1
|
Zhou X, Wu Z, Chen B, Zhou Z, Liang Y, He M, Hu B. Quantification of trace heavy metals in environmental water, soil and atmospheric particulates with their bioaccessibility analysis. Talanta 2024; 276:126284. [PMID: 38781914 DOI: 10.1016/j.talanta.2024.126284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
In this work, sulfhydryl (SH) functionalized magnetic covalent organic framework (COF) was synthesized by using 4-aldehyde phenyl butadiyne (DEBD) and 1,3,5-tris(4-aminophenyl) benzene (TAPB) as the monomers and ethanedithiol as the modifier, with the aid of thiol-alkyne "click" reaction. The prepared Fe3O4@COFTAPB-DEBD@SH exhibited relatively strong magnetism (32.8 emu g-1), good stability and selectivity to target analytes with a high sulfhydryl content (0.24 mmol g-1). Based on Fe3O4@COFTAPB-DEBD@SH, a method combining magnetic solid phase extraction with inductively coupled plasma mass spectrometry (ICP-MS) was developed for the quantitative analysis of trace metals. Under the optimal conditions, the method merited fast desorption kinetics (<2 min), adsorption kinetics (<20 min), fast phase separation (<1 min), high enrichment factor (100), and the detection limits for Cd, Hg, Pb and Bi were determined to be 1.18, 0.51, 4.91 and 0.39 ng L-1, respectively. A good resistance to complex matrices was demonstrated for the method in the analysis of soil, atmospheric particles and simulated pulmonary fluids samples. Certified reference materials (coal fly ash GBW08401 and soil GBW07427) were employed to validate the accuracy of the method. Four target metals in the range of 12.9-215 ng L-1, 0.06-24.6 μg g-1 and 0.52-33.1 ng m-3 were found in local water, soil and atmospheric particulates (PM), respectively. Additionally, artificial lysosome solution and gamble's solution were used to simulate human pulmonary fluid and the bioaccessibility of Cd, Hg, Pb and Bi in PM2.5 was evaluated to be 58.6-73.1 % and 1.3-7.1 %, respectively.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Zhekuan Wu
- Tobacco Research Institute of Hubei Province, Hubei Tobacco Company, Wuhan, 430040, China
| | - Beibei Chen
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Zhen Zhou
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Man He
- Department of Chemistry, Wuhan University, Wuhan, 430072, China.
| | - Bin Hu
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
2
|
Li D, Tang N, Tian X. Synthesis of Boronate Affinity-Based Oriented Dummy Template-Imprinted Magnetic Nanomaterials for Rapid and Efficient Solid-Phase Extraction of Ellagic Acid from Food. Molecules 2024; 29:2500. [PMID: 38893376 PMCID: PMC11173610 DOI: 10.3390/molecules29112500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/05/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Ellagic acid (EA) is a natural polyphenol and possesses excellent in vivo bioactivity and antioxidant behaviors, which play an important role in the treatment of oxidative stress-related diseases, such as cancer. Additionally, EA is also known as a skin-whitening ingredient. The content of EA would determine its efficacy. Therefore, the accurate analysis of EA content can provide more information for the scientific consumption of EA-rich foods and cosmetics. Nevertheless, the analysis of EA in these samples is challenging due to the low concentration level and the presence of interfering components with high abundance. Molecularly imprinted polymers are highly efficient pretreatment materials in achieving specific recognition of target molecules. However, the traditional template molecule (EA) could not be absolutely removed. Hence, template leakage continues to occur during the sample preparation process, leading to a lack of accuracy in the quantification of EA in actual samples, particularly for trace analytes. In addition, another drawback of EA as an imprinting template is that EA possesses poor solubility and a high price. Gallic acid (GA), called dummy templates, was employed for the synthesis of MIPs as a solution to these challenges. The approach used in this study was boronate affinity-based oriented surface imprinting. The prepared dummy-imprinted nanoparticles exhibited several significant advantages, such as good specificity, high binding affinity ((4.89 ± 0.46) × 10-5 M), high binding capacity (6.56 ± 0.35 mg/g), fast kinetics (6 min), and low binding pH (pH 5.0) toward EA. The reproducibility of the dummy-imprinted nanoparticles was satisfactory. The dummy-imprinted nanoparticles could still be reused even after six adsorption-desorption cycles. In addition, the recoveries of the proposed method for EA at three spiked levels of analysis in strawberry and pineapple were 91.0-106.8% and 93.8-104.0%, respectively, which indicated the successful application to real samples.
Collapse
Affiliation(s)
- Daojin Li
- Henan Key Laboratory of Fuction-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (N.T.); (X.T.)
| | | | | |
Collapse
|
3
|
Li J, Lin G, Tan F, Fu L, Zeng B, Wang S, Hu T, Zhang L. Selective adsorption of mercury ion from water by a novel functionalized magnetic Ti based metal-organic framework composite. J Colloid Interface Sci 2023; 651:659-668. [PMID: 37562307 DOI: 10.1016/j.jcis.2023.08.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/27/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
In the context of industrialization and severe wastewater pollution, mercury ions pose a major threat due to their high toxicity. However, traditional adsorbents and common metal-organic framework (MOF) materials have limited effectiveness. This study focuses on combining magnetic materials with functionalized titanium-based MOF composite (SNN-MIL-125(Ti)@Fe3O4) to improve mercury ion adsorption. Through comprehensive characterization and analysis, the adsorption performance and mechanism of the material were studied. The optimal adsorption of the material was achieved at pH 5, exhibiting a pseudo-second-order adsorption model and the Hill theoretical capacity of 668.98 mg/g. Hill and Tempkin models confirmed the presence of chemical and physical adsorption sites on the material surface. Thermodynamic experiments showed a spontaneous endothermic process. Despite the presence of interfering ions, the material exhibited high selectivity for mercury ions. After four cycles, adsorption performance decreased by only 8%, indicating excellent reusability. Nitrogen- and sulfur-containing functional groups played a key role in mercury ion adsorption. In conclusion, SNN-MIL-125(Ti)@Fe3O4, as a magnetic MOF adsorption material, showed potential for effective remediation of mercury-contaminated wastewater. This study contributes to the development of efficient adsorption materials and enhances the understanding of their mechanism.
Collapse
Affiliation(s)
- Jing Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Guo Lin
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China; The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, PR China.
| | - Fangguan Tan
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| | - Likang Fu
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| | - Biao Zeng
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Shixing Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| | - Tu Hu
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| | - Libo Zhang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| |
Collapse
|
4
|
Shen Y, Miao P, Liu S, Gao J, Han X, Zhao Y, Chen T. Preparation and Application Progress of Imprinted Polymers. Polymers (Basel) 2023; 15:polym15102344. [PMID: 37242918 DOI: 10.3390/polym15102344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Due to the specific recognition performance, imprinted polymers have been widely investigated and applied in the field of separation and detection. Based on the introduction of the imprinting principles, the classification of imprinted polymers (bulk imprinting, surface imprinting, and epitope imprinting) are summarized according to their structure first. Secondly, the preparation methods of imprinted polymers are summarized in detail, including traditional thermal polymerization, novel radiation polymerization, and green polymerization. Then, the practical applications of imprinted polymers for the selective recognition of different substrates, such as metal ions, organic molecules, and biological macromolecules, are systematically summarized. Finally, the existing problems in its preparation and application are summarized, and its prospects have been prospected.
Collapse
Affiliation(s)
- Yongsheng Shen
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Pharmacy, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Pengpai Miao
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Pharmacy, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Shucheng Liu
- Institute of Forensic Science, Hunan Provincial Public Security Bureau, Changsha 410001, China
| | - Jie Gao
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Pharmacy, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Xiaobing Han
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Pharmacy, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Yuan Zhao
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Pharmacy, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Tao Chen
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Pharmacy, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
5
|
Insights into ion-imprinted materials for the recovery of metal ions: Preparation, evaluation and application. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121469] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
6
|
Li D, Tang N, Wang Y, Zhang Z, Ding Y, Tian X. Efficient synthesis of boronate affinity-based catecholamine-imprinted magnetic nanomaterials for trace analysis of catecholamine in human urine. NEW J CHEM 2022. [DOI: 10.1039/d2nj02552c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catecholamines, a class of cis-diol-containing compounds, play a major role in the central nervous system.
Collapse
Affiliation(s)
- Daojin Li
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471022, P. R. China
| | - Na Tang
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471022, P. R. China
| | - Yipei Wang
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471022, P. R. China
| | - Zixin Zhang
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471022, P. R. China
| | - Yihan Ding
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471022, P. R. China
| | - Xiping Tian
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471022, P. R. China
| |
Collapse
|
7
|
Metwally MG, Benhawy AH, Khalifa RM, El Nashar RM, Trojanowicz M. Application of Molecularly Imprinted Polymers in the Analysis of Waters and Wastewaters. Molecules 2021; 26:6515. [PMID: 34770924 PMCID: PMC8587002 DOI: 10.3390/molecules26216515] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
The increase of the global population and shortage of renewable water resources urges the development of possible remedies to improve the quality and reusability of waste and contaminated water supplies. Different water pollutants, such as heavy metals, dyes, pesticides, endocrine disrupting compounds (EDCs), and pharmaceuticals, are produced through continuous technical and industrial developments that are emerging with the increasing population. Molecularly imprinted polymers (MIPs) represent a class of synthetic receptors that can be produced from different types of polymerization reactions between a target template and functional monomer(s), having functional groups specifically interacting with the template; such interactions can be tailored according to the purpose of designing the polymer and based on the nature of the target compounds. The removal of the template using suitable knocking out agents renders a recognition cavity that can specifically rebind to the target template which is the main mechanism of the applicability of MIPs in electrochemical sensors and as solid phase extraction sorbents. MIPs have unique properties in terms of stability, selectivity, and resistance to acids and bases besides being of low cost and simple to prepare; thus, they are excellent materials to be used for water analysis. The current review represents the different applications of MIPs in the past five years for the detection of different classes of water and wastewater contaminants and possible approaches for future applications.
Collapse
Affiliation(s)
- Mahmoud G. Metwally
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (M.G.M.); (A.H.B.); (R.M.K.)
| | - Abdelaziz H. Benhawy
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (M.G.M.); (A.H.B.); (R.M.K.)
| | - Reda M. Khalifa
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (M.G.M.); (A.H.B.); (R.M.K.)
| | - Rasha M. El Nashar
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (M.G.M.); (A.H.B.); (R.M.K.)
| | - Marek Trojanowicz
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
8
|
Structure, adsorption and separation comparison between the thermosensitive block segment polymer modified ReO4− ion imprinted polymer and traditional ReO4− ion imprinted polymer. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Qi XJ, Sun M, Hou BS, Yu X, Shan GG, Sun CY, Yousaf A, Wang XL, Su ZM. A thiol-functionalized zirconium metal-organic cage for the effective removal of Hg 2+ from aqueous solution. NANOTECHNOLOGY 2021; 32:075602. [PMID: 33241790 DOI: 10.1088/1361-6528/abba99] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The mercury ions in waste water have threatened public health and environmental protection. In this sense, novel materials with outstanding performances for removal of Hg2+ are imperative. Herein, we demonstrate a thiol-functionalized zirconium metal-organic cage (MOC-(SH)2) with excellent dispersion displays ideal properties for Hg2+ capture. MOC-(SH)2 exhibits the ability of removing Hg2+ in aqueous solutions with a capacity of 335.9 mgHg2+/gMOC-(SH)2, which surpasses that of classical Zr-based metal-organic framework Uio-66-(SH)2 by 1.89 folds. The higher loading capacity of MOC-(SH)2 is probably owing to the excellent dispersion of the discrete cage, which makes the accessibility of binding sites (thiol) easier. Additionally, 99.6% of Hg2+ can be effectively captured by MOC-(SH)2 with the concentration decreased from 5 to 0.02 ppm reaching the permissible limit for Hg2+, outperforming the performance of Uio-66-(SH)2. The excellent absorption property of MOC-(SH)2 is also achieved in terms of superior selectivity under the presence of competitive metal ions. Meanwhile, the regenerated MOC-(SH)2 can be reused without apparent loss of Hg2+ loading capacity. UV-vis absorption spectra, IR spectra and emission spectra further verified the strong chemical affinity between Hg2+ and the thiol of MOC-(SH)2. The study lays the groundwork for using Zr-MOCs in the removal of toxic metal ions and environmental sustainability.
Collapse
Affiliation(s)
- Xiang-Juan Qi
- National and Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun, Jilin, People's Republic of China
| | - Min Sun
- National and Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun, Jilin, People's Republic of China
| | - Bao-Shan Hou
- National and Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun, Jilin, People's Republic of China
| | - Xiang Yu
- National and Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun, Jilin, People's Republic of China
| | - Guo-Gang Shan
- National and Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun, Jilin, People's Republic of China
| | - Chun-Yi Sun
- National and Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun, Jilin, People's Republic of China
| | - Afifa Yousaf
- National and Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun, Jilin, People's Republic of China
| | - Xin-Long Wang
- National and Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun, Jilin, People's Republic of China
| | - Zhong-Min Su
- National and Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun, Jilin, People's Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin, People's Republic of China
| |
Collapse
|
10
|
Sun Y, Li X, Zheng W. Facile synthesis of core-shell phase-transited lysozyme coated magnetic nanoparticle as a novel adsorbent for Hg(II) removal in aqueous solutions. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:124012. [PMID: 33265041 DOI: 10.1016/j.jhazmat.2020.124012] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/02/2020] [Accepted: 09/15/2020] [Indexed: 06/12/2023]
Abstract
Adsorption using nanomaterials is considered an effective method for controlling the levels of toxic heavy metal in wastewater. Herein, a novel adsorbent, core-shell phase-transited lysozyme film-coated magnetic nanoparticles (Fe3O4@SiO2@PTL) for Hg(II) ions removal from aqueous solutions was explored via facile and fast phase transformation and self-assembly process of lysozyme. The physiochemical properties of Fe3O4@SiO2@PTL were investigated using various characterization techniques. The adsorption performances such as kinetics, isotherms, selectivity, the effect of coexisting ions, and regeneration were evaluated. Fe3O4@SiO2@PTL showed an extremely high Hg(II) uptake rate and achieved more than 90% equilibrium adsorption capacity in 5 min. Hg(II) adsorption was followed by a pseudo-second-order kinetic model and fitted the Langmuir model by achieving a maximum uptake of 701.51 mg/g. Furthermore, excellent Hg(II) selectivity was obtained in a mixed solution containing various heavy metal ions, along with good chemical stability owing to the high adsorption capacity maintained after five cycles. The adsorption analyses indicated that the amino, imino, amide, hydroxyl, carboxyl, and thiol groups exposed on the surface of Fe3O4@SiO2@PTL were vital for Hg(II) removal. Consequently, this work will significantly assist in the development of an easily available, eco-friendly, and selective adsorbent material to remove heavy metal ions from wastewater.
Collapse
Affiliation(s)
- Yue Sun
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China.
| | - Xiao Li
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Weisheng Zheng
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
11
|
Luan L, Tang B, Liu Y, Wang A, Zhang B, Xu W, Niu Y. Selective capture of Hg(II) and Ag(I) from water by sulfur-functionalized polyamidoamine dendrimer/magnetic Fe3O4 hybrid materials. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117902] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Al-Yaari M, Saleh TA, Saber O. Removal of mercury from polluted water by a novel composite of polymer carbon nanofiber: kinetic, isotherm, and thermodynamic studies. RSC Adv 2020; 11:380-389. [PMID: 35423048 PMCID: PMC8690942 DOI: 10.1039/d0ra08882j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/15/2020] [Indexed: 01/10/2023] Open
Abstract
This work aims at the synthesis of a polymer of poly-trimesoyl chloride and polyethyleneimine grafted on carbon fibers (PCF) derived from palm. The obtained PCF was characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX) for its structural properties. The obtained PCF was then evaluated for the removal of mercury (Hg(ii)) from aqueous solutions using batch adsorption studies at four different temperatures (298, 308, 318, and 328 K). The experimental parameters such as initial concentration, pH, dosage, and contact time were optimized on the mercury adsorption. The percentage removal was 100% with an adsorbent dosage of 100 mg L−1 at a pH between 5 and 7 and temperature of 298 K and thus kinetic, isotherm, and thermodynamic studies were performed under these conditions. By the Langmuir adsorption isotherm, the maximum adsorption capacity of Hg(ii) by PCF was 19.2 mg g−1. In addition, results fit the pseudo-second-order model, with R2 > 0.99, to describe the adsorption kinetic mechanism. The adsorption process is spontaneous with an endothermic nature under the studied conditions. This work aims at the synthesis of a polymer of poly-trimesoyl chloride and polyethyleneimine grafted on carbon fibers (PCF) derived from palm to remove mercury (ii) from aqueous solutions using batch adsorption studies at different temperatures.![]()
Collapse
Affiliation(s)
- Mohammad Al-Yaari
- Chemical Engineering Department, King Faisal University P.O. Box 380 Al-Ahsa 31982 Saudi Arabia
| | - Tawfik A Saleh
- Department of Chemistry, King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| | - Osama Saber
- Department of Physics, College of Science, King Faisal University P.O. Box 400 Al-Ahsa 31982 Saudi Arabia
| |
Collapse
|
13
|
Bi R, Li F, Chao J, Dong H, Zhang X, Wang Z, Li B, Zhao N. Magnetic solid-phase extraction for speciation of mercury based on thiol and thioether-functionalized magnetic covalent organic frameworks nanocomposite synthesized at room temperature. J Chromatogr A 2020; 1635:461712. [PMID: 33229010 DOI: 10.1016/j.chroma.2020.461712] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 01/02/2023]
Abstract
A simple and practical magnetic solid-phase extraction high-performance liquid chromatography-inductively coupled plasma mass spectrometry (MSPE-HPLC-ICP-MS) method for extraction and determination of trace mercury species, including inorganic mercury (IHg), monomethylmercury (MeHg) and ethylmercury (EtHg), was developed. The MSPE adsorbent, urchin-like thiol and thioether-functionalized magnetic covalent organic frameworks (Fe3O4@COF-S-SH), was synthesized by coating covalent organic frameworks (COFs) on the surface of Fe3O4 nanoparticles at room temperature and then easily grafting 1,2-Ethanedithiol on the COFs. The as-prepared Fe3O4@COF-S-SH has strong adsorption capacity for IHg, MeHg and EtHg, with excellent static adsorption capacity: 571, 559 and 564 mg g-1, respectively. The parameters influencing the extraction and enrichment had been optimized, including pH, adsorption and desorption time, composition and amount of the eluent, co-existing ions and dissolved organic materials etc. Under the optimized condition, the limit of detection (3δ) of the proposed method were 0.96, 0.17 and 0.47 ng L-1 for IHg, MeHg and EtHg, and the developed method has high actual enrichment factors of 370, 395, 365-fold for IHg, MeHg and EtHg based on 200 mL samples, respectively. The high accuracy and reproducibility has been proved by the spiked recoveries (96.0‒108 %) in real water samples and determination of the certified reference material. Both the adsorption and desorption process can be completed within 5 min. The proposed method with simple operation, short pre-concentration time and high sensitivity has been successfully applied to mercury speciation at trace levels in the samples with complicated matrices, including underground water, surface water, sea water and fish samples.
Collapse
Affiliation(s)
- Ruixiang Bi
- Shandong Analysis and Tester Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Fangli Li
- Jinan Infectious Disease Hospital, Jinan 250021, China
| | - Jingbo Chao
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
| | - Houhuan Dong
- Taizhou Product Quality Supervision & Inspection Institute, Taizhou 225300, China
| | - Xiaolai Zhang
- College of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zhenhua Wang
- Shandong Analysis and Tester Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China..
| | - Bing Li
- Shandong Analysis and Tester Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.; Shandong Key Laboratory for Adhesive Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China..
| | - Ning Zhao
- Shandong Analysis and Tester Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.; Shandong Key Laboratory for Adhesive Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China..
| |
Collapse
|
14
|
Highly selective removal of Hg(II) ions from aqueous solution using thiol-modified porous polyaminal-networked polymer. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117120] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
H. Kamel A, Hassan AA, Amr AEGE, El-Shalakany HH, A. Al-Omar M. Synthesis and Characterization of CuFe 2O 4 Nanoparticles Modified with Polythiophene: Applications to Mercuric Ions Removal. NANOMATERIALS 2020; 10:nano10030586. [PMID: 32210136 PMCID: PMC7153709 DOI: 10.3390/nano10030586] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/30/2022]
Abstract
In this research, CuFe2O4 nanoparticles were synthesized by co-precipitation methods and modified by coating with thiophene for removal of Hg(II) ions from aqueous solution. CuFe2O4 nanoparticles, with and without thiophene, were characterized by x-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), energy dispersive x-ray (EDX), high-resolution transmission electron microscopy (HRTEM) and Brunauer-Emmett-Teller (BET). Contact time, adsorbent dose, solution pH, adsorption kinetics, adsorption isotherm and recyclability were studied. The maximum adsorption capacity towards Hg2+ ions was 7.53 and 208.77 mg/g for CuFe2O4 and CuFe2O4@Polythiophene composite, respectively. Modification of CuFe2O4 nanoparticles with thiophene revealed an enhanced adsorption towards Hg2+ removal more than CuFe2O4 nanoparticles. The promising adsorption performance of Hg2+ ions by CuFe2O4@Polythiophene composite generates from soft acid-soft base strong interaction between sulfur group of thiophene and Hg(II) ions. Furthermore, CuFe2O4@Polythiophene composite has both high stability and reusability due to its removal efficiency, has no significant decrease after five adsorption-desorption cycles and can be easily removed from aqueous solution by external magnetic field after adsorption experiments took place. Therefore, CuFe2O4@Polythiophene composite is applicable for removal Hg(II) ions from aqueous solution and may be suitable for removal other heavy metals.
Collapse
Affiliation(s)
- Ayman H. Kamel
- Chemistry Department, Faculty of Science, Ain Shams University, Abbasia 11566, Egypt; (A.A.H.); (H.H.E.-S.)
- Correspondence: (A.H.K.); (A.E.-G.E.A.); Tel.: +20-1000743328 (A.H.K.); Tel.: +966-565-148-750 (A.E.-G.E.A.)
| | - Amr A. Hassan
- Chemistry Department, Faculty of Science, Ain Shams University, Abbasia 11566, Egypt; (A.A.H.); (H.H.E.-S.)
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Abd El-Galil E. Amr
- Pharmaceutical Chemistry Department, Drug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
- Applied Organic Chemistry Department, National Research Center, Dokki 12622, Egypt
- Correspondence: (A.H.K.); (A.E.-G.E.A.); Tel.: +20-1000743328 (A.H.K.); Tel.: +966-565-148-750 (A.E.-G.E.A.)
| | - Hadeel H. El-Shalakany
- Chemistry Department, Faculty of Science, Ain Shams University, Abbasia 11566, Egypt; (A.A.H.); (H.H.E.-S.)
| | - Mohamed A. Al-Omar
- Pharmaceutical Chemistry Department, Drug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
16
|
Liu W, Zhang M, Liu X, Zhang H, Jiao J, Zhu H, Zhou Z, Ren Z. Preparation of Surface Ion-Imprinted Materials Based on Modified Chitosan for Highly Selective Recognition and Adsorption of Nickel Ions in Aqueous Solutions. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b04755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Wei Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Minghui Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Xueting Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Hewei Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Jian Jiao
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Huiying Zhu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Zhiyong Zhou
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Zhongqi Ren
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|
17
|
Li G, Shi Z, Li D. Efficient synthesis of boronate affinity-based chlorogenic acid-imprinted magnetic nanomaterials for the selective recognition of chlorogenic acid in fruit juices. NEW J CHEM 2020. [DOI: 10.1039/d0nj01716g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chlorogenic acid (CGA), a cis-diol-containing compound, can exhibit anti-inflammatory, antiviral, antimicrobial and anti-oxidation properties.
Collapse
Affiliation(s)
- Guanfeng Li
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University
- Luoyang
- P. R. China
| | - Zehua Shi
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University
- Luoyang
- P. R. China
| | - Daojin Li
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University
- Luoyang
- P. R. China
| |
Collapse
|
18
|
Lins SS, Virgens CF, dos Santos WNL, Estevam IHS, Brandão GC, Felix CSA, Ferreira SLC. On-line solid phase extraction system using an ion imprinted polymer based on dithizone chelating for selective preconcentration and determination of mercury(II) in natural waters by CV AFS. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104075] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Yuan Y, Meng Q, Faheem M, Yang Y, Li Z, Wang Z, Deng D, Sun F, He H, Huang Y, Sha H, Zhu G. A Molecular Coordination Template Strategy for Designing Selective Porous Aromatic Framework Materials for Uranyl Capture. ACS CENTRAL SCIENCE 2019; 5:1432-1439. [PMID: 31482126 PMCID: PMC6716130 DOI: 10.1021/acscentsci.9b00494] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Indexed: 05/22/2023]
Abstract
Uranium capture from seawater could solve increasing energy demand and enable a much needed relaxing from fossil fuels. Low concentration (∼3 ppb), competing cations (especially vanadium) and pH-dependent speciation prohibit highly efficient uranium uptake. Despite intensive research, selective extraction of uranyl ions over vanadyl units remains a tremendous challenge. Here, we adopted a molecular coordination template strategy to design a uranyl-specific bis-salicylaldoxime entity and decorated it into a highly porous aromatic framework (PAF-1) by programmable assembly. The superstructure (MISS-PAF-1) gives a strong affinity that removes 99.97% of uranium in 120 min. Notably, it binds to the uranyl ion at least 100 times more selectively than 14 different cations tested, including the vanadyl ion, in simulated seawater at ambient pH. Real seawater samples collected from the Bohai Sea achieve 5.79 mg g-1 of uranium capacity over 56 days without PAF degradation, exceeding a 4-fold higher amount than commercial adsorbents.
Collapse
Affiliation(s)
- Ye Yuan
- Key
Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun 130024, P. R. China
| | - Qinghao Meng
- Key
Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun 130024, P. R. China
| | - Muhammad Faheem
- Key
Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun 130024, P. R. China
| | - Yajie Yang
- Key
Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun 130024, P. R. China
| | - Zhangnan Li
- Key
Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun 130024, P. R. China
| | - Zeyu Wang
- Key
Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun 130024, P. R. China
| | - Dan Deng
- Key
Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun 130024, P. R. China
| | - Fuxing Sun
- State
Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College
of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Hongming He
- Key
Laboratory of Inorganic−Organic Hybrid Functional Material,
Chemistry, Ministry of Education, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Yihan Huang
- Department of Materials Science and
Engineering and Department of Chemical Engineering, University
of California, Davis, Davis, California 95616, United States
| | - Haoyan Sha
- Department of Materials Science and
Engineering and Department of Chemical Engineering, University
of California, Davis, Davis, California 95616, United States
| | - Guangshan Zhu
- Key
Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun 130024, P. R. China
- E-mail:
| |
Collapse
|
20
|
He Y, He M, Nan K, Cao R, Chen B, Hu B. Magnetic solid-phase extraction using sulfur-containing functional magnetic polymer for high-performance liquid chromatography-inductively coupled plasma-mass spectrometric speciation of mercury in environmental samples. J Chromatogr A 2019; 1595:19-27. [DOI: 10.1016/j.chroma.2019.02.050] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 01/09/2023]
|
21
|
Azadegan F, Bidhendi ME, Badiei A. Removal of Hg(II) Ions from Aqueous Environment with the Use of Modified LUS-1 as New Nanostructured Adsorbent. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH 2019; 13:557-569. [DOI: 10.1007/s41742-019-00195-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 04/09/2019] [Accepted: 04/30/2019] [Indexed: 06/19/2023]
|
22
|
Velempini T, Pillay K, Mbianda XY, Arotiba OA. Carboxymethyl cellulose thiol-imprinted polymers: Synthesis, characterization and selective Hg(II) adsorption. J Environ Sci (China) 2019; 79:280-296. [PMID: 30784452 DOI: 10.1016/j.jes.2018.11.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 11/17/2018] [Accepted: 11/29/2018] [Indexed: 05/19/2023]
Abstract
Sulfur containing ion imprinted polymers (S-IIPs) were applied for the uptake of Hg(II) from aqueous solution. Cysteamine which was used as the ligand for Hg(II) complexation, was grafted along the epichlorohydrin crosslinked carboxylated carboxymethyl cellulose polymer chain through an amide reaction. The adsorption ability of S-IIPs towards Hg(II) was investigated by kinetic and isotherm models, which, corresponding, showed that the adsorption process followed a pseudo-second-order, fitted well with the Langmuir isotherm with a maximum adsorption capacity of 80 mg/g. Moreover, thermodynamic studies indicated an endothermic and spontaneous reaction with the tendency of an enhanced randomness at the surface of the S-IIPs with temperature increases. S-IIPs indicated a high degree of selectivity towards Hg(II) in the presence of Cu2+, Zn2+, Co2+, Pb2+ and Cd2+. Furthermore, the efficiency of S-IIPs was also evaluated against real samples showing 86.78%, 91.88%, and 99.10% recovery for Hg(II) wastewater, ground water and tap water, respectively. In this study, the adsorbent was successfully regenerated for five cycles, which allows for their reuse without significant loss of initial adsorption capability.
Collapse
Affiliation(s)
- Tarisai Velempini
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, Johannesburg 2028, South Africa
| | - Kriveshini Pillay
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, Johannesburg 2028, South Africa; Centre for Nanomaterials, University of Johannesburg, Doornfontein Campus, Johannesburg 2028, South Africa; Department of Science and Technology/National Research Foundation Centre of Excellence in Strong Materials, University of the Witwatersrand, Johannesburg 2050, South Africa.
| | - Xavier Y Mbianda
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, Johannesburg 2028, South Africa; Centre for Nanomaterials, University of Johannesburg, Doornfontein Campus, Johannesburg 2028, South Africa; Department of Science and Technology/National Research Foundation Centre of Excellence in Strong Materials, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Omotayo A Arotiba
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, Johannesburg 2028, South Africa; Centre for Nanomaterials, University of Johannesburg, Doornfontein Campus, Johannesburg 2028, South Africa
| |
Collapse
|
23
|
Liang L, Li C, Hou T, Zhong Z, Chen D, Li S, Hu Z, Yang H, Ye X. Preparation of Poly (Allylthiourea-Co-Acrylic Acid) Derived Carbon Materials and Their Applications in Wastewater Treatment. Molecules 2019; 24:molecules24050957. [PMID: 30857175 PMCID: PMC6429361 DOI: 10.3390/molecules24050957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/03/2019] [Accepted: 03/05/2019] [Indexed: 01/28/2023] Open
Abstract
Functional carbon materials have been developed and applied in various sewage treatment applications in recent years. This article reports the fabrication, characterization, and application of a new kind of poly (allylthiourea-co-acrylic acid) (PAT⁻PAC) hydrogel-based carbon monolith. The results indicated that the poly acrylic acid component can endow the PAT⁻PAC hydrogel with an increased swelling ratio and enhanced thermal stability. During the carbonization process, O⁻H, N⁻H, C=N, and ⁻COO⁻ groups, etc. were found to be partly decomposed, leading to the conjugated C=C double bonds produced and the clear red shift of C=O bonds. Particularly, it was found that this shift was accelerated under higher carbonization temperature, which ultimately resulted in the complex conjugated C=C network with oxygen, nitrogen, and sulfur atoms doped in-situ. The as-obtained carbon monoliths showed good removal capacity for Ni(II) ions, organic solvents, and dyes, respectively. Further analysis indicated that the Ni(II) ion adsorption process could be well described by pseudo-second-order and Freundlich models under our experimental conditions, respectively. The adsorption capacity for Ni(II) ions and paraffin oil was as high as 557 mg/g and 1.75 g/g, respectively. More importantly, the as-obtained carbon monoliths can be recycled and reused for Ni(II) ions, acetone, and paraffin oil removal. In conclusion, the proposed PAT⁻PAC-based carbonaceous monoliths are superior adsorbents for wastewater treatment.
Collapse
Affiliation(s)
- Limei Liang
- School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China.
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Chengpeng Li
- School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China.
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Tingting Hou
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Zhiying Zhong
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Dongchu Chen
- School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China.
| | - Sidong Li
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Zhang Hu
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Haihua Yang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Xiufang Ye
- School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China.
| |
Collapse
|
24
|
Molecularly Imprinted Polymers for Removal of Metal Ions: An Alternative Treatment Method. Biomimetics (Basel) 2018; 3:biomimetics3040038. [PMID: 31105259 PMCID: PMC6352701 DOI: 10.3390/biomimetics3040038] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/24/2018] [Accepted: 11/20/2018] [Indexed: 02/07/2023] Open
Abstract
Aquatic and terrestrial environment and human health have been seriously threatened with the release of metal-containing wastewater by the rapid growth in the industry. There are various methods which have been used for removal of ions from the environment, such as membrane filtration, ion exchange, membrane assisted liquid extraction and adsorption. As a sort of special innovation, a polymerization technique, namely molecular imprinting is carried out by specific identification for the target by mixing it with a functional monomer. After the polymerization occurred, the target ion can be removed with suitable methods. At the end of this process, specific cavities, namely binding sites, are able to recognize target ions selectively. However, the selectivity of the molecularly imprinted polymer is variable not only because of the type of ligand but also charge, size coordination number, and geometry of the target ion. In this review, metal ion-imprinted polymeric materials that can be applied for metal ion removal from different sources are discussed and exemplified briefly with different metal ions.
Collapse
|
25
|
Efficient vitamin B12-imprinted boronate affinity magnetic nanoparticles for the specific capture of vitamin B12. Anal Biochem 2018; 561-562:18-26. [DOI: 10.1016/j.ab.2018.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023]
|
26
|
Li D, Tu T, Yang M, Xu C. Efficient preparation of surface imprinted magnetic nanoparticles using poly (2-anilinoethanol) as imprinting coating for the selective recognition of glycoprotein. Talanta 2018; 184:316-324. [DOI: 10.1016/j.talanta.2018.03.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 02/28/2018] [Accepted: 03/07/2018] [Indexed: 10/17/2022]
|
27
|
Alizadeh T, Hamidi N, Ganjali MR, Rafiei F. Determination of subnanomolar levels of mercury (II) by using a graphite paste electrode modified with MWCNTs and Hg(II)-imprinted polymer nanoparticles. Mikrochim Acta 2017; 185:16. [PMID: 29594531 DOI: 10.1007/s00604-017-2534-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/09/2017] [Indexed: 11/30/2022]
Abstract
Mercury ion-imprinted polymer nanoparticles (Hg-IP-NPs) were synthesized via precipitation polymerization by using itaconic acid as a functional monomer. A carbon paste electrode was impregnated with the synthesized Hg-IP-NPs and MWCNTs to obtain a highly sensitive and selective electrode for determination of Hg(II). Mercury ion is first accumulated on the electrode surface via an open circuit procedure. After reduction of Hg(II) ions to its metallic form at a negative pre-potential, square wave anodic stripping voltammetry was applied to generate the electrochemical signal. The high affinity of the Hg-IP-NPs for Hg(II) was substantiated by comparing of the signals of electrodes with imprinted and non-imprinted polymer. The beneficial effect of MWCNTs on the voltammetric signal is also demonstrated. Under the optimized conditions and at a typical working potential of +0.05 V (vs. Ag/AgCl), the electrode has a linear response in the 0.1-20 nmol L-1 Hg(II) concentration range and a 29 pM detection limit. The electrochemical sensitivity is as high as 1441 A·M-1·cm-2 which is among the best values known. The electrode was applied to the determination of Hg(II) in water samples. Graphical abstract Schematic representation of the sensor electrode modified with mercury-imprinted polymer nanoparticles, and the recognition and voltammetric determination steps.
Collapse
Affiliation(s)
- Taher Alizadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran.
| | - Negin Hamidi
- Department of Analytical Chemistry, Faculty of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Mohamad Reza Ganjali
- Department of Analytical Chemistry, Faculty of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran.,Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Faride Rafiei
- Department of Analytical Chemistry, Faculty of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| |
Collapse
|
28
|
Tao HC, Gu YH, Liu W, Huang SB, Cheng L, Zhang LJ, Zhu LL, Wang Y. Preparation of Palladium(II) Ion-Imprinted Polymeric Nanospheres and Its Removal of Palladium(II) from Aqueous Solution. NANOSCALE RESEARCH LETTERS 2017; 12:583. [PMID: 29110246 PMCID: PMC5673866 DOI: 10.1186/s11671-017-2349-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 10/20/2017] [Indexed: 06/01/2023]
Abstract
Three kinds of functional monomers, 4-vinylpridine(4-VP), 2-(allylthio)nicotinic acid(ANA), and 2-Acetamidoacrylic acid(AAA), were used to synthetize palladium(II) ion-imprinted polymeric nanospheres (Pd(II) IIPs) via precipitation-polymerization method in order to study the effects of different functional monomers on the adsorption properties of ion-imprinted materials. The results of UV spectra in order to study the interaction between template ion PdCl42- and functional monomers showed that there were great differences in structure after the template reacted with three functional monomers, 4-VP and ANA caused a large structural change, while AAA basically did not change. Further results on the adsorption performance of Pd(II) IIPs on Pd(II) confirmed 4-VP was the most promising candidate for the synthesis of Pd(II) IIPs with an adsorption capacity of 5.042 mg/g as compared with ANA and AAA. The influence of operating parameters on Pd(II) IIP's performance on Pd(II) adsorption was investigated. There was an increase in the adsorption capacity of Pd(II) IIPs at higher pH, temperature, and initial concentration of Pd(II). The results of multi-metal competitive adsorption experiments showed that Pd(II) IIPs had selectivity for Pd(II). An adsorption equilibrium could be reached at 180 min. Kinetic analysis showed that the adsorption test data fitted best to the pseudo-second order kinetic model, and the theoretical equilibrium adsorption capacity was about 5.085 mg/g. The adsorption isotherms of Pd(II) by Pd(II) IIPs agreed well with the Freundlich equation, suggesting a favorable adsorption reaction under optimal conditions. These results showed that Pd(II) IIPs have potential application in the removal of Pd(II) from aqueous solutions and may provide some information for the selection of functional monomers in the preparation of Pd(II) IIPs.
Collapse
Affiliation(s)
- Hu-Chun Tao
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055 China
| | - Yi-Han Gu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055 China
| | - Wei Liu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055 China
- Guangdong Provincial Key Laboratory of Nano-Micro Material Research, School of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055 China
| | - Shuai-Bin Huang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055 China
| | - Ling Cheng
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055 China
| | - Li-Juan Zhang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055 China
| | - Li-Li Zhu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055 China
| | - Yong Wang
- Guangdong Provincial Key Laboratory of Nano-Micro Material Research, School of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055 China
| |
Collapse
|