1
|
Burduja N, Virzì NF, Nocito G, Ginestra G, Saita MG, Spitaleri F, Patanè S, Nostro A, Pittalà V, Mazzaglia A. Curcumin-laden hydrogel coating medical device for periprosthetic joint infection prevention and control. Int J Pharm 2025; 672:125283. [PMID: 39890088 DOI: 10.1016/j.ijpharm.2025.125283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/03/2025]
Abstract
The Periprosthetic Joint Infection (PJI) is one of the most important complications of the joint arthroplasty. This surgical procedure is rising worldwide and is further affecting the public health because of the widespread resistance to antibiotics. New therapeutic strategies and innovative antimicrobial biomaterials development are needed to eradicate pathogens without inducing resistance and accelerating recovery. In this direction, herein Curcumin I- (Cur-) loaded DAC® (Defensive Antibacterial Coating, a hydrogel based on hyaluronic acid conjugated to polylactic acid, hereafter named DAC) has been built on. To incorporate Cur in the DAC, thus obtaining Cur-DAC (Cur ≅ 0.93 mg/g), the generally recognized as safe (GRAS) propylene glycol (PG) was used as cosolvent. The drugs combinations of Cur (≅ 0.93 mg/g) and Vancomycin (Van) (at low dose that is ≅ 0.033 mg/g) within the hydrogel (Cur/Van-DAC) was alsoexperienced . Hydrogels were prepared and characterized by rheological investigations and their erosion together with the drug release profile over the time evaluated in physiological conditions. The nanohydrogels produced upon water dilution were characterized by AFM, DLS, and UV/Vis absorption and emission spectroscopies. Superior Cur stability over pH-, solvent- and photoinduced degradations resulted in the DAC matrix. The photoinduced antimicrobial activity of Cur-DAC against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium was evaluated by spreading loaded DAC-based hydrogel onto titanium disk mimicking prosthesis, thus detecting a good reduction of bacterial load after 30 min of exposure to light and a subsequent decrease of cells number at 24 h in the absence of nutrients. The drug association in Cur/Van-DAC demonstrated the best activity against MRSA, even in the presence of nutrients, with respect to established DAC loaded with high amounts of Van (ranging from 18.7 mg/g to 45.8 mg/g) used during the surgery, due to the photoantibacterial activity of Cur, becoming promising to prevent and control joint infections.
Collapse
Affiliation(s)
- Nina Burduja
- National Research Council, Institute of Nanostructured Materials (CNR-ISMN) URT of Messina at Dept. of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale Ferdinando Stagno d'Alcontres, 31 98166 Messina, Italy; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale Ferdinando Stagno d'Alcontres, 31 98166 Messina, Italy
| | - Nicola F Virzì
- Department of Drug and Health Science, University of Catania, Viale Andrea Doria 6 95125 Catania, Italy
| | - Giuseppe Nocito
- National Research Council, Institute of Nanostructured Materials (CNR-ISMN) URT of Messina at Dept. of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale Ferdinando Stagno d'Alcontres, 31 98166 Messina, Italy
| | - Giovanna Ginestra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale Ferdinando Stagno d'Alcontres, 31 98166 Messina, Italy
| | - Maria G Saita
- Medivis, Via Carnazza 34/C 95030 Tremestieri Etneo, Italy
| | | | - Salvatore Patanè
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences (MIFT), University of Messina, Viale Ferdinando Stagno d'Alcontres, 31 98166 Messina, Italy
| | - Antonia Nostro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale Ferdinando Stagno d'Alcontres, 31 98166 Messina, Italy
| | - Valeria Pittalà
- Department of Drug and Health Science, University of Catania, Viale Andrea Doria 6 95125 Catania, Italy.
| | - Antonino Mazzaglia
- National Research Council, Institute of Nanostructured Materials (CNR-ISMN) URT of Messina at Dept. of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale Ferdinando Stagno d'Alcontres, 31 98166 Messina, Italy.
| |
Collapse
|
2
|
Elian C, Mouhoubi F, Moilleron R, Andaloussi SA, Ha-Thi MH, Chiappone A, Cosola A, Lajnef S, Peyrot F, Versace DL. Lignin Derivative as Visible-Light Photo-Initiating System for the Development of Biocide Materials under Light Irradiation. Macromol Rapid Commun 2024:e2400877. [PMID: 39704603 DOI: 10.1002/marc.202400877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/06/2024] [Indexed: 12/21/2024]
Abstract
The design of a new visible-light methacrylated-based kraft lignin photosensitizer (MAcL) of iodonium salt (Iod) for the free-radical polymerization (FRP) of polyethylene glycol dimethacrylate (PEGDMA) under LEDs@405, 455, 470, 505, and 530 nm is reported. As demonstrated by laser flash photolysis (LFP) and electron paramagnetic resonance spin-trapping (EPR ST) experiments, the combination of MAcL with an electron acceptor (Iod) and trimethylolpropane tris(3-mercaptopropionate) (TT) used as a crosslinker, leads to the formation of highly efficient initiating radicals, i.e., thyil and carbon-centred radicals, promoting thus the FRP of PEGDMA. The final methacrylate conversions of PEGDMA are very high and range from 80 to 95% under LED@530 nm and LED@405 nm, respectively. For the first time, MAcL is also used as a biocide agent as it produces singlet oxygen when exposed to visible light. The resulting photoinduced bio-based materials incorporating MAcL demonstrate tremendous antibacterial properties against Staphylococcus aureus (S. aureus), inducing 100% bacterial death.
Collapse
Affiliation(s)
- Christine Elian
- Paris-Est Creteil University, CNRS, ICMPE, UMR 7182, Thiais, 94320, France
| | - Fares Mouhoubi
- Paris-Est Creteil University, CNRS, ICMPE, UMR 7182, Thiais, 94320, France
| | - Régis Moilleron
- Paris-Est Creteil University, Laboratoire Eau, Environnement, Systèmes Urbains (LEESU), 61 Avenue Général de Gaulle, Créteil, Cedex, 94010, France
| | - Samir Abbad Andaloussi
- Paris-Est Creteil University, Laboratoire Eau, Environnement, Systèmes Urbains (LEESU), 61 Avenue Général de Gaulle, Créteil, Cedex, 94010, France
| | - Minh-Huong Ha-Thi
- Paris-Saclay University, CNRS, Institut des Sciences Moléculaires d'Orsay, Orsay, 91405, France
| | - Annalisa Chiappone
- Dipartimento di Scienze Chimiche e Geologiche, University of Cagliari, Via Università 40, Cagliari, 09124, Italy
| | - Andrea Cosola
- Dipartimento Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
| | - Sonia Lajnef
- Paris Cité University, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Paris, F-75006, France
| | - Fabienne Peyrot
- Paris Cité University, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Paris, F-75006, France
- Sorbonne University, Institut National Supérieur du Professorat et de l'Éducation de l'académie de Paris, Paris, F-75016, France
| | - Davy-Louis Versace
- Paris-Est Creteil University, CNRS, ICMPE, UMR 7182, Thiais, 94320, France
| |
Collapse
|
3
|
Wang Z, Yang H, Li Z, Liu J. Non-Thermal Treatment Mediated by Curcumin for Enhancing Food Product Quality. Foods 2024; 13:3980. [PMID: 39683052 DOI: 10.3390/foods13233980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/30/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Increasing antibiotic resistance is one of the world's greatest health problems, and biocide use in food disinfection, alongside other application fields, could increase antibiotic resistance. Effective and eco-friendly food decontamination treatment with minimal chemical intervention in food production is urgently needed. Synergistic antimicrobial interaction of photoactive compounds and blue-light-emitting diodes have recently been proven effective in agricultural and environmental applications. Curcumin-based non-thermal treatment has been reviewed in this work for the development of a safe and effective decontamination tool that could be adapted to the food industry. The antimicrobial mechanism of the synergistic interaction and the inhibitory efficacy against foodborne pathogens (bacteria in both vegetative form and spore, as well as in biofilms) are discussed. Further studies on curcumin and its derivative, as well as light illumination patterns, were compared for enhanced bactericidal efficacy. Moreover, studies relating to photodynamic inactivation treatment for food sanitation and food quality enhancement (cereal grains and other food products) were summarized, as well as the impact on food organoleptic and nutritional quality.
Collapse
Affiliation(s)
- Ziyuan Wang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
- National Center of Technology Innovation for Grain Industry, Comprehensive Utilization of Edible By-Products, Beijing Technology and Business University, Beijing 100048, China
| | - Haihong Yang
- National Center of Technology Innovation for Grain Industry, Comprehensive Utilization of Edible By-Products, Beijing Technology and Business University, Beijing 100048, China
| | - Zhaofeng Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jie Liu
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
- National Center of Technology Innovation for Grain Industry, Comprehensive Utilization of Edible By-Products, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
4
|
Gao L, Zhang K, Wang Y, Qin C, Zhang Y, Liu Y, Liu C, Wan Y. Curcumin-mediated photodynamic disinfection strategy with specific spectral range for mucoid Pseudomonas Aeruginosa from hospital water. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 260:113035. [PMID: 39303620 DOI: 10.1016/j.jphotobiol.2024.113035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/22/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Hospital water systems represent critical environments for the transmission of pathogens, including multidrug-resistant strains like mucoid Pseudomonas aeruginosa (M-PA). Conventional disinfection methods often struggle to eradicate these pathogens effectively, highlighting the need for innovative approaches. OBJECTIVE This study aimed to develop an enhanced photodynamic disinfection strategy targeting M-PA from hospital water systems, using curcumin-mediated photodynamic inactivation (PDI) with specific spectral range. METHODS An M-PA strain isolated from hospital water was subjected to photodynamic treatment using curcumin as the photosensitizer. The efficacy of different wavelengths of light and varying concentrations of curcumin, with and without Tris-EDTA adjuvants, was evaluated through bacterial enumeration, ROS level measurements, transcriptome analysis, and assessment of virulence factors and biofilm formation. In vivo experiments utilizing a DSS-induced colitis mouse model assessed the protective effects of the photodynamic treatment against M-PA infection. RESULTS Our findings demonstrated that the combination of curcumin-mediated PDI with specific spectral range effectively reduced M-PA counts in water, particularly when supplemented with Tris-EDTA. Transcriptome analysis revealed significant downregulation of virulence-related genes under sublethal photodynamic conditions. Furthermore, photodynamic treatment inhibited pyocyanin production and biofilm formation in M-PA, highlighting its potential to disrupt pathogenicity mechanisms. In vivo experiments showed that PDI attenuated M-PA-induced colitis in mice, indicating its protective efficacy. CONCLUSION This study presents a promising photodynamic disinfection strategy for combating M-PA from hospital water. By optimizing curcumin-mediated PDI with specific spectral range and adjuvants, our approach demonstrates substantial efficacy in reducing bacterial counts, inhibiting virulence factors, and preventing M-PA-associated colitis.
Collapse
Affiliation(s)
- Lei Gao
- Microbiology Institute of Shaanxi, No.76 Xiying Road, Xi'an 710043, PR China
| | - Kun Zhang
- Microbiology Institute of Shaanxi, No.76 Xiying Road, Xi'an 710043, PR China
| | - Yan Wang
- Microbiology Institute of Shaanxi, No.76 Xiying Road, Xi'an 710043, PR China
| | - Chuan Qin
- Microbiology Institute of Shaanxi, No.76 Xiying Road, Xi'an 710043, PR China
| | - Yuejuan Zhang
- Microbiology Institute of Shaanxi, No.76 Xiying Road, Xi'an 710043, PR China
| | - Ying Liu
- Microbiology Institute of Shaanxi, No.76 Xiying Road, Xi'an 710043, PR China
| | - Chengcheng Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, PR China.
| | - Yi Wan
- Microbiology Institute of Shaanxi, No.76 Xiying Road, Xi'an 710043, PR China.
| |
Collapse
|
5
|
Bakun P, Wysocki M, Stachowiak M, Musielak M, Dlugaszewska J, Mlynarczyk DT, Sobotta L, Suchorska WM, Goslinski T. Quaternized Curcumin Derivative-Synthesis, Physicochemical Characteristics, and Photocytotoxicity, Including Antibacterial Activity after Irradiation with Blue Light. Molecules 2024; 29:4536. [PMID: 39407467 PMCID: PMC11478334 DOI: 10.3390/molecules29194536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Over the past few years, numerous bacterial strains have become resistant to selected drugs from various therapeutic groups. A potential tool in the fight against these strains is antimicrobial photodynamic therapy (APDT). APDT acts in a non-specific manner by generating reactive oxygen species and radicals, thereby inducing multidimensional intracellular effects. Importantly, the chance that bacteria will develop defense mechanisms against APDT is considered to be low. In our research, we performed the synthesis and physicochemical characterization of curcumin derivatives enriched with morpholine motifs. The obtained compounds were assessed regarding photostability, singlet oxygen generation, aggregation, and acute toxicity toward prokaryotic Aliivibrio fischeri cells in the Microtox® test. The impact of the compounds on the survival of eukaryotic cells in the MTT assay was also tested (WM266-4, WM115-melanoma, MRC-5-lung fibroblasts, and PHDF-primary human dermal fibroblasts). Initial studies determining the photocytotoxicity, and thus the potential APDT usability, were conducted with the following microbial strains: Candida albicans, Escherichia coli, Staphylococcus aureus, Streptococcus pneumoniae, and Pseudomonas aeruginosa. It was noted that the exposure of bacteria to LED light at 470 nm (fluence: 30 J/cm2) in the presence of quaternized curcumin derivatives at the conc. of 10 µM led to a reduction in Staphylococcus aureus survival of over 5.4 log.
Collapse
Affiliation(s)
- Pawel Bakun
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.S.); (D.T.M.)
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland; (M.W.); (M.M.)
| | - Marcin Wysocki
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland; (M.W.); (M.M.)
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Magdalena Stachowiak
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.S.); (D.T.M.)
| | - Marika Musielak
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland; (M.W.); (M.M.)
- Department of Electroradiology, Poznan University of Medical Sciences, Garbary 15, 61-866 Poznan, Poland;
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
| | - Jolanta Dlugaszewska
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Dariusz T. Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.S.); (D.T.M.)
| | - Lukasz Sobotta
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Wiktoria M. Suchorska
- Department of Electroradiology, Poznan University of Medical Sciences, Garbary 15, 61-866 Poznan, Poland;
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.S.); (D.T.M.)
| |
Collapse
|
6
|
Dzwonkowska-Zarzycka M, Sionkowska A. Photoinitiators for Medical Applications-The Latest Advances. Molecules 2024; 29:3898. [PMID: 39202977 PMCID: PMC11357272 DOI: 10.3390/molecules29163898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 09/03/2024] Open
Abstract
Photopolymerization is becoming increasingly popular in industry due to its copious advantages. The vital factor in the entire pre-polymerization formulation is the presence of photoinitiators. Depending on the application, photoinitiators have different features. Hence, scientists are particularly interested in developing new photoinitiators that can expand the scope of applications and be used to create products with the features demanded by current trends. This brief review summarizes the photoinitiators used in dental materials and hydrogels and those obtained from natural and synthetic sources.
Collapse
Affiliation(s)
- Monika Dzwonkowska-Zarzycka
- Department of Organic Chemistry, Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7 Street, 87-100 Torun, Poland
| |
Collapse
|
7
|
Xue K, Li YJ, Ma TH, Cui LY, Liu CB, Zou YH, Li SQ, Zhang F, Zeng RC. In vitro corrosion resistance and dual antibacterial ability of curcumin loaded composite coatings on AZ31 alloy: Effect of amorphous calcium carbonate. J Colloid Interface Sci 2023; 649:867-879. [PMID: 37390534 DOI: 10.1016/j.jcis.2023.06.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/02/2023]
Abstract
Rapid corrosion and bacterial infection are obstacles to put into use biodegradable magnesium (Mg) alloy as biomedical materials. In this research, an amorphous calcium carbonate (ACC)@curcumin (Cur) loaded poly-methyltrimethoxysilane (PMTMS) coating prepared by self-assembly method on micro-arc oxidation (MAO) coated Mg alloy has been proposed. Scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy are adopted to analyze the morphology and composition of the obtained coatings. The corrosion behaviour of the coatings is estimated by hydrogen evolution and electrochemical tests. The spread plate method without or with 808 nm near-infrared irradiation is applied to evaluate the antimicrobial and photothermal antimicrobial ability of the coatings. Cytotoxicity of the samples is tested by 3-(4,5)-dimethylthiahiazo(-z-y1)-2,5-di- phenytetrazoliumromide (MTT) and live/dead assay culturing with MC3T3-E1 cells. Results show that the MAO/ACC@Cur-PMTMS coating exhibited favourable corrosion resistance, dual antibacterial ability, and good biocompatibility. Cur was employed as an antibacterial agent and photosensitizer for photothermal therapy. The core of ACC significantly improved the loading of Cur and the deposition of hydroxyapatite corrosion products during degradation, which greatly promoted the long-term corrosion resistance and antibacterial activity of Mg alloys as biomedical materials.
Collapse
Affiliation(s)
- Kui Xue
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yan-Jin Li
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Tian-Hao Ma
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Lan-Yue Cui
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Cheng-Bao Liu
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yu-Hong Zou
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Shuo-Qi Li
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Fen Zhang
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Rong-Chang Zeng
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| |
Collapse
|
8
|
Pacheco K, Aldea-Nunzi G, Pawlicka A, Nunzi JM. The Formation of Volume Transmission Gratings in Acrylamide-Based Photopolymers Using Curcumin as a Long-Wavelength Photosensitizer. Polymers (Basel) 2023; 15:polym15071782. [PMID: 37050396 PMCID: PMC10096970 DOI: 10.3390/polym15071782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
Curcumin, a natural dye found in the Curcuma longa rhizome, commonly called turmeric, is used as a photosensitizer in acrylamide-based photopolymers for holographic data storage. We studied the absorbance of photopolymer films that show two absorption bands due to curcumin, acrylamide monomer (AA), and the crosslinking agent N,N'-methylenebisacrylamide (MBA). Analysis of the real-time diffraction efficiency of these films shows a maximum of 16% for the sample with the highest curcumin concentration. Moreover, increasing the curcumin load enhanced the refractive index contrast from 7.8 × 10-4 for the photopolymer with the lowest curcumin load to 1.1 × 10-3 for the photopolymer with the largest load. The sensitivity and diffraction efficiency of the recorded gratings also increased from 7.0 to 9.8 cm·J-1 and from 7.9 to 16% with the increase in curcumin load, respectively. Finally, the influence of NaOH on the photopolymerization of the AA-curcumin-based sample shows a diffraction efficiency increase with the NaOH content, revealing that the curcumin enol form is more efficient as a photosensitizer.
Collapse
Affiliation(s)
| | | | - Agnieszka Pawlicka
- Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador Sãocarlense 400, São Carlos 13566-590, SP, Brazil
| | - Jean-Michel Nunzi
- Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada
- Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
9
|
Photodynamic inactivation of Salmonella enterica and Listeria monocytogenes inoculated onto stainless steel or polyurethane surfaces. Food Microbiol 2023; 110:104174. [DOI: 10.1016/j.fm.2022.104174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/14/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022]
|
10
|
Dumur F. Recent Advances on Anthraquinone-based Photoinitiators of Polymerization. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
11
|
Elian C, Andaloussi SA, Moilleron R, Decousser JW, Boyer C, Versace DL. Biobased polymer resources and essential oils: a green combination for antibacterial applications. J Mater Chem B 2022; 10:9081-9124. [PMID: 36326108 DOI: 10.1039/d2tb01544g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To fight nosocomial infections, the excessive use of antibiotics has led to the emergence of multidrug-resistant microorganisms, which are now considered a relevant public health threat by the World Health Organization. To date, most antibacterial systems are based on the use of petro-sourced polymers, but the global supplies of these resources are depleting. Besides, silver NPs are widely accepted as the most active biocide against a wide range of bacterial strains but their toxicity is an issue. The growing interest in natural products has gained increasing interest in the last decade. Therefore, the design of functional antibacterial materials derived from biomass remains a significant challenge for the scientific community. Consequently, attention has shifted to naturally occurring substances such as essential oils (EOs), which are classified as Generally Recognized as Safe (GRAS). EOs can offer an alternative to the common antimicrobial agents as an inner solution or biocide agent to inhibit the resistance mechanism. Herein, this review not only aims at providing developments in the antibacterial modes of action of EOs against various bacterial strains and the recent advances in genomic and proteomic techniques for the elucidation of these mechanisms but also presents examples of biobased polymer resource-based EO materials and their antibacterial activities. Especially, we describe the antibacterial properties of biobased polymers, e.g. cellulose, starch, chitosan, PLA PHAs and proteins, associated with EOs (cinnamon (CEO), clove (CLEO), bergamot (BEO), ginger (GEO), lemongrass (LEO), caraway (CAEO), rosemary (REO), Eucalyptus globulus (EGEO), tea tree (TTEO), orange peel (OPEO) and apricot (Prunus armeniaca) kernel (AKEO) essential oils). Finally, we discuss the influence of EOs on the mechanical strength of bio-based materials.
Collapse
Affiliation(s)
- Christine Elian
- Institut de Chimie et des Matériaux Paris-Est (ICMPE) - UMR7182-CNRS-UPEC, Department C3M, Team BioM&M's, 2-8 rue Henri Dunant, 94320 Thiais, France. .,Université Paris-Est Créteil (UPEC), Laboratoire Eau, Environnement, Systèmes Urbains (LEESU), UMR-MA 102, 61 avenue Général de Gaulle, 94010 Créteil Cedex, France
| | - Samir Abbad Andaloussi
- Université Paris-Est Créteil (UPEC), Laboratoire Eau, Environnement, Systèmes Urbains (LEESU), UMR-MA 102, 61 avenue Général de Gaulle, 94010 Créteil Cedex, France
| | - Régis Moilleron
- Université Paris-Est Créteil (UPEC), Laboratoire Eau, Environnement, Systèmes Urbains (LEESU), UMR-MA 102, 61 avenue Général de Gaulle, 94010 Créteil Cedex, France
| | - Jean-Winoc Decousser
- Department of Bacteriology and Infection Control, University Hospital Henri Mondor, Assistance Publique - Hôpitaux de Paris, Créteil, France.,EA 7380 Dynamyc Université Paris - Est Créteil (UPEC), Ecole nationale vétérinaire d'Alfort (EnvA), Faculté de Médecine de Créteil, Créteil, 1 rue Gustave Eiffel, 94000 Créteil, France
| | - Cyrille Boyer
- Australian Center for Nanomedicine (ACN), Cluster for Advanced Macromolecular Design, School of Chemical Engineering, UNSW Sydney, Australia
| | - Davy-Louis Versace
- Institut de Chimie et des Matériaux Paris-Est (ICMPE) - UMR7182-CNRS-UPEC, Department C3M, Team BioM&M's, 2-8 rue Henri Dunant, 94320 Thiais, France.
| |
Collapse
|
12
|
Musolino S, Shatila F, Tieman GM, Masarsky AC, Thibodeau MC, Wulff JE, Buckley HL. Light-Induced Anti-Bacterial Effect Against Staphylococcus aureus of Porphyrin Covalently Bonded to a Polyethylene Terephthalate Surface. ACS OMEGA 2022; 7:29517-29525. [PMID: 36033695 PMCID: PMC9404523 DOI: 10.1021/acsomega.2c04294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Antimicrobial photodynamic inactivation represents a promising and potentially greener alternative to conventional antimicrobials, and a solution for multidrug-resistant strains. The current study reports the development and characterization of tetra-substituted diazirine porphyrin covalently bonded to polyethylene terephthalate (PET) and its use as an antimicrobial surface. The diazirine moiety on the porphyrin was activated using a temperature of 120 °C, which initiated a C-H insertion mechanism that irreversibly functionalized the PET surface. Activation of the surface with white LED light in phosphate-buffered saline (PBS) led to singlet oxygen generation, which was detected via the degradation of 9,10-anthracenediylbis(methylene)dimalonic acid (ADMA) over time. The bactericidal effect of the 1O2-producing surface against Staphylococcus aureus was determined qualitatively and quantitatively. The growth of the pathogen beneath porphyrin-functionalized PET coupons was reduced; moreover, the PET coupons resulted in a 1.76-log reduction in cell counts after exposure to white LED light for 6 h. This is a promising material and platform for the development of safer antimicrobial surfaces, with applications in healthcare, food packaging, marine surfaces, and other surfaces in the environment.
Collapse
Affiliation(s)
- Stefania
F. Musolino
- Department
of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P
5C2, Canada
- Centre
for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Fatima Shatila
- Department
of Civil Engineering, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P
5C2, Canada
- Centre
for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Grace M.O. Tieman
- Department
of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P
5C2, Canada
- Centre
for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
- Institute
for Integrated Energy Systems (IESVic), University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Anna C. Masarsky
- Department
of Civil Engineering, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P
5C2, Canada
- Centre
for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Matthew C. Thibodeau
- Department
of Civil Engineering, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P
5C2, Canada
- Centre
for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Jeremy E. Wulff
- Department
of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P
5C2, Canada
- Centre
for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Heather L. Buckley
- Department
of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P
5C2, Canada
- Department
of Civil Engineering, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P
5C2, Canada
- Centre
for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
- Institute
for Integrated Energy Systems (IESVic), University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
13
|
Tambawala H, Batra S, Shirapure Y, More AP. Curcumin- A Bio-based Precursor for Smart and Active Food Packaging Systems: A Review. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2022; 30:2177-2208. [DOI: 10.1007/s10924-022-02372-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/31/2021] [Indexed: 01/04/2025]
|
14
|
Gusev I, Ferreira M, Versace DL, Abbad-Andaloussi S, Pluczyk-Małek S, Erfurt K, Duda A, Data P, Blacha-Grzechnik A. Electrochemically Deposited Zinc (Tetraamino)phthalocyanine as a Light-activated Antimicrobial Coating Effective against S. aureus. MATERIALS (BASEL, SWITZERLAND) 2022; 15:975. [PMID: 35160921 PMCID: PMC8838431 DOI: 10.3390/ma15030975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 01/07/2023]
Abstract
Light-activated antimicrobial coatings are currently considered to be a promising approach for the prevention of nosocomial infections. In this work, we present a straightforward strategy for the deposition of a photoactive biocidal organic layer of zinc (tetraamino)phthalocyanine (ZnPcNH2) in an electrochemical oxidative process. The chemical structure and morphology of the resulting layer are widely characterized by microscopic and spectroscopic techniques, while its ability to photogenerate reactive oxygen species (ROS) is investigated in situ by UV-Vis spectroscopy with α-terpinene or 1,3-diphenylisobenzofuran as a chemical trap. It is shown that the ZnPcNH2 photosensitizer retained its photoactivity after immobilization, and that the reported light-activated coating exhibits promising antimicrobial properties towards Staphyloccocus aureus (S. aureus).
Collapse
Affiliation(s)
- Ivan Gusev
- Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland; (I.G.); (S.P.-M.); (K.E.); (A.D.)
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22b, 44-100 Gliwice, Poland; (M.F.); (P.D.)
| | - Marli Ferreira
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22b, 44-100 Gliwice, Poland; (M.F.); (P.D.)
| | - Davy-Louis Versace
- Institut de Chimie et des Matériaux Paris-Est (ICMPE, UMR-CNRS 7182-UPEC), 2-8 Rue Henri Dunant, 94320 Thiais, France
| | - Samir Abbad-Andaloussi
- Laboratoire Eau, Environnement, Systèmes Urbains (LEESU), UMR-MA 102, Université Paris-Est Créteil (UPEC), 61 Avenue Général de Gaulle, 94010 Créteil Cedex, France;
| | - Sandra Pluczyk-Małek
- Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland; (I.G.); (S.P.-M.); (K.E.); (A.D.)
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22b, 44-100 Gliwice, Poland; (M.F.); (P.D.)
| | - Karol Erfurt
- Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland; (I.G.); (S.P.-M.); (K.E.); (A.D.)
| | - Alicja Duda
- Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland; (I.G.); (S.P.-M.); (K.E.); (A.D.)
| | - Przemysław Data
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22b, 44-100 Gliwice, Poland; (M.F.); (P.D.)
| | - Agata Blacha-Grzechnik
- Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland; (I.G.); (S.P.-M.); (K.E.); (A.D.)
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22b, 44-100 Gliwice, Poland; (M.F.); (P.D.)
| |
Collapse
|
15
|
Pierau L, Elian C, Akimoto J, Ito Y, Caillol S, Versace DL. Bio-sourced Monomers and Cationic Photopolymerization: The Green combination towards Eco-Friendly and Non-Toxic Materials. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Versace DL, Breloy L, Palierse E, Coradin T. Contributions of photochemistry to bio-based antibacterial polymer materials. J Mater Chem B 2021; 9:9624-9641. [PMID: 34807217 DOI: 10.1039/d1tb01801a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Surgical site infections constitute a major health concern that may be addressed by conferring antibacterial properties to surgical tools and medical devices via functional coatings. Bio-sourced polymers are particularly well-suited to prepare such coatings as they are usually safe and can exhibit intrinsic antibacterial properties or serve as hosts for bactericidal agents. The goal of this Review is to highlight the unique contribution of photochemistry as a green and mild methodology for the development of such bio-based antibacterial materials. Photo-generation and photo-activation of bactericidal materials are illustrated. Recent efforts and current challenges to optimize the sustainability of the process, improve the safety of the materials and extend these strategies to 3D biomaterials are also emphasized.
Collapse
Affiliation(s)
- Davy-Louis Versace
- Institut de Chimie et des Matériaux Paris-Est (ICMPE, UMR-CNRS 7182), 2-8 rue Henri Dunant, 94320 Thiais, France.
| | - Louise Breloy
- Institut de Chimie et des Matériaux Paris-Est (ICMPE, UMR-CNRS 7182), 2-8 rue Henri Dunant, 94320 Thiais, France.
| | - Estelle Palierse
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR 7574, 4 place Jussieu, 75005 Paris, France. .,Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), UMR 7197, 4 place Jussieu, 75005 Paris, France
| | - Thibaud Coradin
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR 7574, 4 place Jussieu, 75005 Paris, France.
| |
Collapse
|
17
|
Abstract
Current strategies of combating bacterial infections are limited and involve the use of antibiotics and preservatives. Each of these agents has generally inadequate efficacy and a number of serious adverse effects. Thus, there is an urgent need for new antimicrobial drugs and food preservatives with higher efficacy and lower toxicity. Edible plants have been used in medicine since ancient times and are well known for their successful antimicrobial activity. Often photosensitizers are present in many edible plants; they could be a promising source for a new generation of drugs and food preservatives. The use of photodynamic therapy allows enhancement of antimicrobial properties in plant photosensitizers. The purpose of this review is to present the verified data on the antimicrobial activities of photodynamic phytochemicals in edible species of the world’s flora, including the various mechanisms of their actions.
Collapse
|
18
|
Anoua R, Lifi H, Touhtouh S, El Jouad M, Hajjaji A, Bakasse M, Płociennik P, Zawadzka A. Optical and morphological properties of Curcuma longa dye for dye-sensitized solar cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:57860-57871. [PMID: 34097221 DOI: 10.1007/s11356-021-14551-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
New experimental results of morphological and optical properties of Curcuma longa dye thin film were investigated. The thin films were deposited by physical vapor deposition technique. Morphological properties were measured using atomic force microscopy technique and they show a granular structure which above there are nanotubes shapes. Photoluminescence of Curcuma longa at low temperature was investigated and discussed for the first time. The temperature effect from 77 to 300 K of Curcuma longa thin film has been shown and luminescence was strongly observed. Photoelectrochemical parameters of the dye-sensitized solar cell based on Curcuma longa have been computed via the finite element method. The power conversion efficiency is about 0.86% obtained from short circuit current, open-circuit voltage, and fill factor of 0.13 mA/cm2, 0.52 mV, and 0.83, respectively. As a result, Curcuma longa dye can be applied to dye-sensitized solar cells.
Collapse
Affiliation(s)
- Rania Anoua
- Laboratory of Engineering Sciences for Energy, National School of Applied Sciences of El Jadida, BP 1166, El Jadida, Morocco.
- Department of Automation and Measurement Systems, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziądzka 5, Torun, 87-100, Poland.
| | - Houda Lifi
- Laboratory of Engineering Sciences for Energy, National School of Applied Sciences of El Jadida, BP 1166, El Jadida, Morocco
| | - Samira Touhtouh
- Laboratory of Engineering Sciences for Energy, National School of Applied Sciences of El Jadida, BP 1166, El Jadida, Morocco
| | - Mohamed El Jouad
- Laboratory of Engineering Sciences for Energy, National School of Applied Sciences of El Jadida, BP 1166, El Jadida, Morocco
| | - Abdelowahed Hajjaji
- Laboratory of Engineering Sciences for Energy, National School of Applied Sciences of El Jadida, BP 1166, El Jadida, Morocco
| | - Mina Bakasse
- Laboratory of Chemistry Organic, Bioorganic and Environment, Faculty of Science, University Chouaib Doukkali, 24000, El Jadida, Morocco
| | - Przemysław Płociennik
- Institute of Engineering and Technology, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland
| | - Anna Zawadzka
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100, Torun, Poland
| |
Collapse
|
19
|
Breloy L, Mhanna R, Malval JP, Brezová V, Jacquemin D, Pascal S, Siri O, Versace DL. Azacalixphyrins as an innovative alternative for the free-radical photopolymerization under visible and NIR irradiation without the need of co-initiators. Chem Commun (Camb) 2021; 57:8973-8976. [PMID: 34486621 DOI: 10.1039/d1cc03607f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Azacalixphyrins are unique aromatic macrocycles featuring strong absorption from the visible to the near-infrared (NIR) spectral ranges. This work demonstrates through EPR spin-trapping experiments that the N-alkyl tetrasubstituted azacalixphyrin (ACP) can lead to the formation of carbon-centered radicals initiating for the free-radical photopolymerization (FRP) of bio-based acrylate monomer upon the irradiation of several light emitting diodes, which emissions range from 455 to 660 nm. Compared to other previously reported systems, the tremendous advantage of the ACP photoinitiating system is its ability to promote photopolymerization on its own, avoiding the introduction of co-initiators. A new potential application of this promising photoinitiator is highlighted through the fabrication of well-defined microstructures under NIR laser diode irradiation at λ = 800 nm.
Collapse
Affiliation(s)
- Louise Breloy
- Institut de Chimie et des Matériaux Paris-Est (UMR-CNRS 7182-UPEC), 2-8 rue Henri Dunant, Thiais 94320, France.
| | - Rana Mhanna
- Institut de Science des Matériaux de Mulhouse (IS2M) (UMR-CNRS 7361), 15, rue Jean Starcky, Mulhouse 68057, France
| | - Jean-Pierre Malval
- Institut de Science des Matériaux de Mulhouse (IS2M) (UMR-CNRS 7361), 15, rue Jean Starcky, Mulhouse 68057, France
| | - Vlasta Brezová
- Slovak University of Technology in Bratislava, Faculty of Chemical and Food Technology, Institute of Physical Chemistry and Chemical Physics, Department of Physical Chemistry, Radlinského 9, Bratislava SK-812 37, Slovak Republic
| | - Denis Jacquemin
- Université de Nantes, CEISAM UMR 6230, CNRS, Nantes F-44000, France.
| | - Simon Pascal
- Aix Marseille Univ, CNRS UMR 7325, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Campus de Luminy, case 913, Marseille cedex 09 13288, France.
| | - Olivier Siri
- Aix Marseille Univ, CNRS UMR 7325, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Campus de Luminy, case 913, Marseille cedex 09 13288, France.
| | - Davy-Louis Versace
- Institut de Chimie et des Matériaux Paris-Est (UMR-CNRS 7182-UPEC), 2-8 rue Henri Dunant, Thiais 94320, France.
| |
Collapse
|
20
|
Li Y, Jiao J, Qi Y, Yu W, Yang S, Zhang J, Zhao J. Curcumin: A review of experimental studies and mechanisms related to periodontitis treatment. J Periodontal Res 2021; 56:837-847. [PMID: 34173676 DOI: 10.1111/jre.12914] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/14/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Curcumin is the main active ingredient of turmeric, which has a wide range of pharmacological effects, including antitumor, antibacterial, anti-inflammatory, anti-oxidation, immune regulation, and so on. Periodontitis is a prevalent oral inflammatory disease caused by a variety of factors. In recent years, many studies have shown that curcumin has a potential role on the treatment of periodontitis. Curcumin has been used in research related to the treatment of periodontitis in the form of solution, chip, gel, and capsule. Combined with other periodontitis treatment methods, such as scaling and root planing (SRP) and photodynamic therapy (PDT), can enhance curcumin's efficacy in treating periodontitis. In addition to natural curcumin, chemically modified curcumin, such as 4-phenylaminocarbonyl bis-demethoxy curcumin (CMC 2.24) and 4-methoxycarbonyl curcumin (CMC 2.5), have also been used in animal models of periodontitis. Here, this paper reviews the research progress of curcumin on the treatment of periodontitis and its related mechanisms.
Collapse
Affiliation(s)
- Yongli Li
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Junjie Jiao
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Yuanzheng Qi
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Wanqi Yu
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Shihui Yang
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Jingjie Zhang
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Jinghui Zhao
- Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
21
|
Lawsone Derivatives as Efficient Photopolymerizable Initiators for Free-Radical, Cationic Photopolymerizations, and Thiol-Ene Reactions. Polymers (Basel) 2021; 13:polym13122015. [PMID: 34203069 PMCID: PMC8234034 DOI: 10.3390/polym13122015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022] Open
Abstract
Two new photopolymerizable vinyl (2-(allyloxy) 1,4-naphthoquinone, HNQA) and epoxy (2-(oxiran-2yl methoxy) 1,4-naphthoquinone, HNQE) photoinitiators derived from lawsone were designed in this paper. These new photoinitiators can be used as one-component photoinitiating systems for the free-radical photopolymerization of acrylate bio-based monomer without the addition of any co-initiators. As highlighted by the electron paramagnetic resonance (EPR) spin-trapping results, the formation of carbon-centered radicals from an intermolecular H abstraction reaction was evidenced and can act as initiating species. Interestingly, the introduction of iodonium salt (Iod) used as a co-initiator has led to (1) the cationic photopolymerization of epoxy monomer with high final conversions and (2) an increase of the rates of free-radical polymerization of the acrylate bio-based monomer; we also demonstrated the concomitant thiol–ene reaction and cationic photopolymerizations of a limonene 1,2 epoxide/thiol blend mixture with the HNQA/Iod photoinitiating system.
Collapse
|
22
|
|
23
|
Light and Hydrogels: A New Generation of Antimicrobial Materials. MATERIALS 2021; 14:ma14040787. [PMID: 33562335 PMCID: PMC7915775 DOI: 10.3390/ma14040787] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 01/17/2023]
Abstract
Nosocomial diseases are becoming a scourge in hospitals worldwide, and new multidrug-resistant microorganisms are appearing at the forefront, significantly increasing the number of deaths. Innovative solutions must emerge to prevent the imminent health crisis risk, and antibacterial hydrogels are one of them. In addition to this, for the past ten years, photochemistry has become an appealing green process attracting continuous attention from scientists in the scope of sustainable development, as it exhibits many advantages over other methods used in polymer chemistry. Therefore, the combination of antimicrobial hydrogels and light has become a matter of course to design innovative antimicrobial materials. In the present review, we focus on the use of photochemistry to highlight two categories of hydrogels: (a) antibacterial hydrogels synthesized via a free-radical photochemical crosslinking process and (b) chemical hydrogels with light-triggered antibacterial properties. Numerous examples of these new types of hydrogels are described, and some notions of photochemistry are introduced.
Collapse
|
24
|
Wang Z, Han L, Liu J, Yao M. Refrigeration temperature enhanced synergistic interaction of curcumin and 460 nm light-emitting diode against Staphylococcus saprophyticus at neutral pH. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyaa029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Objectives
As considered highly resistant to antibiotics like mecillinam, the rise of Staphylococcus saprophyticus (S. saprophyticus) contamination of fresh foods and food processing environments necessitates the development of a new antimicrobial approach for food safety control. This study aimed to investigate the synergistic effect of food-grade curcumin (CUR) and blue light-emitting diode (LED) on S. saprophyticus.
Materials and Methods
S. saprophyticus was subjected to the synergistic treatment at 4 and 25 °C. The influence of parameters, including CUR concentration, light dose, and pH incubation time on the inactivation of S. saprophyticus was characterized through plate counting method.
Results:
The combined treatment of CUR and blue light irradiation significantly (P < 0.05) reduced bacterial counts and the antimicrobial effect was in a CUR concentration and light dose-dependent manner. Moreover, refrigeration temperature (4 °C) significantly (P < 0.05) enhanced the antibacterial effect at neutral pH condition (6.2–7.2), resulting in approximately 6.0 log reductions. Under acidic condition (pH 2.2–5.2), there was no significant difference in bacterial population reduction between treatments at both temperatures.
Conclusions
These findings proposed that synergistic interaction of CUR and 460 nm LED under refrigerated temperature could enhance the inactivation of S. saprophyticus at neutral pH condition.
Collapse
|
25
|
Breloy L, Alcay Y, Yilmaz I, Breza M, Bourgon J, Brezová V, Yagci Y, Versace DL. Dimethyl amino phenyl substituted silver phthalocyanine as a UV- and visible-light absorbing photoinitiator: in situ preparation of silver/polymer nanocomposites. Polym Chem 2021. [DOI: 10.1039/d0py01712d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of a novel phthalocyanine for dual free-radical and cationic photopolymerizations and the in situ preparation of nanocomposites without using metal salts.
Collapse
Affiliation(s)
- Louise Breloy
- Institut de Chimie et de Matériaux Paris-Est (ICMPE)
- Equipe Systèmes Polymères Complexes
- CNRS-UPEC UMR 7182
- Thiais
- France
| | - Yusuf Alcay
- Istanbul Technical University
- Department of Chemistry
- Istanbul
- Turkey
| | - Ismail Yilmaz
- Istanbul Technical University
- Department of Chemistry
- Istanbul
- Turkey
| | - Martin Breza
- Slovak University of Technology in Bratislava
- Faculty of Chemical and Food Technology
- Institute of Physical Chemistry and Chemical Physics
- Department of Physical Chemistry
- SK-812 37 Bratislava
| | - Julie Bourgon
- Institut de Chimie et de Matériaux Paris-Est (ICMPE)
- Equipe Systèmes Polymères Complexes
- CNRS-UPEC UMR 7182
- Thiais
- France
| | - Vlasta Brezová
- Slovak University of Technology in Bratislava
- Faculty of Chemical and Food Technology
- Institute of Physical Chemistry and Chemical Physics
- Department of Physical Chemistry
- SK-812 37 Bratislava
| | - Yusuf Yagci
- Istanbul Technical University
- Department of Chemistry
- Istanbul
- Turkey
| | - Davy-Louis Versace
- Institut de Chimie et de Matériaux Paris-Est (ICMPE)
- Equipe Systèmes Polymères Complexes
- CNRS-UPEC UMR 7182
- Thiais
- France
| |
Collapse
|
26
|
Noirbent G, Dumur F. Photoinitiators of polymerization with reduced environmental impact: Nature as an unlimited and renewable source of dyes. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110109] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Sautrot-Ba P, Brezová V, Malval JP, Chiappone A, Breloy L, Abbad-Andaloussi S, Versace DL. Purpurin derivatives as visible-light photosensitizers for 3D printing and valuable biological applications. Polym Chem 2021. [DOI: 10.1039/d1py00126d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of new visible-light absorbing purpurin derivatives as promising photosensitizers for 3D photoprinting and anti-adhesion properties.
Collapse
Affiliation(s)
- Pauline Sautrot-Ba
- Systèmes Polymères Complexes
- Institut de Chimie et des Matériaux Paris-Est (ICMPE-UPEC, UMR CNRS 7182)
- 94320 Thiais
- France
| | | | - Jean-Pierre Malval
- LRC CNRS 7228
- Institut de Sciences des Matériaux de Mulhouse
- Mulhouse
- France
| | | | - Louise Breloy
- Systèmes Polymères Complexes
- Institut de Chimie et des Matériaux Paris-Est (ICMPE-UPEC, UMR CNRS 7182)
- 94320 Thiais
- France
| | - Samir Abbad-Andaloussi
- Université Paris-Est Créteil (UPEC)
- Laboratoire Eau
- Environnement, Systèmes Urbains (LEESU)
- 94010 Créteil Cedex
- France
| | - Davy-Louis Versace
- Systèmes Polymères Complexes
- Institut de Chimie et des Matériaux Paris-Est (ICMPE-UPEC, UMR CNRS 7182)
- 94320 Thiais
- France
| |
Collapse
|
28
|
Chen L, Song Z, Zhi X, Du B. Photoinduced Antimicrobial Activity of Curcumin-Containing Coatings: Molecular Interaction, Stability and Potential Application in Food Decontamination. ACS OMEGA 2020; 5:31044-31054. [PMID: 33324812 PMCID: PMC7726744 DOI: 10.1021/acsomega.0c04065] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/26/2020] [Indexed: 06/01/2023]
Abstract
Polyvinyl acetate (PVAc) and curcumin (Cu) were utilized for preparing new protecting PVAc-Cu x (x = 1, 5 and 10) coatings exerting antimicrobial photodynamic activity upon white light irradiation. Toward Salmonella typhimurium or Staphylococcus aureus, the killing efficiency represented the dependence on the Cu concentration and irradiation intensity. Toward S. aureus, the killing efficiency of PVAc-Cu 10 coating reached 93% at an energy density of 72 J/cm2. With the change in storage time of coating, the results implied significant stability of photosterilization efficiency within 60 days. Compared with the control experiment, lower total viable counts (TVCs) and total volatile basic nitrogen (TVB-N) values in fresh meat packaged by PVDC films with PVAc-Cu 10 coatings during storage at 4 °C demonstrated the practicability of the PVAc-Cu x coatings in decontaminating fresh pork. PVAc packed curcumin tightly within polymer chains, thus preventing tautomerization or, more probably, conformational transition, which is advantageous for improving photostability and emission lifetime.
Collapse
Affiliation(s)
- Liwei Chen
- Beijing Laboratory of Food Quality
and Safety, Beijing Key Laboratory of Agricultural Product Detection
and Control of Spoilage Organisms and Pesticide Residue, Faculty of
Food Science and Engineering, Beijing University
of Agriculture, Beijing 102206, China
| | - Ziyue Song
- Beijing Laboratory of Food Quality
and Safety, Beijing Key Laboratory of Agricultural Product Detection
and Control of Spoilage Organisms and Pesticide Residue, Faculty of
Food Science and Engineering, Beijing University
of Agriculture, Beijing 102206, China
| | - Xiujuan Zhi
- Beijing Laboratory of Food Quality
and Safety, Beijing Key Laboratory of Agricultural Product Detection
and Control of Spoilage Organisms and Pesticide Residue, Faculty of
Food Science and Engineering, Beijing University
of Agriculture, Beijing 102206, China
| | - Bin Du
- Beijing Laboratory of Food Quality
and Safety, Beijing Key Laboratory of Agricultural Product Detection
and Control of Spoilage Organisms and Pesticide Residue, Faculty of
Food Science and Engineering, Beijing University
of Agriculture, Beijing 102206, China
| |
Collapse
|
29
|
Dias LD, Blanco KC, Mfouo-Tynga IS, Inada NM, Bagnato VS. Curcumin as a photosensitizer: From molecular structure to recent advances in antimicrobial photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2020. [DOI: 10.1016/j.jphotochemrev.2020.100384] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
|
31
|
|
32
|
Yang QQ, Farha AK, Kim G, Gul K, Gan RY, Corke H. Antimicrobial and anticancer applications and related mechanisms of curcumin-mediated photodynamic treatments. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Sautrot-Ba P, Jockusch S, Malval JP, Brezová V, Rivard M, Abbad-Andaloussi S, Blacha-Grzechnik A, Versace DL. Quinizarin Derivatives as Photoinitiators for Free-Radical and Cationic Photopolymerizations in the Visible Spectral Range. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02448] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Pauline Sautrot-Ba
- Institut de Chimie et des Matériaux Paris-Est (ICMPE) − UMR-CNRS 7182 Equipe Systèmes Polymères Complexes (SPC), 2-8, rue Henri Dunant, 94320 Thiais, France
| | - Steffen Jockusch
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Jean-Pierre Malval
- Institut de Chimie des Matériaux de Mulhouse (IS2M)-UMR 7361, 15 rue Jean Starcky - BP 2488, 68057 Mulhouse cedex, France
| | - Vlasta Brezová
- Institute of Physical Chemistry and Chemical Physics, Department of Physical Chemistry, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
| | - Michael Rivard
- Institut de Chimie et des Matériaux Paris-Est (ICMPE) − UMR-CNRS 7182 Equipe Systèmes Polymères Complexes (SPC), 2-8, rue Henri Dunant, 94320 Thiais, France
| | - Samir Abbad-Andaloussi
- Université Paris-Est Créteil (UPEC), Laboratoire Eau, Environnement, Systèmes Urbains (LEESU), UMR-MA 102, 61 avenue Général de Gaulle, 94010 Créteil Cedex, France
| | - Agata Blacha-Grzechnik
- Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland
| | - Davy-Louis Versace
- Institut de Chimie et des Matériaux Paris-Est (ICMPE) − UMR-CNRS 7182 Equipe Systèmes Polymères Complexes (SPC), 2-8, rue Henri Dunant, 94320 Thiais, France
| |
Collapse
|
34
|
Versace DL, Moran G, Belqat M, Spangenberg A, Méallet-Renault R, Abbad-Andaloussi S, Brezová V, Malval JP. Highly Virulent Bactericidal Effects of Curcumin-Based μ-Cages Fabricated by Two-Photon Polymerization. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5050-5057. [PMID: 31910616 DOI: 10.1021/acsami.9b18693] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A new antibacterial strategy is reported based on two-photon fabrication of three-dimensional curcumin-embedded μ-cages. Such devices were designed to entrap and kill Staphylococcus aureus bacteria upon visible light irradiation. The proposed concept mainly relies on the pivotal role of curcumin, which is sequentially used as a two-photon active free radical initiator and as a photogenerator of reactive oxygen species within the cage μ-volumes. We show that these μ-cages exhibit extremely high antimicrobial properties, leading to 95% bacteria mortality after only 10 min visible irradiation. A preconcentration mechanism of photogenerated oxygen species is proposed to account for this highly performing bactericidal effect whose virulence can be strikingly switched on by increasing the light exposure time from 5 to 10 min.
Collapse
Affiliation(s)
- Davy-Louis Versace
- ICMPE , CNRS-UPEC UMR 7182, Université Paris-Est Créteil (UPEC) , 94320 Thiais , France
| | - Gabriela Moran
- ISMO , CNRS, Université Paris-Saclay, Univ. Paris-Sud , Building 520 , 91405 Orsay , France
| | - Mehdi Belqat
- IS2M , CNRS, Université Haute Alsace , 68057 Mulhouse , France
| | | | - Rachel Méallet-Renault
- ISMO , CNRS, Université Paris-Saclay, Univ. Paris-Sud , Building 520 , 91405 Orsay , France
| | - Samir Abbad-Andaloussi
- Laboratoire Eau, Environnement et Systèmes Urbains (LEESU) , UMR MA 102, Université Paris-Est Créteil (UPEC) , 61, avenue du general de Gaulle , 94320 Thiais , France
| | - Vlasta Brezová
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology , Slovak University of Technology in Bratislava , SK-812 37 Bratislava , Slovak Republic
| | | |
Collapse
|
35
|
Modjinou T, Versace DL, Abbad Andaloussi S, Langlois V, Renard E. Co-Networks Poly(hydroxyalkanoates)-Terpenes to Enhance Antibacterial Properties. Bioengineering (Basel) 2020; 7:E13. [PMID: 31972967 PMCID: PMC7148494 DOI: 10.3390/bioengineering7010013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 11/17/2022] Open
Abstract
Biocompatible and biodegradable bacterial polyesters, poly(hydroxyalkanoates) (PHAs), were combined with linalool, a well-known monoterpene, extracted from spice plants to design novel antibacterial materials. Their chemical association by a photo-induced thiol-ene reaction provided materials having both high mechanical resistance and flexibility. The influence of the nature of the crosslinking agent and the weight ratio of linalool on the thermo-mechanical performances were carefully evaluated. The elongation at break increases from 7% for the native PHA to 40% for PHA-linalool co-networks using a tetrafunctional cross-linking agent. The materials highlighted tremendous anti-adherence properties against Escherichia coli and Staphylococcus aureus by increasing linalool ratios. A significant decrease in antibacterial adhesion of 63% and 82% was observed for E. coli and S. aureus, respectively.
Collapse
Affiliation(s)
- Tina Modjinou
- Institut de Chimie et des Matériaux de Paris Est, Univ Paris Est Creteil, F-94320 Thiais, France; (T.M.); (D.L.V.); (E.R.)
| | - Davy Louis Versace
- Institut de Chimie et des Matériaux de Paris Est, Univ Paris Est Creteil, F-94320 Thiais, France; (T.M.); (D.L.V.); (E.R.)
| | - Samir Abbad Andaloussi
- Institut de Chimie et des Matériaux de Paris Est, Univ Paris Est Creteil, F-94010 Créteil cedex, France;
| | - Valérie Langlois
- Institut de Chimie et des Matériaux de Paris Est, Univ Paris Est Creteil, F-94320 Thiais, France; (T.M.); (D.L.V.); (E.R.)
| | - Estelle Renard
- Institut de Chimie et des Matériaux de Paris Est, Univ Paris Est Creteil, F-94320 Thiais, France; (T.M.); (D.L.V.); (E.R.)
| |
Collapse
|
36
|
Breloy L, Brezová V, Blacha-Grzechnik A, Presset M, Yildirim MS, Yilmaz I, Yagci Y, Versace DL. Visible Light Anthraquinone Functional Phthalocyanine Photoinitiator for Free-Radical and Cationic Polymerizations. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01630] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Louise Breloy
- Institut de Chimie et des Matériaux Paris-Est (ICMPE) − UMR-CNRS 7182 Equipe Systèmes Polymères Complexes (SPC) 2-8, rue Henri Dunant, 94320 Thiais, France
| | - Vlasta Brezová
- Institute of Physical Chemistry and Chemical Physics, Department of Physical Chemistry, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
| | - Agata Blacha-Grzechnik
- Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland
| | - Marc Presset
- Institut de Chimie et des Matériaux Paris-Est (ICMPE) − UMR-CNRS 7182 Equipe Systèmes Polymères Complexes (SPC) 2-8, rue Henri Dunant, 94320 Thiais, France
| | | | - Ismail Yilmaz
- Department of Chemistry, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Yusuf Yagci
- Department of Chemistry, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Davy-Louis Versace
- Institut de Chimie et des Matériaux Paris-Est (ICMPE) − UMR-CNRS 7182 Equipe Systèmes Polymères Complexes (SPC) 2-8, rue Henri Dunant, 94320 Thiais, France
| |
Collapse
|
37
|
Lichtenegger A, Gesperger J, Kiesel B, Muck M, Eugui P, Harper DJ, Salas M, Augustin M, Merkle CW, Hitzenberger CK, Widhalm G, Woehrer A, Baumann B. Revealing brain pathologies with multimodal visible light optical coherence microscopy and fluorescence imaging. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-11. [PMID: 31240898 PMCID: PMC6977170 DOI: 10.1117/1.jbo.24.6.066010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/07/2019] [Indexed: 05/28/2023]
Abstract
We present a multimodal visible light optical coherence microscopy (OCM) and fluorescence imaging (FI) setup. Specification and phantom measurements were performed to characterize the system. Two applications in neuroimaging were investigated. First, curcumin-stained brain slices of a mouse model of Alzheimer's disease were examined. Amyloid-beta plaques were identified based on the fluorescence of curcumin, and coregistered morphological images of the brain tissue were provided by the OCM channel. Second, human brain tumor biopsies retrieved intraoperatively were imaged prior to conventional neuropathologic work-up. OCM revealed the three-dimensional structure of the brain parenchyma, and FI added the tumor tissue-specific contrast. Attenuation coefficients computed from the OCM data and the florescence intensity values were analyzed and showed a statistically significant difference for 5-aminolevulinic acid (5-ALA)-positive and -negative brain tissues. OCM findings correlated well with malignant hot spots within brain tumor biopsies upon histopathology. The combination of OCM and FI seems to be a promising optical imaging modality providing complementary contrast for applications in the field of neuroimaging.
Collapse
Affiliation(s)
- Antonia Lichtenegger
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Johanna Gesperger
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- General Hospital and Medical University of Vienna, Institute of Neurology, Vienna, Austria
| | - Barbara Kiesel
- General Hospital and Medical University of Vienna, Univ. Klinik Neurochirurgie, Vienna, Austria
| | - Martina Muck
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- General Hospital and Medical University of Vienna, Institute of Neurology, Vienna, Austria
| | - Pablo Eugui
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Danielle J. Harper
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Matthias Salas
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Marco Augustin
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Conrad W. Merkle
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Christoph K. Hitzenberger
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Georg Widhalm
- General Hospital and Medical University of Vienna, Univ. Klinik Neurochirurgie, Vienna, Austria
| | - Adelheid Woehrer
- General Hospital and Medical University of Vienna, Institute of Neurology, Vienna, Austria
| | - Bernhard Baumann
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| |
Collapse
|
38
|
Breloy L, Brezová V, Malval JP, Rios de Anda A, Bourgon J, Kurogi T, Mindiola DJ, Versace DL. Well-Defined Titanium Complex for Free-Radical and Cationic Photopolymerizations under Visible Light and Photoinduction of Ti-Based Nanoparticles. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02719] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Louise Breloy
- Institut de Chimie et des Matériaux Paris-Est, Equipe Systèmes Polymères Complexes, UMR 7182, CNRS-Université Paris-Est Créteil (UPEC), 2-8 rue Henri Dunant, 94320 Thiais, France
| | - Vlasta Brezová
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, SK-812 37 Bratislava, Slovak Republic
| | - Jean-Pierre Malval
- Institut de Science des Matériaux de Mulhouse, IS2M-LRC 7228, 15 rue Jean Starcky, 68057 Mulhouse, France
| | - Agustin Rios de Anda
- Institut de Chimie et des Matériaux Paris-Est, Equipe Systèmes Polymères Complexes, UMR 7182, CNRS-Université Paris-Est Créteil (UPEC), 2-8 rue Henri Dunant, 94320 Thiais, France
| | - Julie Bourgon
- Institut de Chimie et des Matériaux Paris-Est, Equipe Systèmes Polymères Complexes, UMR 7182, CNRS-Université Paris-Est Créteil (UPEC), 2-8 rue Henri Dunant, 94320 Thiais, France
| | - Takashi Kurogi
- School of Arts and Sciences, Department of Chemistry, University of Pennsylvania, 231 S. 34 Street, Philadelphia, Pennsylvania, United States
| | - Daniel J. Mindiola
- School of Arts and Sciences, Department of Chemistry, University of Pennsylvania, 231 S. 34 Street, Philadelphia, Pennsylvania, United States
| | - Davy-Louis Versace
- Institut de Chimie et des Matériaux Paris-Est, Equipe Systèmes Polymères Complexes, UMR 7182, CNRS-Université Paris-Est Créteil (UPEC), 2-8 rue Henri Dunant, 94320 Thiais, France
| |
Collapse
|
39
|
Copper Complex: A Key Role in the Synthesis of Biocidal Polymer Coatings. CHEMISTRY AFRICA-A JOURNAL OF THE TUNISIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s42250-019-00045-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Alshehab M, Nitin N. Encapsulation and release of curcumin using an intact milk fat globule delivery system. Food Funct 2019; 10:7121-7130. [DOI: 10.1039/c9fo00489k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Milk fat globule carriers were evaluated as an encapsulation system for curcumin. Partitioning is confirmed using fluorescence imaging. Release of curcumin under simulated gastrointestinal conditions and associated morphological changes to the carriers were evaluated.
Collapse
Affiliation(s)
- Maha Alshehab
- Department of Food Science and Technology
- University of California-Davis
- Davis
- USA
| | - Nitin Nitin
- Department of Food Science and Technology
- University of California-Davis
- Davis
- USA
- Department of Biological and Agricultural Engineering
| |
Collapse
|
41
|
Shlar I, Droby S, Rodov V. Antimicrobial coatings on polyethylene terephthalate based on curcumin/cyclodextrin complex embedded in a multilayer polyelectrolyte architecture. Colloids Surf B Biointerfaces 2018; 164:379-387. [PMID: 29427944 DOI: 10.1016/j.colsurfb.2018.02.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/19/2018] [Accepted: 02/03/2018] [Indexed: 11/27/2022]
Abstract
Bacterial contamination is a growing concern worldwide. The aim of this work was to develop an antimicrobial coating based on curcumin-cyclodextrin inclusion complex and using polyethylene terephthalate (PET) film as a support matrix. After a pre-treatment aimed to provide sufficient electric charge to the PET surface, it was electrostatically coated with repeated multilayers comprising alternately deposited positively-charged poly-l-lysine (PLL) and negatively-charged poly-l-glutamic acid (PLGA) and carboxymethyl-β-cyclodextrin (CMBCD). The coatings had an architecture (PLL-PLGA)6-(PLL-PLGA-PLL-CMBCD)n, with the number of repeated multilayers n varying from 5 to 20. The CMBCD molecules were either covalently cross-linked using carbodiimide crosslinker chemistry or left unbound. The surface morphology, structure and elemental composition of the coatings were analysed by scanning electron microscopy and energy dispersive x-ray spectroscopy. To impart antimicrobial properties to the coatings they were loaded with a natural phenolic compound curcumin forming inclusion complexes with β-cyclodextrin. The non-cross-linked coatings showed bactericidal activity towards Escherichia coli in the dark, and this activity was further enhanced upon illumination with white light. Curcumin was released from the non-cross-linked coatings into an aqueous medium in the form of cyclodextrin inclusion complex. After the cross-linking, the coating lost its dark antimicrobial activity but retained the photodynamic properties. Stabilized cross-linked curcumin-loaded coatings can serve a basis for developing photoactivated antimicrobial surfaces controlling bacterial contamination and spread.
Collapse
Affiliation(s)
- Ilya Shlar
- Institute of Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7528809, Israel; Institute of Biochemistry, Food Science and Nutrition, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Samir Droby
- Institute of Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7528809, Israel
| | - Victor Rodov
- Institute of Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7528809, Israel.
| |
Collapse
|
42
|
Tomane S, Sautrot-Ba P, Mazeran PE, Lalevée J, Graff B, Morlet-Savary F, Abbad-Andaloussi S, Langlois V, Versace DL. Photoinitiating Systems Based on Anthraquinone Derivatives: Synthesis of Antifouling and Biocide Coatings. Chempluschem 2017; 82:1298-1307. [PMID: 31957991 DOI: 10.1002/cplu.201700365] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/03/2017] [Indexed: 11/09/2022]
Abstract
Photoinitiating systems combining 2,6-diaminoanthraquinone (AQD), iodonium salt (Iod), and benzyl alcohol derivatives have been developed to efficiently initiate the cationic polymerization of epoxy monomers upon light exposure. Electron spin resonance spin-trapping (ESR ST) experiments, fluorescence investigations, and steady-state photolysis have demonstrated that a dye-sensitized reaction occurs between AQD and the benzyl alcohol derivatives through a hydrogen abstraction mechanism upon light illumination, followed by reduction of Iod. The in situ liberation of protic acids promotes the cationic photopolymerization of epoxy monomers concomitantly with hydrolysis and condensation of the reactive methoxysilanes of an organic-inorganic precursor, for example, 3-glycidyloxypropyltrimethoxysilane (GPTMS). Nanoindentation experiments and scratch resistance tests proved that the resulting GPTMS coatings exhibit very good resistance to brittle fracture and excellent adherence to stainless-steel substrates. Interestingly, antibacterial tests of the GPTMS coatings showed efficient antifouling and biocide properties against E. coli and S. aureus.
Collapse
Affiliation(s)
- Somia Tomane
- Université Paris-Est Creteil (UPEC), Institut de Chimie et des Matériaux Paris-Est (ICMPE) UMR-CNRS 7182, 2-8 rue Henri Dunant, 94320, Thiais, France
| | - Pauline Sautrot-Ba
- Université Paris-Est Creteil (UPEC), Institut de Chimie et des Matériaux Paris-Est (ICMPE) UMR-CNRS 7182, 2-8 rue Henri Dunant, 94320, Thiais, France
| | - Pierre-Emmanuel Mazeran
- Laboratoire Roberval, CNRS, UMR 7337, Sorbonne Universités, Université de technologie de Compiègne, Centre de recherche Royallieu-CS 60319, 60203, Compiègne cedex, France
| | - Jacques Lalevée
- Institut de Science des Matériaux de Mulhouse, IS2M-LRC 7228, 15 rue Jean Starcky, 68057, Mulhouse, France
| | - Bernadette Graff
- Institut de Science des Matériaux de Mulhouse, IS2M-LRC 7228, 15 rue Jean Starcky, 68057, Mulhouse, France
| | - Fabrice Morlet-Savary
- Institut de Science des Matériaux de Mulhouse, IS2M-LRC 7228, 15 rue Jean Starcky, 68057, Mulhouse, France
| | | | - Valérie Langlois
- Université Paris-Est Creteil (UPEC), Institut de Chimie et des Matériaux Paris-Est (ICMPE) UMR-CNRS 7182, 2-8 rue Henri Dunant, 94320, Thiais, France
| | - Davy-Louis Versace
- Université Paris-Est Creteil (UPEC), Institut de Chimie et des Matériaux Paris-Est (ICMPE) UMR-CNRS 7182, 2-8 rue Henri Dunant, 94320, Thiais, France
| |
Collapse
|
43
|
Sautrot-Ba P, Contreras A, Abbad Andaloussi S, Coradin T, Hélary C, Razza N, Sangermano M, Mazeran PE, Malval JP, Versace DL. Eosin-mediated synthesis of polymer coatings combining photodynamic inactivation and antimicrobial properties. J Mater Chem B 2017; 5:7572-7582. [DOI: 10.1039/c7tb01358b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Eosin-derived coatings exhibiting photodynamic bacterial inactivation and antibacterial properties.
Collapse
Affiliation(s)
- P. Sautrot-Ba
- Université Paris-Est Créteil (UPEC) – ICMPE UMR CNRS 7182
- 94010 Créteil cedex
- France
| | - A. Contreras
- Université Paris-Est Créteil (UPEC) – ICMPE UMR CNRS 7182
- 94010 Créteil cedex
- France
| | | | - T. Coradin
- Sorbonne Universités
- UPMC Univ Paris 06
- CNRS
- Collège de France
- UMR 7574
| | - C. Hélary
- Sorbonne Universités
- UPMC Univ Paris 06
- CNRS
- Collège de France
- UMR 7574
| | - N. Razza
- Politecnico di Torino
- Dipartimento di Scienza Applicata e Tecnologia
- 10129 Torino
- Italy
| | - M. Sangermano
- Politecnico di Torino
- Dipartimento di Scienza Applicata e Tecnologia
- 10129 Torino
- Italy
| | - P.-E. Mazeran
- Laboratoire Roberval
- CNRS
- UMR 7337
- Sorbonne Universités
- Université de technologie de Compiègne
| | - J.-P. Malval
- Institut de Science des Matériaux de Mulhouse
- IS2M-LRC 7228
- 68057 Mulhouse
- France
| | - D.-L. Versace
- Université Paris-Est Créteil (UPEC) – ICMPE UMR CNRS 7182
- 94010 Créteil cedex
- France
| |
Collapse
|
44
|
Condat M, Babinot J, Tomane S, Malval JP, Kang IK, Spillebout F, Mazeran PE, Lalevée J, Andalloussi SA, Versace DL. Development of photoactivable glycerol-based coatings containing quercetin for antibacterial applications. RSC Adv 2016. [DOI: 10.1039/c5ra25267a] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Synthesis of antibacterial coatings derived from glycerol and quercetin for the inhibition of bacteria proliferation.
Collapse
Affiliation(s)
- Michael Condat
- Université Paris Est
- ICMPE (UMR7182)
- CNRS
- UPEC
- F-94320 Thiais
| | - Julien Babinot
- Université Paris Est
- ICMPE (UMR7182)
- CNRS
- UPEC
- F-94320 Thiais
| | - Somia Tomane
- Université Paris Est
- ICMPE (UMR7182)
- CNRS
- UPEC
- F-94320 Thiais
| | - Jean-Pierre Malval
- Institut de Science des Matériaux de Mulhouse
- IS2M-LRC 7228
- 68057 Mulhouse
- France
| | - Inn-Kyu Kang
- Department of Polymer Science and Engineering
- Kyungpook National University
- Daegu 702-701
- South Korea
| | - Faustine Spillebout
- National Institute for Nanotechnology
- Department of Chemistry
- Department of Mechanical Engineering
- University of Alberta
- Edmonton
| | - Pierre-Emmanuel Mazeran
- Laboratoire Roberval
- UMR CRNS-UTC 7337
- Centre de Recherche de Royallieu
- Université de Technologie de Compiègne
- 60205 Compiègne Cedex
| | - Jacques Lalevée
- Institut de Science des Matériaux de Mulhouse
- IS2M-LRC 7228
- 68057 Mulhouse
- France
| | - Samir Abbad Andalloussi
- Unité Bioemco Equipe IBIOS
- UMR 7618 CNRS – Université Paris-Est Créteil Val-de-Marne
- 94010 Créteil cedex
- France
| | | |
Collapse
|