1
|
Han S, Jun BM, Choi JS, Park CM, Jang M, Nam SN, Yoon Y. Removal of endocrine disruptors and pharmaceuticals by graphene oxide-based membranes in water: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121437. [PMID: 38852419 DOI: 10.1016/j.jenvman.2024.121437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/26/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
Membrane-based water treatment has emerged as a promising solution to address global water challenges. Graphene oxide (GO) has been successfully employed in membrane filtration processes owing to its reversible properties, large-scale production potential, layer-to-layer stacking, great oxygen-based functional groups, and unique physicochemical characteristics, including the creation of nano-channels. This review evaluates the separation performance of various GO-based membranes, manufactured by coating or interfacial polymerization with different support layers such as polymer, metal, and ceramic, for endocrine-disrupting compounds (EDCs) and pharmaceutically active compounds (PhACs). In most studies, the addition of GO significantly improved the removal efficiency, flux, porosity, hydrophilicity, stability, mechanical strength, and antifouling performance compared to pristine membranes. The key mechanisms involved in contaminant removal included size exclusion, electrostatic exclusion, and adsorption. These mechanisms could be ascribed to the physicochemical properties of compounds, such as molecular size and shape, hydrophilicity, and charge state. Therefore, understanding the removal mechanisms based on compound characteristics and appropriately adjusting the operational conditions are crucial keys to membrane separation. Future research directions should explore the characteristics of the combination of GO derivatives with various support layers, by tailoring diverse operating conditions and compounds for effective removal of EDCs and PhACs. This is expected to accelerate the development of surface modification strategies for enhanced contaminant removal.
Collapse
Affiliation(s)
- Seungyeon Han
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Byung-Moon Jun
- Radwaste Management Center, Korea Atomic Energy Research Institute (KAERI), 111 Daedeok-Daero 989beon-gil, Yuseong-Gu, Daejeon, 34057, Republic of Korea
| | - Jong Soo Choi
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 447-1 Wolgye-dong Nowon-gu, Seoul, Republic of Korea
| | - Seong-Nam Nam
- Military Environmental Research Center, Korea Army Academy at Yeongcheon, 495 Hoguk-ro, Gogyeong-myeon, Yeongcheon-si, Gyeongsangbuk-do, 38900, Republic of Korea.
| | - Yeomin Yoon
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea.
| |
Collapse
|
2
|
Yu Y, Hu Y, Song X, Chen J, Kang J, Cao Y, Xiang M. Investigation on Nanocomposites of Polysulfone and Different Ratios of Graphene Oxide with Structural Defects Repaired by Cellulose Nanocrystals. Polymers (Basel) 2023; 15:3821. [PMID: 37765675 PMCID: PMC10536655 DOI: 10.3390/polym15183821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
In this manuscript, nanofillers of graphene oxide (GO) and cellulose nanocrystal (CNC) with different weight ratios (G/C ratios), named GC 2:1, GC 4:1, GC 8:1, GC 16:1, and GC 32:1, were successfully prepared. Characterization methods such as Raman spectroscopy, X-ray photoelectron spectrometry (XPS), and thermogravimetric analysis (TGA) were performed. Additionally, the effects of these samples on the thermal stability, mechanical properties, and gas barrier properties of polysulfone (PSF) nanocomposites were investigated. A hydrophilic interaction took place between CNC and GO; as a consequence, CNCs were modified on the surface of GO, thus repairing the structural defects of GO. With the increase in G/C ratios, the repair effect of insufficient CNCs on the defects of GO decreased. The G/C ratio had a great influence on the improvement of mechanical properties, thermal stability, and gas barrier properties of nanocomposites. Compared with PSF/GC 2:1 and PSF/GC 32:1, the differences in the growth rates of tensile strength, elongation at break, and Young's modulus were 30.0%, 39.4%, and 15.9%, respectively; the difference in Td 3% was 7 °C; the difference in decline rate of O2 permeability was 40.0%.
Collapse
Affiliation(s)
- Yansong Yu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China (J.C.); (Y.C.); (M.X.)
| | - Yiwen Hu
- Key Laboratory of Combustion and Explosion Technology, Xi’an Modern Chemistry Research Institute, Xi’an 710065, China;
| | - Xiuduo Song
- Key Laboratory of Combustion and Explosion Technology, Xi’an Modern Chemistry Research Institute, Xi’an 710065, China;
| | - Jinyao Chen
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China (J.C.); (Y.C.); (M.X.)
| | - Jian Kang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China (J.C.); (Y.C.); (M.X.)
| | - Ya Cao
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China (J.C.); (Y.C.); (M.X.)
| | - Ming Xiang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China (J.C.); (Y.C.); (M.X.)
| |
Collapse
|
3
|
Vishwakarma V, Kandasamy J, Vigneswaran S. Surface Treatment of Polymer Membranes for Effective Biofouling Control. MEMBRANES 2023; 13:736. [PMID: 37623797 PMCID: PMC10456448 DOI: 10.3390/membranes13080736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
Membrane biofouling is the consequence of the deposition of microorganisms on polymer membrane surfaces. Polymeric membranes have garnered more attention for filtering and purifying water because of their ease of handling, low cost, effortless surface modification, and mechanical, chemical, and thermal properties. The sizes of the pores in the membranes enable micro- and nanofiltration, ultrafiltration, and reverse osmosis. Commonly used polymers for water filter membranes are polyvinyl chloride (PVA), polyvinylidene fluoride (PVDF), polyamide (PA), polyethylene glycol (PEG), polyethersulfone (PES), polyimide (PI), polyacrylonitrile (PAN), polyvinyl alcohol (PA), poly (methacrylic acid) (PMAA), polyaniline nanoparticles (PANI), poly (arylene ether ketone) (PAEK), polyvinylidene fluoride polysulfone (PSF), poly (ether imide) (PEI), etc. However, these polymer membranes are often susceptible to biofouling because of inorganic, organic, and microbial fouling, which deteriorates the membranes and minimizes their lives, and increases operating costs. Biofouling infection on polymer membranes is responsible for many chronic diseases in humans. This contamination cannot be eliminated by periodic pre- or post-treatment processes using biocides and other chemicals. For this reason, it is imperative to modify polymer membranes by surface treatments to enhance their efficiency and longevity. The main objective of this manuscript is to discuss application-oriented approaches to control biofouling on polymer membranes using various surface treatment methods, including nanomaterials and fouling characterizations utilizing advanced microscopy and spectroscopy techniques.
Collapse
Affiliation(s)
- Vinita Vishwakarma
- Centre for Nanoscience and Nanotechnology, Galgotias University, Greater Noida 203201, India
| | - Jaya Kandasamy
- School of Civil and Environmental Engineering, University of Technology, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia;
| | - Saravanamuthu Vigneswaran
- School of Civil and Environmental Engineering, University of Technology, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia;
- Faculty of Sciences & Technology (RealTek), Norwegian University of Life Sciences, N-1432 Ås, Norway
| |
Collapse
|
4
|
Abdalla O, Rehman A, Nabeeh A, Wahab MA, Abdel-Wahab A, Abdala A. Enhancing Polysulfone Mixed-Matrix Membranes with Amine-Functionalized Graphene Oxide for Air Dehumidification and Water Treatment. MEMBRANES 2023; 13:678. [PMID: 37505044 PMCID: PMC10383170 DOI: 10.3390/membranes13070678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023]
Abstract
Porous low-pressure membranes have been used as active membranes in water treatment and as support for thin-film composite membranes used in water desalination and gas separation applications. In this article, microfiltration polysulfone (PSf)mixed-matrix membranes (MMM) containing amine-functionalized graphene oxide (GO-NH2) were fabricated via a phase inversion process and characterized using XPS, SEM, AFM, DMA, XRD, and contact angle measurements. The effect of GO-NH2 concentration on membrane morphology, hydrophilicity, mechanical properties, and oil-water separation performance was analyzed. Significant enhancements in membrane hydrophilicity, porosity, mechanical properties, permeability, and selectivity were achieved at very low GO-NH2 concentrations (0.05-0.2 wt.%). In particular, the water permeability of the membrane containing 0.2 wt.% GO-NH2 was 92% higher than the pure PSf membrane, and the oil rejection reached 95.6% compared to 91.7% for the pure PSf membrane. The membrane stiffness was also increased by 98% compared to the pure PSf membrane. Importantly, the antifouling characteristics of the PSf-GO-NH2 MMMs were significantly improved. When filtering 100 ppm bovine serum albumin (BSA) solution, the PSf-GO-NH2 MMMs demonstrated a slower flux decline and an impressive flux recovery after washing. Notably, the control membrane showed a flux recovery of only 69%, while the membrane with 0.2 wt.% GO-NH2 demonstrated an exceptional flux recovery of 88%. Furthermore, the membranes exhibited enhanced humidity removal performance, with a permeance increase from 13,710 to 16,408. These results indicate that the PSf-GO-NH2 MMM is an excellent candidate for reliable oil-water separation and humidity control applications, with notable improvements in antifouling performance.
Collapse
Affiliation(s)
- Omnya Abdalla
- Chemical Engineering Program, Texas A&M University at Qatar, Doha 23874, Qatar
- Gulf Organisation for Research & Development (GORD), Qatar Science & Technology Park, Tech1 Bldg, Suite 203, Doha 210162, Qatar
| | - Abdul Rehman
- Chemical Engineering Program, Texas A&M University at Qatar, Doha 23874, Qatar
| | - Ahmed Nabeeh
- Chemical Engineering Program, Texas A&M University at Qatar, Doha 23874, Qatar
| | - Md A Wahab
- Chemical Engineering Program, Texas A&M University at Qatar, Doha 23874, Qatar
| | - Ahmed Abdel-Wahab
- Chemical Engineering Program, Texas A&M University at Qatar, Doha 23874, Qatar
| | - Ahmed Abdala
- Chemical Engineering Program, Texas A&M University at Qatar, Doha 23874, Qatar
| |
Collapse
|
5
|
Li X, Li K. Multifunctional pH-responsive carbon-based hydrogel adsorbent for ultrahigh capture of anionic and cationic dyes in wastewater. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131045. [PMID: 36827726 DOI: 10.1016/j.jhazmat.2023.131045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
An environmental friendly hydrogel adsorbent (DEC@GEL) was successfully manufactured by a facile free-radical polymerization method. Multiple characterizations demonstrated that the adsorbent was rich in functional groups and porous structures. The batch and multisystem adsorption experiments were applied to systematically investigate the adsorption properties of methylene blue (MB), malachite green (MG), indigo sodium dimethyl sulfonate (IC) and tartrazine (TR) in wastewater. The experimental results proved that the kinetic and isotherms of four dyes were more consistent with the pseudo-second-order and Langmuir model, respectively. Notably, the maximum adsorption capacities of MB, MG, TR and IC at 318 K were 2186.85, 2302.53, 1766.13 and 2301.75 mg/g, respectively, which were higher than many adsorbents that had been reported. Recycle experiment demonstrated the high reusability of the DEC@GEL. The selectivity and adsorption column experiments proved that DEC@GEL was not only widely applicable to various dyes, but also provided a positive start for the industrial application. Moreover, the simulated adsorption experiments further demonstrate that DEC@GEL had the prospect of application in real industrial conditions. Finally, four adsorption mechanisms had been proposed. Various adsorption experiments had shown that DEC@GEL was not only efficient in processing dyes, but also had great potential for practical industrial applications.
Collapse
Affiliation(s)
- Xin Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - Keran Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610500, PR China.
| |
Collapse
|
6
|
Mahdavi H, Hosseini F. Fabrication of high-performance mixed matrix blend membranes comprising PES and TPU reinforced with APTS functionalized-graphene oxide via VIPS-NIPS technique for aqueous dye treatment and antifouling properties. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2022.104609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Chukwuati CN, Moutloali RM. Antibacterial studies of Ag@HPEI@GO nanocomposites and their effects on fouling and dye rejection in PES UF membranes. Heliyon 2022; 8:e11825. [PMID: 36468096 PMCID: PMC9712571 DOI: 10.1016/j.heliyon.2022.e11825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/22/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022] Open
Abstract
A series of polyethersulfone membranes containing Ag@HPEI@GO composite was fabricated using non-solvent induced phase separations (NIPS) to mitigate against biofilm causing bacteria and modulate solute rejection. All materials produced and used were fully characterised using a combination of appropriate physicochemical techniques including FTIR, XRD, BET, SEM, AFM. The GO-based fillers exhibited bactericidal activities. The bactericidal activities of GO, HPEI@GO against Escherichia Coli (E. coli) were observed at 8 mg mL-1 whilst Ag@HPEI@GO composites exhibit bactericidal activities against E. coli at 4 mg mL-1. Against Klebsiella pneumonia (K. pneumonia), GO bactericidal activities were observed at 8 mg mL-1, whilst HPEI@GO and Ag@HPEI@GO bactericidal activities on K. pneumonia were observed at 4 mg mL-1. Against Staphylococcus aureus (S. aureus), GO exhibit bactericidal activities at 8 mg mL-1, HPEI@GO and Ag@HPEI@GO composites exhibit bactericidal activities on S. aureus at 4 mg mL-1. The aforementioned microorganisms are among the microorganism that causes biofilm formation on surfaces. The membrane performance was assessed by measuring pure water flux, solute rejections and fouling propensity with three different organic dye molecules and bovine serum albumin (BSA). All composite membranes (GO/PES, HPEI@GO/PES, and Ag@HPEI@GO/PES) exhibited increased hydrophilicity and higher pure water flux compared to the baseline PES membranes with concomitant increase in fouling resistance, The observed flux recovery ratios (FRR) were 80% (GO/PES), 70% (HPEI@GO/PES) and 69% (Ag@HPEI@GO/PES) respectively compared to the 45% FRR observed for the baseline PES membrane after BSA fouling. Congo red (CR) used as an indicator for molecular cut-off of UF membranes was rejected above 95% by all nanocomposite membranes. Furthermore, the nanocomposite membranes-maintained rejection for the positively charged methylene blue (MB) of above 90% whilst rejection observed for amaranth (AR) dye decreased from 80 to 58% with increasing filler content in the PES matrix. The results demonstrate the positive influence of GO, HPEI@GO and Ag/HPEI@GO nanofillers on flux, fouling and solute rejection performance of resultant PES nanocomposite membranes.
Collapse
Affiliation(s)
- Christopher N. Chukwuati
- Department of Chemical Sciences, Faculty of Science, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, Johannesburg, South Africa
- DSI/MINTEK Nanotechnology Innovation Centre – Water Research Node, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, Johannesburg, South Africa
| | - Richard M. Moutloali
- DSI/MINTEK Nanotechnology Innovation Centre – Water Research Node, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, Johannesburg, South Africa
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida, 1790, Johannesburg, South Africa
| |
Collapse
|
8
|
Li K, Li X, Li B. Investigation the adsorption behavior of functional carbon-based composites for efficient removing anions / cations in single and multicomponent systems. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Vitorino LS, dos Santos TC, Bessa IA, Santos EC, Verçoza BR, de Oliveira LAS, Rodrigues JC, Ronconi CM. Fabrication data of two light-responsive systems to release an antileishmanial drug activated by infrared photothermal heating. Data Brief 2022; 41:107841. [PMID: 35146082 PMCID: PMC8802065 DOI: 10.1016/j.dib.2022.107841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 12/02/2022] Open
Abstract
The data provided in this study are related to the fabrication of two light-responsive systems based on reduced graphene oxide (rGO) functionalized with the polymers Pluronic P123 (P123), rGO-P123, and polyethyleneimine (PEI), rGO-PEI, and loaded with amphotericin B (AmB), an antileishmanial drug. Here are described the experimental design to obtain the systems and characterization methods, such as Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), Raman Spectroscopy, Powder X-Ray Diffraction, Transmission Electron Microscopy, Scanning Electron Microscopy and Thermogravimetric Analyses. Also, AmB spectroscopy studies are described. The materials rGO-P123 and rGO-PEI were loaded with AmB and the optimization of AmB and polymer fragments structures revealed several possible hydrogen bonds formed between the materials and the drug. The drug release was analyzed with and without Near-Infrared (NIR) light. In the studies conducted under NIR light irradiation for 10 min, an infrared lamp was disposed at 64 cm from the samples and an optical fiber thermometer was employed to measure the temperature variation. Cytotoxicity studies and antiproliferative assays against Leishmania amazonensis promastigotes were evaluated. The complete work data entitled Amphotericin-B-Loaded Polymer-Functionalized Reduced Graphene Oxides for Leishmania amazonensis Chemo-Photothermal Therapy have been published to Colloids and Surfaces B: Bionterfaces (https://doi.org/10.1016/j.colsurfb.2021.112169) [1].
Collapse
Affiliation(s)
- Letícia S. Vitorino
- Departamento de Química Inorgânica, Universidade Federal Fluminense, Campus do Valonguinho, Niterói-RJ, 24020-150, Brazil
| | - Thiago C. dos Santos
- Departamento de Química Inorgânica, Universidade Federal Fluminense, Campus do Valonguinho, Niterói-RJ, 24020-150, Brazil
| | - Isabela A.A. Bessa
- Departamento de Química Inorgânica, Universidade Federal Fluminense, Campus do Valonguinho, Niterói-RJ, 24020-150, Brazil
| | - Evelyn C.S. Santos
- Departamento de Química Inorgânica, Universidade Federal Fluminense, Campus do Valonguinho, Niterói-RJ, 24020-150, Brazil
- Present address: Centro Brasileiro de Pesquisas Físicas, Urca-RJ, 22290-180, Brazil
| | - Brunno R.F. Verçoza
- Núcleo Multidisciplinar de Pesquisa em Biologia (NUMPEX-Bio), Campus UFRJ-Duque de Caxias Prof. Geraldo Cidade, Universidade Federal do Rio de Janeiro, Duque de Caxias, RJ, Brazil
| | - Luiz Augusto S. de Oliveira
- Núcleo Multidisciplinar de Pesquisa em Nanotecnologia (NUMPEX-Nano), Campus UFRJ-Duque de Caxias Prof. Geraldo Cidade, Universidade Federal do Rio de Janeiro, Duque de Caxias, RJ, Brazil
| | - Juliany C.F. Rodrigues
- Núcleo Multidisciplinar de Pesquisa em Biologia (NUMPEX-Bio), Campus UFRJ-Duque de Caxias Prof. Geraldo Cidade, Universidade Federal do Rio de Janeiro, Duque de Caxias, RJ, Brazil
| | - Célia M. Ronconi
- Departamento de Química Inorgânica, Universidade Federal Fluminense, Campus do Valonguinho, Niterói-RJ, 24020-150, Brazil
- Corresponding author. @RonconiCelia
| |
Collapse
|
10
|
Chandra L, Jagadish K, Karthikeyarajan V, Jalalah M, Alsaiari M, Harraz FA, Balakrishna RG. Nitrogenated Graphene Oxide-Decorated Metal Sulfides for Better Antifouling and Dye Removal. ACS OMEGA 2022; 7:9674-9683. [PMID: 35350350 PMCID: PMC8945108 DOI: 10.1021/acsomega.1c07140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Nitrogenated graphene oxide-decorated copper sulfide nanocomposites (Cu x S-NrGO, where x = 1 and 2) are designed to be incorporated in polysulfone (PSF) membranes for effective fouling resistance of PSF membranes and their dye removal capacity. The developed membranes possess more hydrophilicity and an enhancement in pure water flux (PWF). Also, the highest bovine serum albumin (BSA) rejection of 89% was observed when compared to membranes with pristine PSF (5 L/m2 h PWF and 88% BSA rejection) and CuS-incorporated PSF membranes (14 L/m2 h PWF and 83% BSA rejection) because of N doping and enhanced permeability. It is also found that the Cu x S-NrGO-incorporated PSF membranes exhibited a significantly higher fouling resistance, a larger permeate flux recovery ratio (FRR) of nearly 82%, and a congo red dye rejection of 93%. Cu x S-NrGO nanoparticles thus demonstrate the potential efficacy of enhancing the hydrophilicity, leading to a better flux, dye removal capacity, and antifouling capacity with a very high FRR value of 82% because of a strong interaction between the N-active sites of the NrGO, Cu x S, and polysulfone matrix, and negligible leaching of nanoparticles is observed.
Collapse
Affiliation(s)
- Lavanya Chandra
- Centre
for Nano and Materials Sciences, Jain University,
Jain Global Campus, Bangalore 562112, India
| | - Kusuma Jagadish
- Centre
for Nano and Materials Sciences, Jain University,
Jain Global Campus, Bangalore 562112, India
| | | | - Mohammed Jalalah
- Promising
Centre for Sensors and Electronic Devices (PCSED), Advanced Materials
and Nano-Research Centre, Najran University, P.O. Box 1988, Najran 11001, Saudi Arabia
- Department
of Electrical Engineering, Faculty of Engineering, Najran University, Najran 11001, Saudi Arabia
| | - Mabkhoot Alsaiari
- Promising
Centre for Sensors and Electronic Devices (PCSED), Advanced Materials
and Nano-Research Centre, Najran University, P.O. Box 1988, Najran 11001, Saudi Arabia
- Department
of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Najran 11001, Saudi Arabia
| | - Farid A. Harraz
- Promising
Centre for Sensors and Electronic Devices (PCSED), Advanced Materials
and Nano-Research Centre, Najran University, P.O. Box 1988, Najran 11001, Saudi Arabia
- Nanomaterials
and Nanotechnology Department, Central Metallurgical
Research and Development Institute (CMRDI), P.O. Box 87, Helwan, Cairo 11421, Egypt
| | - R Geetha Balakrishna
- Centre
for Nano and Materials Sciences, Jain University,
Jain Global Campus, Bangalore 562112, India
| |
Collapse
|
11
|
Grover A, Mohiuddin I, Malik AK, Aulakh JS, Vikrant K, Kim KH, Brown RJC. Magnesium/aluminum layered double hydroxides intercalated with starch for effective adsorptive removal of anionic dyes. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127454. [PMID: 34655876 DOI: 10.1016/j.jhazmat.2021.127454] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/26/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
In this research, the adsorptive performance of a starch-magnesium/aluminum layered double hydroxide (S-Mg/Al LDH) composite was investigated for different organic dyes in single-component systems by conducting a series of batch mode experiments. S-Mg/Al LDH composite showed preferential adsorption of anionic dyes than cationic dyes. The marked impact of key process variables (e.g., contact time, adsorbent dosage, pH, and temperature) on its adsorption was investigated. Multiple isotherms, kinetics, and thermodynamic models were applied to describe adsorption behavior, diffusion, and uptake rates of the organic dyes over S-Mg/Al LDH composite. A better fitting of the non-linear Langmuir model reflects the predominance of monolayered adsorption of dye molecules on the composite surface. Partition coefficients (mg g-1 μM-1) for S-Mg/Al LDH were observed in the following descending order: Amaranth (665) > Tartrazine (186) > Sunset yellow (71) > Eosin yellow (65). Furthermore, comparative evaluation of the adsorption enthalpy, entropy, and Gibbs free energy values indicates that the adsorption process is spontaneous and exothermic. S-Mg/Al LDH composite maintained a stable adsorption/desorption recycling process over six consecutive cycles with the advantages of low cost, chemical/mechanical stability, and easy recovery. The results of this study are expected to expand the application of modified LDHs toward wastewater treatment.
Collapse
Affiliation(s)
- Aman Grover
- Department of Chemistry, Punjabi University, Patiala 147002, Punjab, India
| | - Irshad Mohiuddin
- Department of Chemistry, Punjabi University, Patiala 147002, Punjab, India
| | - Ashok Kumar Malik
- Department of Chemistry, Punjabi University, Patiala 147002, Punjab, India
| | | | - Kumar Vikrant
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul 04763, Republic of Korea.
| | - Richard J C Brown
- Atmospheric Environmental Science Department, National Physical Laboratory, Teddington TW11 0LW, UK
| |
Collapse
|
12
|
Preparation and Characterization of Polymer Membranes Impregnated with Carbon Nanotubes for Olive Mill Wastewater. Polymers (Basel) 2022; 14:polym14030457. [PMID: 35160447 PMCID: PMC8840152 DOI: 10.3390/polym14030457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/04/2022] Open
Abstract
In this study, polymer membrane(s) impregnated with carbon nanotubes (CNTs) were developed, characterized and evaluated for removing phenolic compounds from olive mill wastewater; thus, protecting the environment and public health. Polyethersulfone/functionalized, multi-walled carbon nanotube (PES/fCNTs) membranes were synthesized via the phase inversion method using PES and acid-treated CNTs. The prepared membranes were then characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and contact angle. Results obtained from this study indicate a more hydrophilic surface for the prepared PES/fCNTs membranes, with a higher pure water flux compared to the polyethersulfone (PES) membranes. In addition, the amount of fCNTs in the membranes was found to be the most significant factor affecting the morphology and water flux of the membranes. The PES/fCNTs membranes at 1 bar with 0 wt.% and 1 wt.% of CNTs showed water flux of 37.8 and 69.71 kg/h.m2, respectively. In addition, PES/fCNTs membranes with 0.5 wt.% fCNTs showed the highest total phenol content removal of 74%.
Collapse
|
13
|
Tanis I, Kostarellou E, Karatasos K. Molecular dynamics simulations of hyperbranched poly(ethylene imine)-graphene oxide nanocomposites as dye adsorbents for water purification. Phys Chem Chem Phys 2021; 23:22874-22884. [PMID: 34668493 DOI: 10.1039/d1cp02461b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atomistically detailed molecular dynamics simulations were employed to study the adsorption capacity of graphene-oxide-based (GO) aqueous systems for the methylene blue (MB) dye in the presence of branched poly(ethylene imine) (BPEI) polymers. The polymeric component was either freely mixed or chemically attached to GO. The main focus was the elucidation of the effects originating from the presence of BPEI molecules in the association of MB with the formed GO complexes. The effect of temperature was also examined. It was found that the presence of the cationic BPEI molecules results in the formation of a distinct microenvironment characterized by a polymer-mediated interconnected morphology which promotes the development of larger-sized MB clusters. These clusters were found to form in the vicinity of the GO flakes, increasing thus the adsorption capacity of the dye molecules in the polymer-containing systems. Particularly in the system with the BPEI-functionalized GO flakes, a persistent percolated structure is formed, which results in a more restricted diffusion of the MB molecules, increasing thus significantly their residence time close to the GO surface. The clustering behavior of MB was found to be temperature-dependent in the BPEI-based models, providing useful information regarding the conditions for optimal adsorption performance of such membranes, in nanofiltration processes.
Collapse
Affiliation(s)
- I Tanis
- Laboratory of Physical Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - E Kostarellou
- Laboratory of Physical Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - K Karatasos
- Laboratory of Physical Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
14
|
Díez-Pascual AM. State of the Art in the Antibacterial and Antiviral Applications of Carbon-Based Polymeric Nanocomposites. Int J Mol Sci 2021; 22:10511. [PMID: 34638851 PMCID: PMC8509077 DOI: 10.3390/ijms221910511] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022] Open
Abstract
The development of novel approaches to prevent bacterial infection is essential for enhancing everyday life. Carbon nanomaterials display exceptional optical, thermal, and mechanical properties combined with antibacterial ones, which make them suitable for diverse fields, including biomedical and food applications. Nonetheless, their practical applications as antimicrobial agents have not been fully explored yet, owing to their relatively poor dispersibility, expensiveness, and scalability changes. To solve these issues, they can be integrated within polymeric matrices, which also exhibit antimicrobial activity in some cases. This review describes the state of the art in the antibacterial applications of polymeric nanocomposites reinforced with 0D fullerenes, 1D carbon nanotubes (CNTs), and 2D graphene (G) and its derivatives such as graphene oxide (GO) and reduced graphene oxide (rGO). Given that a large number of such nanocomposites are available, only the most illustrative examples are described, and their mechanisms of antimicrobial activity are discussed. Finally, some applications of these antimicrobial polymeric nanocomposites are reviewed.
Collapse
Affiliation(s)
- Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
15
|
Díez-Pascual AM, Luceño-Sánchez JA. Antibacterial Activity of Polymer Nanocomposites Incorporating Graphene and Its Derivatives: A State of Art. Polymers (Basel) 2021; 13:2105. [PMID: 34206821 PMCID: PMC8271513 DOI: 10.3390/polym13132105] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
The incorporation of carbon-based nanostructures into polymer matrices is a relevant strategy for producing novel antimicrobial materials. By using nanofillers of different shapes and sizes, and polymers with different characteristics, novel antimicrobial nanocomposites with synergistic properties can be obtained. This article describes the state of art in the field of antimicrobial polymeric nanocomposites reinforced with graphene and its derivatives such as graphene oxide and reduced graphene oxide. Taking into account the vast number of articles published, only some representative examples are provided. A classification of the different nanocomposites is carried out, dividing them into acrylic and methacrylic matrices, biodegradable synthetic polymers and natural polymers. The mechanisms of antimicrobial activity of graphene and its derivatives are also reviewed. Finally, some applications of these antimicrobial nanocomposites are discussed. We aim to enhance understanding in the field and promote further work on the development of polymer-based antimicrobial nanocomposites incorporating graphene-based nanomaterials.
Collapse
Affiliation(s)
- Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain;
| | | |
Collapse
|
16
|
Zhang X, Chen Q, Wei R, Jin L, He C, Zhao W, Zhao C. Design of poly ionic liquids modified cotton fabric with ion species-triggered bidirectional oil-water separation performance. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123163. [PMID: 32569985 DOI: 10.1016/j.jhazmat.2020.123163] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 05/16/2023]
Abstract
A novel ion species-responsive oil-water separation material was designed: poly ionic liquid (PIL) was carried on the graphene oxide (GO) by free radical polymerization, then the PIL modified GO sheets (GO-PIL) were coated on cotton fabric (CF). The wettability of the obtained GO-PIL coated CF (GO-PIL@CF) could be switched between hydrophilic and hydrophobic state with the exchange of different types of counteranions. Water contact angle of the GO-PIL@CF could be switched between 0 to about 145°; and correspondingly the underwater oil contact angle would change between about 148 to 0°. Because of the switchable wettability, the GO-PIL@CF could selectively separate water or oil from the oil-water mixtures. Meanwhile, due to the loose fibrous structure, the GO-PIL@CF showed relatively high permeate fluxes; in the hydrophilic state the water flux was about 36000 L/m2h, while in the hydrophobic state the fluxes for the low-density oils (n-hexane and toluene) were about 59,000 and 65000 L/m2h, respectively. Consequently, the separation processes could be completed simply by gravity. In addition, because of the soft and flexible mechanical property, the GO-PIL@CF could serve as wrappage of traditional absorbents and be applied directly as absorbent to remove water or oil selectively from their mixtures.
Collapse
Affiliation(s)
- Xiang Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China; Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesser Str. 18, Karlsruhe, 76131, Germany
| | - Qin Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Ran Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Lunqiang Jin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, People's Republic of China.
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China; National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China.
| |
Collapse
|
17
|
Sui X, Yuan Z, Yu Y, Goh K, Chen Y. 2D Material Based Advanced Membranes for Separations in Organic Solvents. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003400. [PMID: 33217172 DOI: 10.1002/smll.202003400] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/25/2020] [Indexed: 06/11/2023]
Abstract
2D materials have shown high potentials for fabricating next-generation membranes. To date, extensive studies have focused on the applications of 2D material membranes in gas and aqueous media. Recently, compelling opportunities emerge for 2D material membranes in separation applications in organic solvents because of their unique properties, such as ultrathin mono- to few-layers, outstanding chemical resistance toward organic solvents. Hence, this review aims to provide a timely overview of the current state-of-the-art of 2D material membranes focusing on their applications in organic solvent separations. 2D material membranes fabricated using graphene materials and a few representative nongraphene-based 2D materials, including covalent organic frameworks and MXenes, are summarized. The key membrane design strategies and their effects on separation performances in organic solvents are also examined. Last, several perspectives are provided in terms of the critical challenges for 2D material membranes, including standardization of membrane performance evaluation, improving understandings of separation mechanisms, managing the trade-off of permeability and selectivity, issues related to application versatility, long-term stability, and fabrication scalability. This review will provide a useful guide for researchers in creating novel 2D material membranes for advancing new separation techniques in organic solvents.
Collapse
Affiliation(s)
- Xiao Sui
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Ziwen Yuan
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Yanxi Yu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Kunli Goh
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore
| | - Yuan Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
18
|
Removal of organic micropollutants using advanced membrane-based water and wastewater treatment: A review. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117672] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Homaeigohar S. The Nanosized Dye Adsorbents for Water Treatment. NANOMATERIALS 2020; 10:nano10020295. [PMID: 32050582 PMCID: PMC7075180 DOI: 10.3390/nano10020295] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 01/14/2023]
Abstract
Clean water is a vital element for survival of any living creature and, thus, crucially important to achieve largely and economically for any nation worldwide. However, the astonishingly fast trend of industrialization and population growth and the arisen extensive water pollutions have challenged access to clean water across the world. In this regard, 1.6 million tons of dyes are annually consumed. Thereof, 10%–15% are wasted during use. To decolorize water streams, there is an urgent need for the advanced remediation approaches involving utilization of novel materials and technologies, which are cost and energy efficient. Nanomaterials, with their outstanding physicochemical properties, can potentially resolve the challenge of need to water treatment in a less energy demanding manner. In this review, a variety of the most recent (from 2015 onwards) opportunities arisen from nanomaterials in different dimensionalities, performances, and compositions for water decolorization is introduced and discussed. The state-of-the-art research studies are presented in a classified manner, particularly based on structural dimensionality, to better illustrate the current status of adsorption-based water decolorization using nanomaterials. Considering the introduction of many newly developed nano-adsorbents and their classification based on the dimensionality factor, which has never been employed for this sake in the related literature, a comprehensive review will be presented.
Collapse
Affiliation(s)
- Shahin Homaeigohar
- Nanochemistry and Nanoengineering, Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, 00076 Aalto, Finland
| |
Collapse
|
20
|
Marjani A, Nakhjiri AT, Adimi M, Jirandehi HF, Shirazian S. Effect of graphene oxide on modifying polyethersulfone membrane performance and its application in wastewater treatment. Sci Rep 2020; 10:2049. [PMID: 32029799 PMCID: PMC7005172 DOI: 10.1038/s41598-020-58472-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/11/2019] [Indexed: 11/29/2022] Open
Abstract
In the present paper, Graphene Oxide (GO) particles were prepared via Hummer method, and used in synthesis of composite membranes. Polyethersulfone (PES) nanocomposite membranes were synthesized via wet phase inversion technique, and using water as non-solvent. The membrane morphology was investigated using scanning electron microscopy (SEM). Change in the membrane surface hydrophilicity after modification was studied using contact angle measurements. The performance of fabricated PES nanocomposite membranes was measured by evaluating pure water flux, salt rejection, dye retention and heavy metals removal. The results indicated that by increasing the filler percentage up to 5 wt.%, the contact angle between the water droplet and the membrane surface was decreased and the droplet was more dispersed on the membrane surface which implies higher hydrophilicity of the prepared nanocomposite membranes. Moreover, the experimental results corroborated that addition of GO to the membrane significantly improved the pure water flux, salt rejection and heavy metals removal, and can be used as a novel methodology for preparation of high performance membranes in water treatment.
Collapse
Affiliation(s)
- Azam Marjani
- Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran
| | - Ali Taghvaie Nakhjiri
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Adimi
- Department of Chemical Engineering, Farahan Branch, Islamic Azad University, Farahan, Iran
| | | | - Saeed Shirazian
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
21
|
Wei R, Song W, Yang F, Zhou J, Zhang M, Zhang X, Zhao W, Zhao C. Bidirectionally pH-Responsive Zwitterionic Polymer Hydrogels with Switchable Selective Adsorption Capacities for Anionic and Cationic Dyes. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b01027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ran Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Wanying Song
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Fan Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Jukai Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Man Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Xiang Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | | | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| |
Collapse
|
22
|
Preparation and characterization of polysulfone/graphene oxide nanocomposite membranes for the separation of methylene blue from water. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-2046-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
23
|
Lawler J. Incorporation of Graphene-Related Carbon Nanosheets in Membrane Fabrication for Water Treatment: A Review. MEMBRANES 2016; 6:membranes6040057. [PMID: 27999364 PMCID: PMC5192413 DOI: 10.3390/membranes6040057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/07/2016] [Accepted: 12/14/2016] [Indexed: 01/09/2023]
Abstract
The minimization of the trade-off between the flux and the selectivity of membranes is a key area that researchers are continually working to optimise, particularly in the area of fabrication of novel membranes. Flux versus selectivity issues apply in many industrial applications of membranes, for example the unwanted diffusion of methanol in fuel cells, retention of valuable proteins in downstream processing of biopharmaceuticals, rejection of organic matter and micro-organisms in water treatment, or salt permeation in desalination. The incorporation of nanosheets within membrane structures can potentially lead to enhancements in such properties as the antifouling ability, hydrophilicy and permeability of membranes, with concomitant improvements in the flux/selectivity balance. Graphene nanosheets and derivatives such as graphene oxide and reduced graphene oxide have been investigated for this purpose, for example inclusion of nanosheets within the active layer of Reverse Osmosis or Nanofiltration membranes or the blending of nanosheets as fillers within Ultrafiltration membranes. This review summarizes the incorporation of graphene derivatives into polymeric membranes for water treatment with a focus on a number of industrial applications, including desalination and pharmaceutical removal, where enhancement of productivity and reduction in fouling characteristics have been afforded by appropriate incorporation of graphene derived nanosheets during membrane fabrication.
Collapse
Affiliation(s)
- Jenny Lawler
- School of Biotechnology and DCU Water Institute, Dublin City University, Dublin 9, Ireland.
| |
Collapse
|
24
|
A Novel Nanohybrid Nanofibrous Adsorbent for Water Purification from Dye Pollutants. MATERIALS 2016; 9:ma9100848. [PMID: 28773968 PMCID: PMC5456603 DOI: 10.3390/ma9100848] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/06/2016] [Accepted: 10/10/2016] [Indexed: 11/24/2022]
Abstract
In this study, we devised a novel nanofibrous adsorbent made of polyethersulfone (PES) for removal of methylene blue (MB) dye pollutant from water. The polymer shows a low isoelectric point thus at elevated pHs and, being nanofibrous, can offer a huge highly hydroxylated surface area for adsorption of cationic MB molecules. As an extra challenge, to augment the adsorbent’s properties in terms of adsorption capacity in neutral and acidic conditions and thermal stability, vanadium pentoxide (V2O5) nanoparticles were added to the nanofibers. Adsorption data were analyzed according to the Freundlich adsorption model. The thermodynamic parameters verified that only at basic pH is the adsorption spontaneous and in general the process is entropy-driven and endothermic. The kinetics of the adsorption process was evaluated by the pseudo-first- and pseudo-second-order models. The latter model exhibited the highest correlation with data. In sum, the adsorbent showed a promising potential for dye removal from industrial dyeing wastewater systems, especially when envisaging their alkaline and hot conditions.
Collapse
|
25
|
Nodeh HR, Wan Ibrahim WA, Sanagi MM, Aboul-Enein HY. Magnetic graphene-based cyanopropyltriethoxysilane as an adsorbent for simultaneous determination of polar and non-polar organophosphorus pesticides in cow’s milk. RSC Adv 2016. [DOI: 10.1039/c5ra26742k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
A new adsorbent based on magnetic nanoparticles (Fe3O4), graphene and cyanopropyltriethoxysilane was fabricated and applied to the magnetic solid phase extraction of organophosphorus pesticides.
Collapse
Affiliation(s)
- Hamid Rashidi Nodeh
- Department of Chemistry
- Faculty of Science
- Universiti Teknologi Malaysia
- 81310 UTM Johor Bahru
- Malaysia
| | - Wan Aini Wan Ibrahim
- Department of Chemistry
- Faculty of Science
- Universiti Teknologi Malaysia
- 81310 UTM Johor Bahru
- Malaysia
| | - Mohd Marsin Sanagi
- Department of Chemistry
- Faculty of Science
- Universiti Teknologi Malaysia
- 81310 UTM Johor Bahru
- Malaysia
| | - Hassan Y. Aboul-Enein
- National Research Centre
- Department of Pharmaceutical and Medicinal Chemistry
- 12311 Cairo
- Egypt
| |
Collapse
|
26
|
Zhou J, Chen S, Xu S, Zhang X, Zhao W, Zhao C. Graphene oxide-based polyethersulfone core–shell particles for dye uptake. RSC Adv 2016. [DOI: 10.1039/c6ra18950d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Graphene oxide (GO), a graphene nanomaterial with great application potential, possesses promising adsorption abilities towards various water contaminants due to the ultra-large surface area and the nature of electric charge on the surface.
Collapse
Affiliation(s)
- Jukai Zhou
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- People's Republic of China
| | - Shengqiu Chen
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- People's Republic of China
| | - Sheng Xu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- People's Republic of China
| | - Xiang Zhang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- People's Republic of China
| | - Weifeng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- People's Republic of China
| | - Changsheng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- People's Republic of China
| |
Collapse
|
27
|
Pei J, Zhang X, Huang L, Jiang H, Hu X. Fabrication of reduced graphene oxide membranes for highly efficient water desalination. RSC Adv 2016. [DOI: 10.1039/c6ra22711b] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The resultant PDA–RGO membranes allow faster permeation of water compared with GO membranes, but a higher retention rate of solutes.
Collapse
Affiliation(s)
- Junxian Pei
- MOE Key Laboratory of Hydraulic Machinery Transients
- School of Power and Mechanical Engineering
- Wuhan University
- Wuhan
- China
| | - Xiantao Zhang
- MOE Key Laboratory of Hydraulic Machinery Transients
- School of Power and Mechanical Engineering
- Wuhan University
- Wuhan
- China
| | - Lu Huang
- MOE Key Laboratory of Hydraulic Machinery Transients
- School of Power and Mechanical Engineering
- Wuhan University
- Wuhan
- China
| | - Haifeng Jiang
- MOE Key Laboratory of Hydraulic Machinery Transients
- School of Power and Mechanical Engineering
- Wuhan University
- Wuhan
- China
| | - Xuejiao Hu
- MOE Key Laboratory of Hydraulic Machinery Transients
- School of Power and Mechanical Engineering
- Wuhan University
- Wuhan
- China
| |
Collapse
|