1
|
de Athayde Moncorvo Collado A, Socías SB, González-Lizárraga F, Ploper D, Vera Pingitore E, Chehín RN, Chaves S. Magnetic amyloid-based biocatalyst for the hydrolysis of urea. Food Chem 2024; 433:136830. [PMID: 37683486 DOI: 10.1016/j.foodchem.2023.136830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/19/2023] [Accepted: 07/05/2023] [Indexed: 09/10/2023]
Abstract
The presence of urea in wines and other alcoholic beverages represents a critical problem since it can chemically react with ethanol, which leads to the formation of ethyl carbamate, a carcinogenic agent according to the World Health Organization. Here we report the creation of a biocatalyst for the hydrolysis of urea, which could potentially be used before bottling alcoholic drinks. For this, the effective surface area of streptavidin-labeled magnetic microparticles was amplified by functionalization with biotin-labeled hen egg lysozyme amyloid fibers. Subsequently, by using copper and hydrogen peroxide induced cross-linking of unmodified proteins (CHICUP), soybean urease was immobilized to the fibers. This gave rise to a magnetic biocatalyst with remarkable urease activity, which was maintained even after 10 reuses. We propose that this strategy could be used as a platform for immobilizing other molecules to design and develop a myriad of biocatalysts for the food industry.
Collapse
Affiliation(s)
- A de Athayde Moncorvo Collado
- Instituto de Medicina Molecular y Celular Aplicada, Universidad Nacional de Tucumán-Consejo Nacional de Investigación Científicas y Técnicas- Sistema Provincial de Salud (UNT-CONICET-SIPROSA), Pasaje Manuel Dorrego, 1080. CP 4000. Tucumán, Argentina; Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT). Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT, Batalla de Chacabuco 461, CP 4000 Tucumán, Argentina.
| | - S B Socías
- Instituto de Medicina Molecular y Celular Aplicada, Universidad Nacional de Tucumán-Consejo Nacional de Investigación Científicas y Técnicas- Sistema Provincial de Salud (UNT-CONICET-SIPROSA), Pasaje Manuel Dorrego, 1080. CP 4000. Tucumán, Argentina.
| | - F González-Lizárraga
- Instituto de Medicina Molecular y Celular Aplicada, Universidad Nacional de Tucumán-Consejo Nacional de Investigación Científicas y Técnicas- Sistema Provincial de Salud (UNT-CONICET-SIPROSA), Pasaje Manuel Dorrego, 1080. CP 4000. Tucumán, Argentina.
| | - D Ploper
- Instituto de Medicina Molecular y Celular Aplicada, Universidad Nacional de Tucumán-Consejo Nacional de Investigación Científicas y Técnicas- Sistema Provincial de Salud (UNT-CONICET-SIPROSA), Pasaje Manuel Dorrego, 1080. CP 4000. Tucumán, Argentina.
| | - E Vera Pingitore
- Instituto de Medicina Molecular y Celular Aplicada, Universidad Nacional de Tucumán-Consejo Nacional de Investigación Científicas y Técnicas- Sistema Provincial de Salud (UNT-CONICET-SIPROSA), Pasaje Manuel Dorrego, 1080. CP 4000. Tucumán, Argentina.
| | - R N Chehín
- Instituto de Medicina Molecular y Celular Aplicada, Universidad Nacional de Tucumán-Consejo Nacional de Investigación Científicas y Técnicas- Sistema Provincial de Salud (UNT-CONICET-SIPROSA), Pasaje Manuel Dorrego, 1080. CP 4000. Tucumán, Argentina; Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT). Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT, Batalla de Chacabuco 461, CP 4000 Tucumán, Argentina.
| | - S Chaves
- Instituto de Medicina Molecular y Celular Aplicada, Universidad Nacional de Tucumán-Consejo Nacional de Investigación Científicas y Técnicas- Sistema Provincial de Salud (UNT-CONICET-SIPROSA), Pasaje Manuel Dorrego, 1080. CP 4000. Tucumán, Argentina.
| |
Collapse
|
2
|
Vera CC, Borsarelli CD. Photo-induced protein modifications: a range of biological consequences and applications. Biophys Rev 2023; 15:569-576. [PMID: 37681095 PMCID: PMC10480124 DOI: 10.1007/s12551-023-01081-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/16/2023] [Indexed: 09/09/2023] Open
Abstract
Proteins are the most abundant biomolecules in living organisms and tissues and are also present in many natural and processed foods and beverages, as well as in pharmaceuticals and therapeutics. When exposed to UV-visible light, proteins containing endogenous or exogenous chromophores can undergo direct and indirect photochemical processes, resulting in protein modifications including oxidation of residues, cross-linking, proteolysis, covalent binding to molecules and interfaces, and conformational changes. When these modifications occur in an uncontrolled manner in a physiological context, they can lead to biological dysfunctions that ultimately result in cell death. However, rational design strategies involving light-activated protein modification have proven to be a valuable tool for the modulation of protein function or even for the construction of new biomaterials. This mini-review describes the fundamentals of photochemical processes in proteins and explores some of their emerging biomedical and nanobiotechnological applications, such as photodynamic therapy (PDT), photobonding for wound healing, photobioprinting, photoimmobilization of biosensors and enzymes for sensing, and biocatalysis, among others.
Collapse
Affiliation(s)
- Claudia Cecilia Vera
- Instituto de Bionanotecnología del NOA (INBIONATEC), CONICET. Universidad Nacional de Santiago del Estero (UNSE), RN 9, Km 1125, G4206XCP Santiago del Estero, Argentina
| | - Claudio Darío Borsarelli
- Instituto de Bionanotecnología del NOA (INBIONATEC), CONICET. Universidad Nacional de Santiago del Estero (UNSE), RN 9, Km 1125, G4206XCP Santiago del Estero, Argentina
| |
Collapse
|
3
|
Catalini S, Lutz-Bueno V, Usuelli M, Diener M, Taschin A, Bartolini P, Foggi P, Paolantoni M, Mezzenga R, Torre R. Multi-length scale structural investigation of lysozyme self-assembly. iScience 2022; 25:104586. [PMID: 35784788 PMCID: PMC9240868 DOI: 10.1016/j.isci.2022.104586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
Reactive amyloid oligomers are responsible for cytotoxicity in amyloid pathologies and because of their unstable nature characterizing their behavior is a challenge. The physics governing the self-assembly of proteins in crowded conditions is extremely complex and its comprehension, despite its paramount relevance to understanding molecular mechanisms inside cells and optimizing pharmaceutical processes, remains inconclusive. Here, we focus on the amyloid oligomerization process in self-crowded lysozyme aqueous solutions in acidic conditions. We reveal that the amyloid oligomers form at high protein concentration and low pH. Through multi-length scale spectroscopic investigations, we find that amyloid oligomers can further interconnect with each other by weak and non-specific interactions forming an extended network that leads to the percolation of the whole system. Our multi-length scale structural analysis follows the thermal history of amyloid oligomers from different perspectives and highlights the impact of hierarchical self-assembly of biological macromolecules on functional properties. Use of multi-length scale spectroscopies to characterize unstable amyloid oligomers Lysozyme form thermo-labile amyloid oligomers in self-crowded conditions Amyloid oligomers interact and form an extended hydrogel network Amyloid oligomers are responsible for the existence of the hydrogel matrix
Collapse
|
4
|
Rey V, Abatedaga I, Vera C, Vieyra FEM, Borsarelli CD. Photosensitized Formation of Soluble Bionanoparticles of Lysozyme. ChemistrySelect 2021. [DOI: 10.1002/slct.202103215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Valentina Rey
- Instituto de Bionanotecnología del NOA (INBIONATEC). CONICET Universidad Nacional de Santiago del Estero (UNSE) RN9, km 1125. 4206 Santiago del Estero Argentina
- Instituto de Ciencias Químicas (ICQ) Facultad de Agronomía y Agroindustrias (FAyA) Universidad Nacional de Santiago del Estero (UNSE) Av. Belgrano S) 1912 4200. Santiago del Estero Argentina
| | - Inés Abatedaga
- Instituto de Bionanotecnología del NOA (INBIONATEC). CONICET Universidad Nacional de Santiago del Estero (UNSE) RN9, km 1125. 4206 Santiago del Estero Argentina
| | - Cecilia Vera
- Instituto de Bionanotecnología del NOA (INBIONATEC). CONICET Universidad Nacional de Santiago del Estero (UNSE) RN9, km 1125. 4206 Santiago del Estero Argentina
| | - Faustino E. Morán Vieyra
- Instituto de Bionanotecnología del NOA (INBIONATEC). CONICET Universidad Nacional de Santiago del Estero (UNSE) RN9, km 1125. 4206 Santiago del Estero Argentina
- Instituto de Ciencias Químicas (ICQ) Facultad de Agronomía y Agroindustrias (FAyA) Universidad Nacional de Santiago del Estero (UNSE) Av. Belgrano S) 1912 4200. Santiago del Estero Argentina
| | - Claudio D. Borsarelli
- Instituto de Bionanotecnología del NOA (INBIONATEC). CONICET Universidad Nacional de Santiago del Estero (UNSE) RN9, km 1125. 4206 Santiago del Estero Argentina
- Instituto de Ciencias Químicas (ICQ) Facultad de Agronomía y Agroindustrias (FAyA) Universidad Nacional de Santiago del Estero (UNSE) Av. Belgrano S) 1912 4200. Santiago del Estero Argentina
| |
Collapse
|
5
|
Gad S, Ayakar S. Protein scaffolds: A tool for multi-enzyme assembly. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 32:e00670. [PMID: 34824995 PMCID: PMC8605239 DOI: 10.1016/j.btre.2021.e00670] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/13/2021] [Accepted: 09/03/2021] [Indexed: 12/31/2022]
Abstract
The synthesis of complex molecules using multiple enzymes simultaneously in one reaction vessel has rapidly emerged as a new frontier in the field of bioprocess technology. However, operating different enzymes together in a single vessel limits their operational performance which needs to be addressed. With this respect, scaffolding proteins play an immense role in bringing different enzymes together in a specific manner. The scaffolding improves the catalytic performance, enzyme stability and provides an optimal micro-environment for biochemical reactions. This review describes the components of protein scaffolds, different ways of constructing a protein scaffold-based multi-enzyme complex, and their effects on enzyme kinetics. Moreover, different conjugation strategies viz; dockerin-cohesin interaction, SpyTag-SpyCatcher system, peptide linker-based ligation, affibody, and sortase-mediated ligation are discussed in detail. Various analytical and characterization tools that have enabled the development of these scaffolding strategies are also reviewed. Such mega-enzyme complexes promise wider applications in the field of biotechnology and bioengineering.
Collapse
Affiliation(s)
- Shubhada Gad
- Department of Biotechnology, Institute of Chemical Technology - IndianOil Odisha Campus Bhubaneswar, Odisha 751013, India
| | - Sonal Ayakar
- Department of Biotechnology, Institute of Chemical Technology - IndianOil Odisha Campus Bhubaneswar, Odisha 751013, India
| |
Collapse
|
6
|
Khan S, Babadaei MMN, Hasan A, Edis Z, Attar F, Siddique R, Bai Q, Sharifi M, Falahati M. Enzyme-polymeric/inorganic metal oxide/hybrid nanoparticle bio-conjugates in the development of therapeutic and biosensing platforms. J Adv Res 2021; 33:227-239. [PMID: 34603792 PMCID: PMC8463903 DOI: 10.1016/j.jare.2021.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/02/2021] [Accepted: 01/22/2021] [Indexed: 12/23/2022] Open
Abstract
Background Because enzymes can control several metabolic pathways and regulate the production of free radicals, their simultaneous use with nanoplatforms showing protective and combinational properties is of great interest in the development of therapeutic nano-based platforms. However, enzyme immobilization on nanomaterials is not straightforward due to the toxic and unpredictable properties of nanoparticles in medical practice. Aim of review In fact, because of the ability to load enzymes on nano-based supports and increase their renewability, scientific groups have been tempted to create potential therapeutic enzymes in this field. Therefore, this study not only pays attention to the therapeutic and diagnostic applications of diseases by enzyme-nanoparticle (NP) bio-conjugate (abbreviated as: ENB), but also considers the importance of nanoplatforms used based on their toxicity, ease of application and lack of significant adverse effects on loaded enzymes. In the following, based on the published reports, we explained that the immobilization of enzymes on polymers, inorganic metal oxide and hybrid compounds provide hopes for potential use of ENBs in medical activities. Then, the use of ENBs in bioassay activities such as paper-based or wearing biosensors and lab-on-chip/microfluidic biosensors were evaluated. Finally, this review addresses the current challenges and future perspective of ENBs in biomedical applications. Key scientific concepts of review This literature may provide useful information regarding the application of ENBs in biosensing and therapeutic platforms.
Collapse
Affiliation(s)
- Suliman Khan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mohammad Mahdi Nejadi Babadaei
- Department of Molecular Genetics, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Centre, Qatar University, Doha 2713, Qatar
| | - Zehra Edis
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, PO Box 346, Ajman, United Arab Emirates
| | - Farnoosh Attar
- Department of Food Toxicology, Research Center of Food Technology and Agricultural Products, Standard Research Institute (SRI), Karaj, Iran
| | - Rabeea Siddique
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qian Bai
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Majid Sharifi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
7
|
Industrial biotransformations catalyzed by microbial lipases: screening platform and commercial aspects. Folia Microbiol (Praha) 2021; 66:1009-1022. [PMID: 34318446 DOI: 10.1007/s12223-021-00900-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
The successfulness of a lipase-catalyzed industrial process depends on a proper lipase selection. In this work, an alternative screening platform for industrially important biotransformations catalyzed by microbial lipases was proposed. Thus, the reactivity of sixty lipase activities from spore-forming microorganisms towards hydrolytic and transesterification reactions by using p-nitrophenyl palmitate as a chromogenic acyl donor substrate was explored. Only three biocatalysts were capable of catalyzing all reactions tested. Fourteen biocatalysts did not show hydrolytic activity at all; however, they displayed transesterification activities using ethanol, starch, low-methoxyl (LM) pectin, high-methoxyl (HM) pectin, or vitamin C as acyl acceptors. Using heat-treated biocatalysts, hydrolytic activities were not highly correlated with the corresponding transesterification activities using ethanol (r = -0.058, p = 0.660), starch (r = 0.431, p = 0.001), LM pectin (r = -0.010, p = 0.938), HM pectin (r = 0.167, p = 0.202), and vitamin C (r = -0.048, p = 0.716) as acyl acceptor. In addition, to the best of our knowledge, several transesterification activities produced from microorganisms of the genus Bacillus, Brevibacillus, Lysinibacillus, Geobacillus, or Sporosarcina were reported for first time. Finally, the global lipase market was presented and segmented by date, application, geography and player highlighting the commercial contribution of microbial lipases.
Collapse
|
8
|
Dong H, Zhang W, Zhou S, Huang J, Wang P. Engineering bioscaffolds for enzyme assembly. Biotechnol Adv 2021; 53:107721. [PMID: 33631185 DOI: 10.1016/j.biotechadv.2021.107721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/04/2021] [Accepted: 02/14/2021] [Indexed: 12/27/2022]
Abstract
With the demand for green, safe, and continuous biocatalysis, bioscaffolds, compared with synthetic scaffolds, have become a desirable candidate for constructing enzyme assemblages because of their biocompatibility and regenerability. Biocompatibility makes bioscaffolds more suitable for safe and green production, especially in food processing, production of bioactive agents, and diagnosis. The regenerability can enable the engineered biocatalysts regenerate through simple self-proliferation without complex re-modification, which is attractive for continuous biocatalytic processes. In view of the unique biocompatibility and regenerability of bioscaffolds, they can be classified into non-living (polysaccharide, nucleic acid, and protein) and living (virus, bacteria, fungi, spore, and biofilm) bioscaffolds, which can fully satisfy these two unique properties, respectively. Enzymes assembled onto non-living bioscaffolds are based on single or complex components, while enzymes assembled onto living bioscaffolds are based on living bodies. In terms of their unique biocompatibility and regenerability, this review mainly covers the current advances in the research and application of non-living and living bioscaffolds with focus on engineering strategies for enzyme assembly. Finally, the future development of bioscaffolds for enzyme assembly is also discussed. Hopefully, this review will attract the interest of researchers in various fields and empower the development of biocatalysis, biomedicine, environmental remediation, therapy, and diagnosis.
Collapse
Affiliation(s)
- Hao Dong
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Wenxue Zhang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Shengmin Zhou
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaofang Huang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China.
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, MN 55108, USA.
| |
Collapse
|
9
|
Zhang W, Fan Y. Preparation of Amyloid Fibrils Using Recombinant Technology. Methods Mol Biol 2021; 2347:113-121. [PMID: 34472060 DOI: 10.1007/978-1-0716-1574-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Amyloid fibrils are widely investigated as they are directly associated with various neurodegenerative diseases. For example, a vast of experimental results have shown that the oligomeric and fibrillar aggregates of the amyloid β-peptide (Aβ) play a critical role in the pathogenesis of Alzheimer's disease (AD). Therefore, the accessibility of certain amounts of pure Aβ peptide is necessary for the studies of the mechanism of neurotoxicity. In this regard, recombinant methods provide the possibility to synthesize the Aβ peptide in vitro and thus promote the investigation of the relationship between peptide structure and pathogenic mechanism. These investigations further provide the fundamental supports for developing potential drugs for AD treatment. In addition to providing support for the study of pathogenic mechanisms, the recombination of Aβ peptides also offers the possibility to utilize these unique protein nanomaterials. For example, Aβ peptides tend to assemble into chiral amyloid fibrils with an ultra-high aspect ratio. These unique nano features, together with the inherent protein characteristics, of amyloid fibrils, allow them to be used in biomedical and environmental fields. Accordingly, herein, we aim to introduce the recombinant protocols for the synthesis of Aβ peptides. The experimental route to assemble these peptides to amyloid fibrils is also summarized in this chapter.
Collapse
Affiliation(s)
- Wenwen Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Yimin Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China.
| |
Collapse
|
10
|
Machín B, Chaves S, Ávila C, Pera LM, Chehín RN, Vera Pingitore E. Highly reusable invertase biocatalyst: Biological fibrils functionalized by photocrosslinking. Food Chem 2020; 331:127322. [PMID: 32569968 DOI: 10.1016/j.foodchem.2020.127322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 11/17/2022]
Abstract
Here we report a novel strategy for the immobilization of invertase using amyloid-like fibrils as a support. Optimal conditions to get Tyr-Tyr covalent binding between invertase and the support were determined using a photocrosslinking approach. The biological fibrils with invertase activity turn into microstructured catalysts according to electron microscopy outcomes. Thermal and storage stability as well as optimal pH and temperature of the enzyme were conserved. Moreover, the immobilized enzyme recovered by low g-force centrifugation retained 83% of its initial enzymatic activity after 15 reuse cycles. Considering that enzyme cost is the most significant part of the overall fee of enzymatic biomass conversion, the highly efficient recovery/reuse strategy described herein becomes relevant. Besides, it can also be applied to the immobilization of other enzymes for industrial biocatalysis.
Collapse
Affiliation(s)
- Belén Machín
- Instituto de Medicina Molecular y Celular Aplicada (IMMCA), SIPROSA-CONICET-UNT. Dorrego 1080, T4000NXB, San Miguel de Tucumán, Tucumán, Argentina.
| | - Silvina Chaves
- Instituto de Medicina Molecular y Celular Aplicada (IMMCA), SIPROSA-CONICET-UNT. Dorrego 1080, T4000NXB, San Miguel de Tucumán, Tucumán, Argentina.
| | - César Ávila
- Instituto de Medicina Molecular y Celular Aplicada (IMMCA), SIPROSA-CONICET-UNT. Dorrego 1080, T4000NXB, San Miguel de Tucumán, Tucumán, Argentina.
| | - Licia María Pera
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Belgrano and Caseros corner, T4001MVB, San Miguel de Tucumán, Tucumán, Argentina.
| | - Rosana Nieves Chehín
- Instituto de Medicina Molecular y Celular Aplicada (IMMCA), SIPROSA-CONICET-UNT. Dorrego 1080, T4000NXB, San Miguel de Tucumán, Tucumán, Argentina.
| | - Esteban Vera Pingitore
- Instituto de Medicina Molecular y Celular Aplicada (IMMCA), SIPROSA-CONICET-UNT. Dorrego 1080, T4000NXB, San Miguel de Tucumán, Tucumán, Argentina.
| |
Collapse
|
11
|
Hero JS, Morales AH, Perotti NI, Romero CM, Martinez MA. Improved development in magnetic Xyl-CLEAs technology for biotransformation of agro-industrial by-products through the use of a novel macromolecular cross-linker. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Ke PC, Zhou R, Serpell LC, Riek R, Knowles TPJ, Lashuel HA, Gazit E, Hamley IW, Davis TP, Fändrich M, Otzen DE, Chapman MR, Dobson CM, Eisenberg DS, Mezzenga R. Half a century of amyloids: past, present and future. Chem Soc Rev 2020; 49:5473-5509. [PMID: 32632432 PMCID: PMC7445747 DOI: 10.1039/c9cs00199a] [Citation(s) in RCA: 327] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Amyloid diseases are global epidemics with profound health, social and economic implications and yet remain without a cure. This dire situation calls for research into the origin and pathological manifestations of amyloidosis to stimulate continued development of new therapeutics. In basic science and engineering, the cross-β architecture has been a constant thread underlying the structural characteristics of pathological and functional amyloids, and realizing that amyloid structures can be both pathological and functional in nature has fuelled innovations in artificial amyloids, whose use today ranges from water purification to 3D printing. At the conclusion of a half century since Eanes and Glenner's seminal study of amyloids in humans, this review commemorates the occasion by documenting the major milestones in amyloid research to date, from the perspectives of structural biology, biophysics, medicine, microbiology, engineering and nanotechnology. We also discuss new challenges and opportunities to drive this interdisciplinary field moving forward.
Collapse
Affiliation(s)
- Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, China
| | - Ruhong Zhou
- Institute of Quantitative Biology, Zhejiang University, Hangzhou 310058, China; Department of Chemistry, Columbia University, New York, New York, 10027, USA
| | - Louise C. Serpell
- School of Life Sciences, University of Sussex, Falmer, East Sussex BN1 9QG, UK
| | - Roland Riek
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich, Switzerland
| | - Tuomas P. J. Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, CB3 0HE, Cambridge, UK
| | - Hilal A. Lashuel
- Laboratory of Molecular Neurobiology and Neuroproteomics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Ian W. Hamley
- School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Daniel Erik Otzen
- Department of Molecular Biology, Center for Insoluble Protein Structures (inSPIN), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Matthew R. Chapman
- Department of Molecular, Cellular and Developmental Biology, Centre for Microbial Research, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | - Christopher M. Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - David S. Eisenberg
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute and Howard Hughes Medical Institute, UCLA, Los Angeles, CA, USA
| | - Raffaele Mezzenga
- Department of Health Science & Technology, ETH Zurich, Schmelzbergstrasse 9, LFO, E23, 8092 Zurich, Switzerland
- Department of Materials, ETH Zurich, Wolfgang Pauli Strasse 10, 8093 Zurich, Switzerland
| |
Collapse
|
13
|
Chaves S, Longo M, Gómez López A, Del V Loto F, Mechetti M, Romero CM. Control of microbial biofilm formation as an approach for biomaterials synthesis. Colloids Surf B Biointerfaces 2020; 194:111201. [PMID: 32615520 DOI: 10.1016/j.colsurfb.2020.111201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 11/26/2022]
Abstract
The search for new biomaterials with superior mechanical properties is the focus in the area of materials science. A promising pathway is drawing inspiration from nature to design and develop materials with enhanced properties. In this work, a novel strategy to produce functionalized supramolecular bionanomaterials from the microbial biofilm is reported. Tuneable biofilms with specific characteristics were obtained by controlling the culture condition of the microorganism. When the exopolysaccharide (EPS) production was desired the tryptone was the best nutritional component for the EPS production into the biofilm. However, for the expression of a high amount of amyloid protein the combination of peptone and glucose was the best nutritional choice. Each biofilm obtained showed its owner rheology properties. These properties were altered by the addition of extracellular DNA, which increased the viscosity of the biofilm and induced a viscoelastic hydrogel behavior. Besides, as a proof of concept of bionanomaterial, a novel supramolecular polymeric hybrid EPS-Amyloid protein (EPAP) was obtained from the biofilm and it was tested as a new natural functionalized support for enzyme immobilization. The results suggest that this technology could be used as a new concept to obtain biomaterials from biofilms by controlling the nutritional conditions of a microorganism. Understanding environmental factors affecting biofilm formation will help the development of methods for controlling biofilm production and therefore obtaining new biomaterials.
Collapse
Affiliation(s)
- Silvina Chaves
- Instituto de Medicina Molecular y Celular Aplicada (IMMCA), CONICET-UNT-SIPROSA, Pje. Dorrego 1080, San Miguel de Tucumán, Argentina
| | - Marianella Longo
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB, Tucumán Fac. Bioq., Qca. y Farmacia (UNT), Ayacucho 471, 4000, Tucumán, Argentina
| | - Azucena Gómez López
- Laboratorio de Física de Fluidos y Electrorreología, Instituto de Física del Noroeste Argentino-INFINOA (CONICET-UNT), Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán, Av. Independencia 1800, San Miguel de Tucumán, 4000, Argentina
| | - Flavia Del V Loto
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB, Tucumán Fac. Bioq., Qca. y Farmacia (UNT), Ayacucho 471, 4000, Tucumán, Argentina
| | - Magdalena Mechetti
- Laboratorio de Física de Fluidos y Electrorreología, Instituto de Física del Noroeste Argentino-INFINOA (CONICET-UNT), Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán, Av. Independencia 1800, San Miguel de Tucumán, 4000, Argentina
| | - Cintia M Romero
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB, Tucumán Fac. Bioq., Qca. y Farmacia (UNT), Ayacucho 471, 4000, Tucumán, Argentina.
| |
Collapse
|
14
|
Sharifi M, Karim AY, Mustafa Qadir Nanakali N, Salihi A, Aziz FM, Hong J, Khan RH, Saboury AA, Hasan A, Abou-Zied OK, Falahati M. Strategies of enzyme immobilization on nanomatrix supports and their intracellular delivery. J Biomol Struct Dyn 2019; 38:2746-2762. [DOI: 10.1080/07391102.2019.1643787] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Majid Sharifi
- Faculty of Advanced Sciences and Technology, Department of Nanotechnology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abdulkarim Yasin Karim
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
- Research Center, Knowledge University, Erbil, Kurdistan Region, Iraq
| | - Nadir Mustafa Qadir Nanakali
- Department of Biology, College of Science, Cihan University, Erbil, Iraq
- Department of Biology, College of Education, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
- Department of Medical Analysis, Faculty of Science, Tishk International University, Erbil, Iraq
| | - Falah Mohammad Aziz
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Jun Hong
- School of Life Sciences, Henan University, China
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Ali Akbar Saboury
- Inistitute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Center of Excellence in Biothermodynamics, University of Tehran, Tehran, Iran
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
- Biomedical Research Centre (BRC), Qatar University, Doha, Qatar
| | - Osama K. Abou-Zied
- Department of Chemistry, Faculty of Science,Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Mojtaba Falahati
- Faculty of Advanced Sciences and Technology, Department of Nanotechnology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
15
|
Dyawanapelly S, Mehrotra P, Ghosh G, Jagtap DD, Dandekar P, Jain R. How the surface functionalized nanoparticles affect conformation and activity of proteins: Exploring through protein-nanoparticle interactions. Bioorg Chem 2019; 82:17-25. [DOI: 10.1016/j.bioorg.2018.09.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/09/2018] [Accepted: 09/11/2018] [Indexed: 10/28/2022]
|
16
|
Luna MA, Gutierrez JA, Cobo Solis AK, Molina PG, Correa NM. Vehiculization of noscapine in large unilamellar vesicles. Study of its protective role against lipid peroxidation by electrochemical techniques. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Geoffry K, Achur RN. Screening and production of lipase from fungal organisms. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.03.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Romero CM, Martorell PV, López AG, Peñalver CGN, Chaves S, Mechetti M. Architecture and physicochemical characterization of Bacillus biofilm as a potential enzyme immobilization factory. Colloids Surf B Biointerfaces 2017; 162:246-255. [PMID: 29216511 DOI: 10.1016/j.colsurfb.2017.11.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/09/2017] [Accepted: 11/22/2017] [Indexed: 11/18/2022]
Abstract
Biocatalysis for industrial application is based on the use of enzymes to perform complex transformations. However, these systems have some disadvantage related to the costs of the biocatalyst. In this work, an alternative strategy for producing green immobilized biocatalysts based on biofilm was developed.A study of the rheological behavior of the biofilm from Bacillus sp. Mcn4, as well as the determination of its composition, was carried out. The dynamic rheological measurements, viscosity (G") and elasticity (G') module, showed that the biofilm presents appreciable elastic components, which is a recognized property for enzymes immobilization. After the partial purification, the exopolysaccharidewas identified as a levan with a non-Newtonian behavior. Extracellular DNA with fragments between 10,000 and 1000bp was detected also in the biofilm, and amyloid protein in the extracellular matrix using a fluorescence technique was identified. Bacillus sp. Mcn4 biofilms were developed on different surfaces, being the most stable those developed on hydrophilic supports. The biofilm showed lipase activity suggesting the presence of constitutive lipases entrapped into the biofilm. Indeed, two enzymes with lipase activity were identified in native PAGE. These were used as biocatalysts, whose reuse showed a residual lipase activity after more than one cycle of catalysis. The components identified in the biofilm could be the main contributors of the rheological characteristic of this material, giving an exceptional environment to the lipase enzyme. Based on these findings, the current study proposes green and natural biopolymers matrix as support for the enzyme immobilization for industrial applications.
Collapse
Affiliation(s)
- C M Romero
- PROIMI, PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB, Tucumán Fac. Bioq., Qca. y Farmacia (UNT), Ayacucho 471, 4000, Tucumán, Argentina.
| | - P V Martorell
- PROIMI, PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB, Tucumán Fac. Bioq., Qca. y Farmacia (UNT), Ayacucho 471, 4000, Tucumán, Argentina
| | - A Gómez López
- Laboratorio de Física de Fluidos y Electrorreología, Instituto de Física del Noroeste Argentino-INFINOA (CONICET-UNT), Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán, Av. Independencia 1800, San Miguel de Tucumán, 4000, Argentina
| | - C G Nieto Peñalver
- PROIMI, PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB, Tucumán Fac. Bioq., Qca. y Farmacia (UNT), Ayacucho 471, 4000, Tucumán, Argentina
| | - S Chaves
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina
| | - M Mechetti
- Laboratorio de Física de Fluidos y Electrorreología, Instituto de Física del Noroeste Argentino-INFINOA (CONICET-UNT), Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán, Av. Independencia 1800, San Miguel de Tucumán, 4000, Argentina
| |
Collapse
|
19
|
Cobo Solis AK, Correa NM, Molina PG. Determination of Benzyl-hexadecyldimethylammonium 1,4-Bis(2-ethylhexyl)sulfosuccinate Vesicle Permeability by Using Square Wave Voltammetry and an Enzymatic Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12080-12086. [PMID: 28992699 DOI: 10.1021/acs.langmuir.7b03001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This report describes the studies performed to determine the permeability coefficient value (P) of 1-naphthyl phosphate (1-NP) through the benzyl-hexadecyldimethylammonium 1,4-bis(2-ethylhexyl)sulfosuccinate (AOT-BHD) vesicle bilayer. 1-NP was added in the external phase and must cross the bilayer of the vesicle to react with the encapsulated enzyme (alkaline phosphatase) to yield 1-naphtholate (NPh-), the product of the enzymatic hydrolysis. This product is electrochemically detected, at basic pH value, by a square wave voltammetry technique, which can be a good alternative over the spectroscopic one, to measure the vesicle solutions because scattering (due to its turbidity) does not make any influence in the electrochemical signal. The experimental data allow us to propose a mathematical model, and a value of P = (1.00 ± 0.15) × 10-9 cm s-1 was obtained. Also, a value of P = (2.0 ± 0.5) × 10-9 cm s-1 was found by using an independent technique, ultraviolet-visible spectroscopy, for comparison. It is evident that the P values obtained from both the techniques are comparable (within the experimental error of both techniques) under the same experimental conditions. This study constitutes the first report of the 1-NP permeability determination in this new vesicle. We want to highlight the importance of the introduction of a new method and the electrochemical response of the product generated through an enzymatic reaction that occurs in the inner aqueous phase of the vesicle, where the enzyme is placed.
Collapse
Affiliation(s)
- Airam K Cobo Solis
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto , Agencia Postal No. 3, 5800 Río Cuarto, Argentina
| | - N Mariano Correa
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto , Agencia Postal No. 3, 5800 Río Cuarto, Argentina
| | - Patricia G Molina
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto , Agencia Postal No. 3, 5800 Río Cuarto, Argentina
| |
Collapse
|
20
|
Lessons learned from protein aggregation: toward technological and biomedical applications. Biophys Rev 2017; 9:501-515. [PMID: 28905328 DOI: 10.1007/s12551-017-0317-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 08/08/2017] [Indexed: 12/21/2022] Open
Abstract
The close relationship between protein aggregation and neurodegenerative diseases has been the driving force behind the renewed interest in a field where biophysics, neurobiology and nanotechnology converge in the study of the aggregate state. On one hand, knowledge of the molecular principles that govern the processes of protein aggregation has a direct impact on the design of new drugs for high-incidence pathologies that currently can only be treated palliatively. On the other hand, exploiting the benefits of protein aggregation in the design of new nanomaterials could have a strong impact on biotechnology. Here we review the contributions of our research group on novel neuroprotective strategies developed using a purely biophysical approach. First, we examine how doxycycline, a well-known and innocuous antibiotic, can reshape α-synuclein oligomers into non-toxic high-molecular-weight species with decreased ability to destabilize biological membranes, affect cell viability and form additional toxic species. This mechanism can be exploited to diminish the toxicity of α-synuclein oligomers in Parkinson's disease. Second, we discuss a novel function in proteostasis for extracellular glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in combination with a specific glycosaminoglycan (GAG) present in the extracellular matrix. GAPDH, by changing its quaternary structure from a tetramer to protofibrillar assembly, can kidnap toxic species of α-synuclein, and thereby interfere with the spreading of the disease. Finally, we review a brighter side of protein aggregation, that of exploiting the physicochemical advantages of amyloid aggregates as nanomaterials. For this, we designed a new generation of insoluble biocatalysts based on the binding of photo-immobilized enzymes onto hybrid protein:GAG amyloid nanofibrils. These new nanomaterials can be easily functionalized by attaching different enzymes through dityrosine covalent bonds.
Collapse
|
21
|
Wei G, Su Z, Reynolds NP, Arosio P, Hamley IW, Gazit E, Mezzenga R. Self-assembling peptide and protein amyloids: from structure to tailored function in nanotechnology. Chem Soc Rev 2017; 46:4661-4708. [PMID: 28530745 PMCID: PMC6364806 DOI: 10.1039/c6cs00542j] [Citation(s) in RCA: 545] [Impact Index Per Article: 77.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Self-assembled peptide and protein amyloid nanostructures have traditionally been considered only as pathological aggregates implicated in human neurodegenerative diseases. In more recent times, these nanostructures have found interesting applications as advanced materials in biomedicine, tissue engineering, renewable energy, environmental science, nanotechnology and material science, to name only a few fields. In all these applications, the final function depends on: (i) the specific mechanisms of protein aggregation, (ii) the hierarchical structure of the protein and peptide amyloids from the atomistic to mesoscopic length scales and (iii) the physical properties of the amyloids in the context of their surrounding environment (biological or artificial). In this review, we will discuss recent progress made in the field of functional and artificial amyloids and highlight connections between protein/peptide folding, unfolding and aggregation mechanisms, with the resulting amyloid structure and functionality. We also highlight current advances in the design and synthesis of amyloid-based biological and functional materials and identify new potential fields in which amyloid-based structures promise new breakthroughs.
Collapse
Affiliation(s)
- Gang Wei
- Faculty of Production Engineering, University of Bremen, Bremen,
Germany
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing
University of Chemical Technology, China
| | - Nicholas P. Reynolds
- ARC Training Centre for Biodevices, Swinburne University of
Technology, Melbourne, Australia
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, ETH-Zurich,
Switzerland
| | | | - Ehud Gazit
- Faculty of Life Sciences, Tel Aviv University, Israel
| | - Raffaele Mezzenga
- Department of Health Science and Technology, ETH-Zurich,
Switzerland
| |
Collapse
|
22
|
Luna MA, Silber JJ, Sereno L, Correa NM, Moyano F. Determining the substrate permeability through the bilayer of large unilamellar vesicles of DOPC. A kinetic study. RSC Adv 2016. [DOI: 10.1039/c6ra12847e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this work we determine the permeability of DOPC vesicles in the presence of different cholesterol contents, by using the enzymatic hydrolysis of N-benzoyl-l-tyrosine p-nitroanilide catalyzed by α-chymotrypsin.
Collapse
Affiliation(s)
- Maria Alejandra Luna
- Departamento de Química
- Universidad Nacional de Río Cuarto
- C.P. X5804BYA Río Cuarto
- Argentina
| | - Juana J. Silber
- Departamento de Química
- Universidad Nacional de Río Cuarto
- C.P. X5804BYA Río Cuarto
- Argentina
| | - Leonides Sereno
- Departamento de Química
- Universidad Nacional de Río Cuarto
- C.P. X5804BYA Río Cuarto
- Argentina
| | - N. Mariano Correa
- Departamento de Química
- Universidad Nacional de Río Cuarto
- C.P. X5804BYA Río Cuarto
- Argentina
| | - Fernando Moyano
- Departamento de Química
- Universidad Nacional de Río Cuarto
- C.P. X5804BYA Río Cuarto
- Argentina
| |
Collapse
|