueous solution and CDFPs at pH 11.0 allow quantitation of 4-chloroethcathinone down to 1.73 mM and 0.14 mM, respectively. Our sensing system consisting of a portable UV-lamp, a smartphone and a low-cost CDFP has been used to detect cathinones, cocaine and heroin at pH 7.0, showing its potential for screening of these drugs in crime sites.
Collapse
Affiliation(s)
- Yao-Te Yen
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan, Republic of China
- Department of Forensic Science, Investigation Bureau, Ministry of Justice, Xindian Dist, New Taipei City 23149, Taiwan, Republic of China
| | - Yu-Syuan Lin
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan, Republic of China
| | - Ting-Yueh Chen
- Department of Forensic Science, Investigation Bureau, Ministry of Justice, Xindian Dist, New Taipei City 23149, Taiwan, Republic of China
| | - San-Chong Chyueh
- Department of Forensic Science, Investigation Bureau, Ministry of Justice, Xindian Dist, New Taipei City 23149, Taiwan, Republic of China
| | - Huan-Tsung Chang
- Department of Forensic Science, Investigation Bureau, Ministry of Justice, Xindian Dist, New Taipei City 23149, Taiwan, Republic of China
- Department of Chemistry, Chung Yuan Christian University, Chungli District, Taoyuan City 32023, Taiwan, Republic of China
| |
Collapse
|
20
|
Pritzl SD, Pschunder F, Ehrat F, Bhattacharyya S, Lohmüller T, Huergo MA, Feldmann J. Trans-membrane Fluorescence Enhancement by Carbon Dots: Ionic Interactions and Energy Transfer. NANO LETTERS 2019; 19:3886-3891. [PMID: 31046295 DOI: 10.1021/acs.nanolett.9b01071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report on trans-membrane interactions between blue-emitting carbon dots (CDs) and fluorescein. Hydrophobic CDs with a positive surface charge are embedded as-synthesized in the lipophilic sheet of the bilayer membrane of large synthetic phospholipid vesicles. The vesicles are prepared by mixing DOPC phospholipids and lipid molecules that contain anionic fluorescein attached to their hydrophilic head. Due to attractive electrostatic interactions, the CDs and fluorescein conjoin within the vesicle membrane, which leads to photoluminescence enhancement of fluorescein and facilitates trans-membrane energy transfer between the CDs and the dye.
Collapse
Affiliation(s)
- Stefanie D Pritzl
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics , Ludwig-Maximilians-Universität (LMU) , Königinstraße 10 , 80539 Munich , Germany
- Nanosystems Initiative Munich (NIM) and Center for Nanoscience (CeNS) , Schellingstraße 4 , 80799 Munich , Germany
| | - Fernando Pschunder
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata-CONICET , Sucursal 4 Casilla de Correo 16 , 1900 La Plata , Argentina
| | - Florian Ehrat
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics , Ludwig-Maximilians-Universität (LMU) , Königinstraße 10 , 80539 Munich , Germany
- Nanosystems Initiative Munich (NIM) and Center for Nanoscience (CeNS) , Schellingstraße 4 , 80799 Munich , Germany
| | - Santanu Bhattacharyya
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics , Ludwig-Maximilians-Universität (LMU) , Königinstraße 10 , 80539 Munich , Germany
- Nanosystems Initiative Munich (NIM) and Center for Nanoscience (CeNS) , Schellingstraße 4 , 80799 Munich , Germany
| | - Theobald Lohmüller
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics , Ludwig-Maximilians-Universität (LMU) , Königinstraße 10 , 80539 Munich , Germany
- Nanosystems Initiative Munich (NIM) and Center for Nanoscience (CeNS) , Schellingstraße 4 , 80799 Munich , Germany
| | - Maria Ana Huergo
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics , Ludwig-Maximilians-Universität (LMU) , Königinstraße 10 , 80539 Munich , Germany
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata-CONICET , Sucursal 4 Casilla de Correo 16 , 1900 La Plata , Argentina
| | - Jochen Feldmann
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics , Ludwig-Maximilians-Universität (LMU) , Königinstraße 10 , 80539 Munich , Germany
- Nanosystems Initiative Munich (NIM) and Center for Nanoscience (CeNS) , Schellingstraße 4 , 80799 Munich , Germany
| |
Collapse
|
21
|
Bayat A, Masoum S, Hosseini ES. Natural plant precursor for the facile and eco-friendly synthesis of carbon nanodots with multifunctional aspects. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.02.074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Ma Y, Zhang H, Zhang Y, Hu R, Jiang M, Zhang R, Lv H, Tian J, Chu L, Zhang J, Xue Q, Yip HL, Xia R, Li X, Huang W. Enhancing the Performance of Inverted Perovskite Solar Cells via Grain Boundary Passivation with Carbon Quantum Dots. ACS APPLIED MATERIALS & INTERFACES 2019; 11:3044-3052. [PMID: 30585492 DOI: 10.1021/acsami.8b18867] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nonradiative recombination, the main energy loss channel for open circuit voltage ( Voc), is one of the crucial problems for achieving high power conversion efficiency (PCE) in inverted perovskite solar cells (PSCs). Usually, grain boundary passivation is considered as an effective way to reduce nonradiative recombination because the defects (uncoordinated ions) on grain boundaries are passivated. We added the hydroxyl and carbonyl functional groups containing carbon quantum dots (CQDs) into a perovskite precursor solution to passivate the uncoordinated lead ions on grain boundaries. Higher photoluminescence intensity and longer carrier lifetime were demonstrated in the perovskite film with the CQD additive. This confirmed that the addition of CQDs can reduce nonradiative recombination by grain boundary passivation. Additionally, the introduction of CQDs could increase the thickness of the perovskite film. Consequently, we achieved a champion device with a PCE of 18.24%. The device with CQDs retained 73.4% of its initial PCE after being aged for 48 h under 80% humidity in the dark at room temperature. Our findings reveal the mechanisms of how CQDs passivate the grain boundaries of perovskite, which can improve the efficiency and stability of PSCs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jingjing Tian
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 , P. R. China
| | | | | | - Qifan Xue
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 , P. R. China
| | - Hin-Lap Yip
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 , P. R. China
| | | | | | - Wei Huang
- Shanxi Institute of Flexible Electronics (SIFE) , Northwestern Polytechnical University (NPU) , Xi'an 710072 , P. R. China
| |
Collapse
|
23
|
Danquah MK, Wang S, Wang Q, Wang B, Wilson LD. A porous β-cyclodextrin-based terpolymer fluorescence sensor for in situ trinitrophenol detection. RSC Adv 2019; 9:8073-8080. [PMID: 35521178 PMCID: PMC9061888 DOI: 10.1039/c8ra06192k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 02/28/2019] [Indexed: 11/21/2022] Open
Abstract
Permanent porosity plays a key role in fluorescent-based polymers with “on–off” emissive properties due to the role of guest adsorption at accessible fluorophore sites of the polymer framework. In particular, we report on the design of a porous fluorescent polymer (FL-PFP) composed of a covalently cross-linked ternary combination of β-cyclodextrin (β-CD), 4,4′-diisocyanato-3,3′-dimethyl biphenyl (DL) and tetrakis(4-hydoxyphenyl)ethene (TPE). The textural properties of FL-PFP were evaluated by the gas uptake properties using N2 and CO2 isotherms. The BET surface area estimates according to N2 uptake ranged from 100–150 m2 g−1, while a lower range of values (20–30 m2 g−1) was estimated for CO2 uptake. Model nitroarenes such as trinitrophenol (TNP) and nitrobenzene (NB) were shown to induce turn-off of the fluorescence emission of the polymer framework at concentrations near 50 nM with ca. 50% fluorescence quenching upon TNP adsorption and detection. The strong donor–acceptor interaction between the nitroarenes and the TPE reporter unit led to fluorescence quenching of FL-PFP upon nitroarene adsorption. The fluorescence lifetime (τ) for FL-PFP (τ = 3.82 ns) was obtained along with a quantum yield estimate of 0.399 relative to quinine sulphate. The β-CD terpolymer reported herein has significant potential for monitoring the rapid and controlled detection of nitroarenes (TNP and NB) in aquatic environments and other complex media. Permanent porosity plays a key role in fluorescent-based polymers with “on–off” emissive properties due to the role of guest adsorption at accessible fluorophore sites of the polymer framework.![]()
Collapse
Affiliation(s)
| | - Shan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Material
- Key Laboratory of Cluster Science
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
| | - Qianyou Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Material
- Key Laboratory of Cluster Science
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
| | - Bo Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Material
- Key Laboratory of Cluster Science
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
| | - Lee D. Wilson
- Department of Chemistry
- University of Saskatchewan
- Saskatoon
- Canada
| |
Collapse
|
24
|
Fan H, Xiang GQ, Wang Y, Zhang H, Ning K, Duan J, He L, Jiang X, Zhao W. Manganese-doped carbon quantum dots-based fluorescent probe for selective and sensitive sensing of 2,4,6-trinitrophenol via an inner filtering effect. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 205:221-226. [PMID: 30015029 DOI: 10.1016/j.saa.2018.07.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 06/30/2018] [Accepted: 07/05/2018] [Indexed: 06/08/2023]
Abstract
In the present work, a selective and sensitive method for detecting TNP using manganese doped carbon quantum dots (Mn-CDs) was developed. The Mn-CDs were prepared via a simple hydrothermal method using 1-(2-pyridinylazo)-2-naohthalenol naohthalenol (PAN) and MnCl2 as precursors. The as-prepared Mn-CDs have UV emission with high quantum yield (83.2%). Because of the strong characteristic absorption of TNP at 356 nm, which has good spectral overlap with the emission peak of Mn-CDs, the fluorescence intensity of Mn-CDs at 360 nm is linearly quenched in the presence of TNP in the concentration range of 0.1-200 μM. The developing assay based on an inner filter effect (IFE) mechanism for detecting TNP is selective, convenient, and shows that the as-prepared Mn-CDs have application prospects for simple and specific analytical chemistry.
Collapse
Affiliation(s)
- Huanhuan Fan
- School of Chemistry and Chemical Engineering, Henan University of technology, Zhengzhou, 450001, PR China
| | - Guo Qiang Xiang
- School of Chemistry and Chemical Engineering, Henan University of technology, Zhengzhou, 450001, PR China.
| | - Yule Wang
- School of Chemistry and Chemical Engineering, Henan University of technology, Zhengzhou, 450001, PR China
| | - Heng Zhang
- School of Chemistry and Chemical Engineering, Henan University of technology, Zhengzhou, 450001, PR China
| | - Keke Ning
- School of Chemistry and Chemical Engineering, Henan University of technology, Zhengzhou, 450001, PR China
| | - Junyue Duan
- School of Chemistry and Chemical Engineering, Henan University of technology, Zhengzhou, 450001, PR China
| | - Lijun He
- School of Chemistry and Chemical Engineering, Henan University of technology, Zhengzhou, 450001, PR China
| | - Xiuming Jiang
- School of Chemistry and Chemical Engineering, Henan University of technology, Zhengzhou, 450001, PR China
| | - Wenjie Zhao
- School of Chemistry and Chemical Engineering, Henan University of technology, Zhengzhou, 450001, PR China
| |
Collapse
|
25
|
Chan KK, Yap SHK, Yong KT. Biogreen Synthesis of Carbon Dots for Biotechnology and Nanomedicine Applications. NANO-MICRO LETTERS 2018; 10:72. [PMID: 30417004 PMCID: PMC6208800 DOI: 10.1007/s40820-018-0223-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/02/2018] [Indexed: 05/14/2023]
Abstract
Over the past decade, carbon dots have ignited a burst of interest in many different fields, including nanomedicine, solar energy, optoelectronics, energy storage, and sensing applications, owing to their excellent photoluminescence properties and the easiness to modify their optical properties through doping and functionalization. In this review, the synthesis, structural and optical properties, as well as photoluminescence mechanisms of carbon dots are first reviewed and summarized. Then, we describe a series of designs for carbon dot-based sensors and the different sensing mechanisms associated with them. Thereafter, we elaborate on recent research advances on carbon dot-based sensors for the selective and sensitive detection of a wide range of analytes, including heavy metals, cations, anions, biomolecules, biomarkers, nitroaromatic explosives, pollutants, vitamins, and drugs. Lastly, we provide a concluding perspective on the overall status, challenges, and future directions for the use of carbon dots in real-life sensing.
Collapse
Affiliation(s)
- Kok Ken Chan
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Stephanie Hui Kit Yap
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| |
Collapse
|
26
|
Siddique AB, Pramanick AK, Chatterjee S, Ray M. Amorphous Carbon Dots and their Remarkable Ability to Detect 2,4,6-Trinitrophenol. Sci Rep 2018; 8:9770. [PMID: 29950660 PMCID: PMC6021439 DOI: 10.1038/s41598-018-28021-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/11/2018] [Indexed: 01/17/2023] Open
Abstract
Apparently mundane, amorphous nanostructures of carbon have optical properties which are as exotic as their crystalline counterparts. In this work we demonstrate a simple and inexpensive mechano-chemical method to prepare bulk quantities of self-passivated, amorphous carbon dots. Like the graphene quantum dots, the water soluble, amorphous carbon dots too, exhibit excitation-dependent photoluminescence with very high quantum yield (~40%). The origin and nature of luminescence in these high entropy nanostructures are well understood in terms of the abundant surface traps. The photoluminescence property of these carbon dots is exploited to detect trace amounts of the nitro-aromatic explosive - 2,4,6-trinitrophenol (TNP). The benign nanostructures can selectively detect TNP over a wide range of concentrations (0.5 to 200 µM) simply by visual inspection, with a detection limit of 0.2 µM, and consequently outperform nearly all reported TNP sensor materials.
Collapse
Affiliation(s)
- Abu Bakar Siddique
- Dr. M. N. Dastur School of Materials Science and Engineering, Indian Institute of Engineering Science and Technology, Shibpur, PO. Botanic Garden, Howrah, 711103, India
| | - Ashit Kumar Pramanick
- Materials Science Division, CSIR-National Metallurgical Laboratory, Jamshedpur, 831007, India
| | - Subrata Chatterjee
- Dr. M. N. Dastur School of Materials Science and Engineering, Indian Institute of Engineering Science and Technology, Shibpur, PO. Botanic Garden, Howrah, 711103, India
| | - Mallar Ray
- Dr. M. N. Dastur School of Materials Science and Engineering, Indian Institute of Engineering Science and Technology, Shibpur, PO. Botanic Garden, Howrah, 711103, India.
| |
Collapse
|
27
|
Ren G, Yu L, Zhu B, Tang M, Chai F, Wang C, Su Z. Orange emissive carbon dots for colorimetric and fluorescent sensing of 2,4,6-trinitrophenol by fluorescence conversion. RSC Adv 2018; 8:16095-16102. [PMID: 35542238 PMCID: PMC9080255 DOI: 10.1039/c8ra01678j] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/13/2018] [Indexed: 12/19/2022] Open
Abstract
In this study, infrequent orange carbon nanodots (CNDs) were applied as a dual-readout probe for the effective colorimetric and fluorescent detection of 2,4,6-trinitrophenol (TNP). The orange fluorescence could be rapidly and selectively quenched by TNP, and the colorimetric response from the original pink color to blue could also be captured immediately by the naked eye. A limit of detection of 0.127 μM for TNP was estimated by the fluorescent method and 5 × 10-5 M by visualized detection. Interestingly, the fluorescence of the CNDs with TNP gradually transitioned from orange to green upon irradiation by a UV lamp, and the colorimetric response transitioned from pink to blue to colorless, which ensured effective multi-response detection of TNP. In addition, the CNDs exhibited bright fluorescence, excellent biocompatibility and low toxicity, making them high-quality fluorescent probes for cellular imaging.
Collapse
Affiliation(s)
- Guojuan Ren
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Colleges of Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University Harbin 150025 P. R. China
| | - Liying Yu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Colleges of Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University Harbin 150025 P. R. China
| | - Baoya Zhu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Colleges of Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University Harbin 150025 P. R. China
| | - Mingyu Tang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Colleges of Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University Harbin 150025 P. R. China
| | - Fang Chai
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Colleges of Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University Harbin 150025 P. R. China
| | - Chungang Wang
- Faculty of Chemistry, Northeast Normal University Changchun 130024 P. R. China
| | - Zhongmin Su
- Faculty of Chemistry, Northeast Normal University Changchun 130024 P. R. China
| |
Collapse
|
28
|
|
29
|
Liu ML, Chen BB, Liu ZX, Huang CZ. Highly selective and sensitive detection of 2,4,6-trinitrophenol by using newly developed blue–green photoluminescent carbon nanodots. Talanta 2016; 161:875-880. [DOI: 10.1016/j.talanta.2016.08.046] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/13/2016] [Accepted: 08/16/2016] [Indexed: 10/21/2022]
|