1
|
Huang W, Hua MZ, Li S, Chen K, Lu X, Wu D. Application of atomic force microscopy in the characterization of fruits and vegetables and associated substances toward improvement in quality, preservation, and processing: nanoscale structure and mechanics perspectives. Crit Rev Food Sci Nutr 2024; 64:11672-11700. [PMID: 37585698 DOI: 10.1080/10408398.2023.2242944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Fruits and vegetables are essential horticultural crops for humans. The quality of fruits and vegetables is critical in determining their nutritional value and edibility, which are decisive to their commercial value. Besides, it is also important to understand the changes in key substances involved in the preservation and processing of fruits and vegetables. Atomic force microscopy (AFM), a powerful technique for investigating biological surfaces, has been widely used to characterize the quality of fruits and vegetables and the substances involved in their preservation and processing from the perspective of nanoscale structure and mechanics. This review summarizes the applications of AFM to investigate the texture, appearance, and nutrients of fruits and vegetables based on structural imaging and force measurements. Additionally, the review highlights the application of AFM in characterizing the morphological and mechanical properties of nanomaterials involved in preserving and processing fruits and vegetables, including films and coatings for preservation, bioactive compounds for processing purposes, nanofiltration membrane for concentration, and nanoencapsulation for delivery of bioactive compounds. Furthermore, the strengths and weaknesses of AFM for characterizing the quality of fruits and vegetables and the substances involved in their preservation and processing are examined, followed by a discussion on the prospects of AFM in this field.
Collapse
Affiliation(s)
- Weinan Huang
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/Key Laboratory of Ministry of Agriculture and Rural Affairs of Biology and Genetic Improvement of Horticultural Crops (Growth and Development), Zhejiang University, Hangzhou, P. R. China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, P. R. China
| | - Marti Z Hua
- Department of Food Science and Agricultural Chemistry, McGill University, Quebec, Canada
| | - Shenmiao Li
- Department of Food Science and Agricultural Chemistry, McGill University, Quebec, Canada
| | - Kunsong Chen
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/Key Laboratory of Ministry of Agriculture and Rural Affairs of Biology and Genetic Improvement of Horticultural Crops (Growth and Development), Zhejiang University, Hangzhou, P. R. China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, P. R. China
| | - Xiaonan Lu
- Department of Food Science and Agricultural Chemistry, McGill University, Quebec, Canada
| | - Di Wu
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/Key Laboratory of Ministry of Agriculture and Rural Affairs of Biology and Genetic Improvement of Horticultural Crops (Growth and Development), Zhejiang University, Hangzhou, P. R. China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, P. R. China
| |
Collapse
|
2
|
Usman M, Cheng S. Recent Trends and Advancements in Green Synthesis of Biomass-Derived Carbon Dots. ENG 2024; 5:2223-2263. [DOI: 10.3390/eng5030116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The push for sustainability in nanomaterials has catalyzed significant advancements in the green synthesis of carbon dots (CDs) from renewable resources. This review uniquely explores recent innovations, including the integration of hybrid techniques, such as micro-wave-assisted and ultrasonic-assisted hydrothermal methods, as well as photocatalytic synthesis. These combined approaches represent a breakthrough, offering rapid production, precise control over CD properties, and enhanced environmental sustainability. In addition, the review emphasizes the growing use of green solvents and bio-based reducing agents, which further reduce the environmental footprint of CD production. This work also addresses key challenges, such as consistently controlling CD properties—size, shape, and surface characteristics—across different synthesis processes. Advanced characterization techniques and process optimizations are highlighted as essential strategies to overcome these hurdles. Furthermore, this review pioneers the integration of circular economy principles into CD production, proposing novel strategies for sustainable material use and waste reduction. By exploring innovative precursor materials, refining doping and surface engineering techniques, and advocating for comprehensive life cycle assessments, this work sets a new direction for future research. The insights provided here represent a significant contribution to the field, paving the way for more sustainable, efficient, and scalable CD production with diverse applications in optoelectronics, sensing, and environmental remediation.
Collapse
Affiliation(s)
- Muhammad Usman
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Shuo Cheng
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
3
|
Moraille P, Abdali Z, Ramkaran M, Polcari D, Patience GS, Dorval Courchesne N, Badia A. Experimental Methods in Chemical Engineering: Atomic force microscopy—
AFM. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Zahra Abdali
- Chemical Engineering, McGill University Québec Canada
| | | | | | | | | | | |
Collapse
|
4
|
Sarkar A. Biosensing, Characterization of Biosensors, and Improved Drug Delivery Approaches Using Atomic Force Microscopy: A Review. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2021.798928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Since its invention, atomic force microscopy (AFM) has come forth as a powerful member of the “scanning probe microscopy” (SPM) family and an unparallel platform for high-resolution imaging and characterization for inorganic and organic samples, especially biomolecules, biosensors, proteins, DNA, and live cells. AFM characterizes any sample by measuring interaction force between the AFM cantilever tip (the probe) and the sample surface, and it is advantageous over other SPM and electron micron microscopy techniques as it can visualize and characterize samples in liquid, ambient air, and vacuum. Therefore, it permits visualization of three-dimensional surface profiles of biological specimens in the near-physiological environment without sacrificing their native structures and functions and without using laborious sample preparation protocols such as freeze-drying, staining, metal coating, staining, or labeling. Biosensors are devices comprising a biological or biologically extracted material (assimilated in a physicochemical transducer) that are utilized to yield electronic signal proportional to the specific analyte concentration. These devices utilize particular biochemical reactions moderated by isolated tissues, enzymes, organelles, and immune system for detecting chemical compounds via thermal, optical, or electrical signals. Other than performing high-resolution imaging and nanomechanical characterization (e.g., determining Young’s modulus, adhesion, and deformation) of biosensors, AFM cantilever (with a ligand functionalized tip) can be transformed into a biosensor (microcantilever-based biosensors) to probe interactions with a particular receptors of choice on live cells at a single-molecule level (using AFM-based single-molecule force spectroscopy techniques) and determine interaction forces and binding kinetics of ligand receptor interactions. Targeted drug delivery systems or vehicles composed of nanoparticles are crucial in novel therapeutics. These systems leverage the idea of targeted delivery of the drug to the desired locations to reduce side effects. AFM is becoming an extremely useful tool in figuring out the topographical and nanomechanical properties of these nanoparticles and other drug delivery carriers. AFM also helps determine binding probabilities and interaction forces of these drug delivery carriers with the targeted receptors and choose the better agent for drug delivery vehicle by introducing competitive binding. In this review, we summarize contributions made by us and other researchers so far that showcase AFM as biosensors, to characterize other sensors, to improve drug delivery approaches, and to discuss future possibilities.
Collapse
|
5
|
Mansuriya BD, Altintas Z. Carbon Dots: Classification, Properties, Synthesis, Characterization, and Applications in Health Care-An Updated Review (2018-2021). NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2525. [PMID: 34684966 PMCID: PMC8541690 DOI: 10.3390/nano11102525] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
Carbon dots (CDs) are usually smaller than 10 nm in size, and are meticulously formulated and recently introduced nanomaterials, among the other types of carbon-based nanomaterials. They have gained significant attention and an incredible interest in the field of nanotechnology and biomedical science, which is merely due to their considerable and exclusive attributes; including their enhanced electron transferability, photobleaching and photo-blinking effects, high photoluminescent quantum yield, fluorescence property, resistance to photo-decomposition, increased electrocatalytic activity, good aqueous solubility, excellent biocompatibility, long-term chemical stability, cost-effectiveness, negligible toxicity, and acquaintance of large effective surface area-to-volume ratio. CDs can be readily functionalized owing to the abundant functional groups on their surfaces, and they also exhibit remarkable sensing features such as specific, selective, and multiplex detectability. In addition, the physico-chemical characteristics of CDs can be easily tunable based on their intended usage or application. In this comprehensive review article, we mainly discuss the classification of CDs, their ideal properties, their general synthesis approaches, and primary characterization techniques. More importantly, we update the readers about the recent trends of CDs in health care applications (viz., their substantial and prominent role in the area of electrochemical and optical biosensing, bioimaging, drug/gene delivery, as well as in photodynamic/photothermal therapy).
Collapse
Affiliation(s)
| | - Zeynep Altintas
- Institute of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
| |
Collapse
|
6
|
Nichols ZE, Geddes CD. Sample Preparation and Diagnostic Methods for a Variety of Settings: A Comprehensive Review. Molecules 2021; 26:5666. [PMID: 34577137 PMCID: PMC8470389 DOI: 10.3390/molecules26185666] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
Sample preparation is an essential step for nearly every type of biochemical analysis in use today. Among the most important of these analyses is the diagnosis of diseases, since their treatment may rely greatly on time and, in the case of infectious diseases, containing their spread within a population to prevent outbreaks. To address this, many different methods have been developed for use in the wide variety of settings for which they are needed. In this work, we have reviewed the literature and report on a broad range of methods that have been developed in recent years and their applications to point-of-care (POC), high-throughput screening, and low-resource and traditional clinical settings for diagnosis, including some of those that were developed in response to the coronavirus disease 2019 (COVID-19) pandemic. In addition to covering alternative approaches and improvements to traditional sample preparation techniques such as extractions and separations, techniques that have been developed with focuses on integration with smart devices, laboratory automation, and biosensors are also discussed.
Collapse
Affiliation(s)
- Zach E. Nichols
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Drive, Baltimore, MD 21250, USA;
- Institute of Fluorescence, University of Maryland, Baltimore County, 701 E Pratt Street, Baltimore, MD 21270, USA
| | - Chris D. Geddes
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Drive, Baltimore, MD 21250, USA;
- Institute of Fluorescence, University of Maryland, Baltimore County, 701 E Pratt Street, Baltimore, MD 21270, USA
| |
Collapse
|
7
|
Baylis B, Shelton E, Grossutti M, Dutcher JR. Force Spectroscopy Mapping of the Effect of Hydration on the Stiffness and Deformability of Phytoglycogen Nanoparticles. Biomacromolecules 2021; 22:2985-2995. [PMID: 34085822 DOI: 10.1021/acs.biomac.1c00399] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phytoglycogen is a naturally occurring glucose polymer that is produced by sweet corn in the form of compact nanoparticles with a dendritic or tree-like architecture. The soft and porous nature of the nanoparticles, combined with their biodegradability and lack of toxicity, makes them ideal for a broad range of applications in personal care, nutrition, and biomedicine. To fully exploit these applications, it is necessary to understand the complex properties of the soft, hydrated nanoparticles in detail. In the present study, we have used atomic force microscopy (AFM) force spectroscopy to collect high-resolution force-distance maps of a large number of individual phytoglycogen nanoparticles, providing unique insights into the morphology and mechanical stiffness of the nanoparticles at the single-particle level. Our measurements performed in water on nanoparticles covalently bonded to gold surfaces revealed an inner branched structure and high deformability of the nanoparticles at modest values of the applied force. These measurements also allowed us to determine the spatial distribution of Young's modulus values within individual nanoparticles. Drying of the nanoparticles resulted in a dramatic increase in Young's modulus, quantifying the effect of hydration on their mechanical stiffness. We obtained excellent agreement between AFM and osmotic pressure measurements of the mechanical properties of hydrated phytoglycogen nanoparticles; the ratio of the average Young's modulus measured using AFM to the bulk modulus measured using osmotic pressure was in close agreement with that expected for a material with Poisson's ratio ν = 0. The soft, deformable nature of phytoglycogen nanoparticles revealed by our measurements provides new insights at the single-nanoparticle level and suggests their suitability for biomedical applications such as transdermal and targeted drug delivery.
Collapse
Affiliation(s)
- Benjamin Baylis
- Department of Physics, University of Guelph, Guelph N1G 2W1, Ontario, Canada
| | - Erin Shelton
- Department of Physics, University of Guelph, Guelph N1G 2W1, Ontario, Canada
| | - Michael Grossutti
- Department of Physics, University of Guelph, Guelph N1G 2W1, Ontario, Canada
| | - John R Dutcher
- Department of Physics, University of Guelph, Guelph N1G 2W1, Ontario, Canada
| |
Collapse
|
8
|
Grzeszczuk Z, Rosillo A, Owens Ó, Bhattacharjee S. Atomic Force Microscopy (AFM) As a Surface Mapping Tool in Microorganisms Resistant Toward Antimicrobials: A Mini-Review. Front Pharmacol 2020; 11:517165. [PMID: 33123004 PMCID: PMC7567160 DOI: 10.3389/fphar.2020.517165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 09/14/2020] [Indexed: 12/28/2022] Open
Abstract
The worldwide emergence of antimicrobial resistance (AMR) in pathogenic microorganisms, including bacteria and viruses due to a plethora of reasons, such as genetic mutation and indiscriminate use of antimicrobials, is a major challenge faced by the healthcare sector today. One of the issues at hand is to effectively screen and isolate resistant strains from sensitive ones. Utilizing the distinct nanomechanical properties (e.g., elasticity, intracellular turgor pressure, and Young’s modulus) of microbes can be an intriguing way to achieve this; while atomic force microscopy (AFM), with or without modification of the tips, presents an effective way to investigate such biophysical properties of microbial surfaces or an entire microbial cell. Additionally, advanced AFM instruments, apart from being compatible with aqueous environments—as often is the case for biological samples—can measure the adhesive forces acting between AFM tips/cantilevers (conjugated to bacterium/virion, substrates, and molecules) and target cells/surfaces to develop informative force-distance curves. Moreover, such force spectroscopies provide an idea of the nature of intercellular interactions (e.g., receptor-ligand) or propensity of microbes to aggregate into densely packed layers, that is, the formation of biofilms—a property of resistant strains (e.g., Staphylococcus aureus, Pseudomonas aeruginosa). This mini-review will revisit the use of single-cell force spectroscopy (SCFS) and single-molecule force spectroscopy (SMFS) that are emerging as powerful additions to the arsenal of researchers in the struggle against resistant microbes, identify their strengths and weakness and, finally, prioritize some future directions for research.
Collapse
Affiliation(s)
| | | | - Óisín Owens
- School of Physics, Technological University Dublin, Dublin, Ireland
| | | |
Collapse
|
9
|
Influence of Saline Buffers over the Stability of High-Annealed Gold Nanoparticles Formed on Coverslips for Biological and Chemosensing Applications. BIOENGINEERING (BASEL, SWITZERLAND) 2020; 7:bioengineering7030068. [PMID: 32635222 PMCID: PMC7552610 DOI: 10.3390/bioengineering7030068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 11/17/2022]
Abstract
Herein, coverslips were used as solid supports for the synthesis of gold nanoparticles (AuNPs) in three steps: (i) detergent cleaning, (ii) evaporation of 4 nm gold film and (iii) exposure at high annealing temperature (550 °C) for 3 h. Such active gold nanostructured supports were investigated for their stability performances in aqueous saline buffers for new assessments of chemical sensing. Two model buffers, namely saline-sodium phosphate-EDTA buffer (SSPE) and phosphate buffer saline (PBS), that are often used in the construction of (bio)sensors, are selected for the optical and microscopic investigations of their influence over the stability of annealed AuNPs on coverslips when using a dropping procedure under dry and wet media working conditions. A study over five weeks monitoring the evolution of the localized surface plasmon resonance (LSPR) chemosensing of 1,2-bis-(4-pyridyl)-ethene (BPE) is discussed. It is concluded that the optimal sensing configuration is based on annealed AuNPs exposed to saline buffers under wet media conditions (overnight at 4 °C) and functionalized with BPE concentrations (10-3-10-11 M) with the highest LSPR spectra after two weeks.
Collapse
|
10
|
Shibata T, Furukawa H, Ito Y, Nagahama M, Hayashi T, Ishii-Teshima M, Nagai M. Photocatalytic Nanofabrication and Intracellular Raman Imaging of Living Cells with Functionalized AFM Probes. MICROMACHINES 2020; 11:E495. [PMID: 32414191 PMCID: PMC7281467 DOI: 10.3390/mi11050495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022]
Abstract
Atomic force microscopy (AFM) is an effective platform for in vitro manipulation and analysis of living cells in medical and biological sciences. To introduce additional new features and functionalities into a conventional AFM system, we investigated the photocatalytic nanofabrication and intracellular Raman imaging of living cells by employing functionalized AFM probes. Herein, we investigated the effect of indentation speed on the cell membrane perforation of living HeLa cells based on highly localized photochemical oxidation with a catalytic titanium dioxide (TiO2)-functionalized AFM probe. On the basis of force-distance curves obtained during the indentation process, the probability of cell membrane perforation, penetration force, and cell viability was determined quantitatively. Moreover, we explored the possibility of intracellular tip-enhanced Raman spectroscopy (TERS) imaging of molecular dynamics in living cells via an AFM probe functionalized with silver nanoparticles in a homemade Raman system integrated with an inverted microscope. We successfully demonstrated that the intracellular TERS imaging has the potential to visualize distinctly different features in Raman spectra between the nucleus and the cytoplasm of a single living cell and to analyze the dynamic behavior of biomolecules inside a living cell.
Collapse
Affiliation(s)
- Takayuki Shibata
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan; (H.F.); (Y.I.); (M.N.); (M.I.-T.); (M.N.)
| | - Hiromi Furukawa
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan; (H.F.); (Y.I.); (M.N.); (M.I.-T.); (M.N.)
| | - Yasuharu Ito
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan; (H.F.); (Y.I.); (M.N.); (M.I.-T.); (M.N.)
| | - Masahiro Nagahama
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan; (H.F.); (Y.I.); (M.N.); (M.I.-T.); (M.N.)
| | - Terutake Hayashi
- Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, Japan;
| | - Miho Ishii-Teshima
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan; (H.F.); (Y.I.); (M.N.); (M.I.-T.); (M.N.)
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan; (H.F.); (Y.I.); (M.N.); (M.I.-T.); (M.N.)
| |
Collapse
|
11
|
Interaction between antifreeze protein and ice crystal facet evaluated by ice-channel electrophoretic measurements of threshold electric field strength. Anal Chim Acta 2020; 1110:122-130. [DOI: 10.1016/j.aca.2020.03.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 11/20/2022]
|
12
|
Liang X, Nakajima K. Investigating the Dynamic Viscoelasticity of Single Polymer Chains using Atomic Force Microscopy. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/polb.24908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xiaobin Liang
- Department of Chemical Science and EngineeringSchool of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama 2‐12‐1, Meguro‐ku Tokyo 152‐8552 Japan
| | - Ken Nakajima
- Department of Chemical Science and EngineeringSchool of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama 2‐12‐1, Meguro‐ku Tokyo 152‐8552 Japan
| |
Collapse
|
13
|
Michaelis M, Fayyaz A, Parambath M, Koeppen S, Ciacchi LC, Hanley QS, Perry CC. Platform for Screening Abiotic/Biotic Interactions Using Indicator Displacement Assays. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14230-14237. [PMID: 31609123 DOI: 10.1021/acs.langmuir.9b03085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This paper describes novel adaptations of optically sectioned planar format assays to screen compounds for their affinities to materials surfaces. The novel platform, which we name optically sectioned indicator displacement assays (O-IDA), makes use of displaceable dyes in a format adaptable to high-throughput multiwell plate technologies. We describe two approaches: the first being where the dye exhibits fluorescence in both the surface bound and unbound state and the second, where fluorescence is lost upon displacement of the dye from the surface. Half maximal inhibitory concentration (IC50), binding affinity (Ki), and binding free energy (ΔGads) values can be extracted from the raw data. Representative biomolecules were tested for interactions with silica in an aqueous environment and ZnO(0001)-Zn and (10-10) facets in a nonaqueous environment. We provide the first experimental values for both the binding of small molecules to silica and the facet-dependent ZnO binding affinity of key amino acids associated with ZnO-specific oligopeptides. The specific data will be invaluable to those studying interactions at interfaces both experimentally and computationally. O-IDA provides a general framework for the high-throughput screening of molecule binding to materials surfaces, which has important applications in drug delivery, (bio-) catalysis, biosensing, and biomaterial engineering.
Collapse
Affiliation(s)
- Monika Michaelis
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Material Science (BCCMS), Center for Environmental Research and Sustainable Technology (UFT) and MAPEX Centre for Materials and Processes , University of Bremen , D-28359 Bremen , Germany
| | | | | | - Susan Koeppen
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Material Science (BCCMS), Center for Environmental Research and Sustainable Technology (UFT) and MAPEX Centre for Materials and Processes , University of Bremen , D-28359 Bremen , Germany
| | - Lucio Colombi Ciacchi
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Material Science (BCCMS), Center for Environmental Research and Sustainable Technology (UFT) and MAPEX Centre for Materials and Processes , University of Bremen , D-28359 Bremen , Germany
| | | | | |
Collapse
|
14
|
Moura T, Oliveira L, Rocha M. Effects of caffeine on the structure and conformation of DNA: A force spectroscopy study. Int J Biol Macromol 2019; 130:1018-1024. [DOI: 10.1016/j.ijbiomac.2019.02.125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 10/27/2022]
|
15
|
Alexander Reese R, Xu B. Single-molecule detection of proteins and toxins in food using atomic force microscopy. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Yamamoto K, Klossek A, Fuchs K, Watts B, Raabe J, Flesch R, Rancan F, Pischon H, Radbruch M, Gruber AD, Mundhenk L, Vogt A, Blume-Peytavi U, Schrade P, Bachmann S, Gurny R, Rühl E. Soft X-ray microscopy for probing of topical tacrolimus delivery via micelles. Eur J Pharm Biopharm 2019; 139:68-75. [PMID: 30849430 DOI: 10.1016/j.ejpb.2019.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/04/2019] [Accepted: 03/04/2019] [Indexed: 12/27/2022]
Abstract
The penetration of topically applied tacrolimus formulated in micelles into murine skin is reported, measured by X-ray microscopy. Tacrolimus and micelles are probed for the first time by this high spatial resolution technique by element-selective excitation in the C 1s- and O 1s-regimes. This method allows selective detection of the distribution and penetration depth of drugs and carrier molecules into biologic tissues. It is observed that small, but distinct quantities of the drug and micelles, acting as a drug carrier, penetrate the stratum corneum. A comparison is made with the paraffin-based commercial tacrolimus ointment Protopic®, where local drug concentrations show to be low. A slight increase in local drug concentration in the stratum corneum is observed, if tacrolimus is formulated in micelles, as compared to Protopic®. This underscores the importance of the drug formulations for effective drug delivery. Time-resolved penetration shows presence of drug in the stratum corneum 100 min after formulation application, with penetration to deeper skin layers at 1000 min. High resolution micrographs give indications for a penetration pathway along the lipid membranes between corneocytes, but also suggest that the compound may penetrate corneocytes.
Collapse
Affiliation(s)
- K Yamamoto
- Physikalische Chemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - A Klossek
- Physikalische Chemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - K Fuchs
- Apidel SA, c/o The Business Harbour, 29 Quai du Mont Blanc, 1201 Geneva, Switzerland
| | - B Watts
- Swiss Light Source, Paul Scherrer Institut, Forschungsstraße 111, 5232 Villigen PSI, Switzerland
| | - J Raabe
- Swiss Light Source, Paul Scherrer Institut, Forschungsstraße 111, 5232 Villigen PSI, Switzerland
| | - R Flesch
- Physikalische Chemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - F Rancan
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - H Pischon
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Str. 15, 14163 Berlin, Germany
| | - M Radbruch
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Str. 15, 14163 Berlin, Germany
| | - A D Gruber
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Str. 15, 14163 Berlin, Germany
| | - L Mundhenk
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Str. 15, 14163 Berlin, Germany
| | - A Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - U Blume-Peytavi
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - P Schrade
- Abteilung für Elektronenmikroskopie at CVK, 13353 Berlin, Germany
| | - S Bachmann
- Abteilung für Elektronenmikroskopie at CVK, 13353 Berlin, Germany
| | - R Gurny
- Apidel SA, c/o The Business Harbour, 29 Quai du Mont Blanc, 1201 Geneva, Switzerland
| | - E Rühl
- Physikalische Chemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
17
|
Wang L, Wu A, Wei G. Graphene-based aptasensors: from molecule-interface interactions to sensor design and biomedical diagnostics. Analyst 2019. [PMID: 29528071 DOI: 10.1039/c8an00081f] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Graphene-based nanomaterials have been widely utilized to fabricate various biosensors for environmental monitoring, food safety, and biomedical diagnostics. The combination of aptamers with graphene for creating biofunctional nanocomposites improved the sensitivity and selectivity of fabricated biosensors due to the unique molecular recognition and biocompatibility of aptamers. In this review, we highlight recent advances in the design, fabrication, and biomedical sensing application of graphene-based aptasensors within the last five years (2013-current). The typical studies on the biomedical fluorescence, colorimetric, electrochemical, electrochemiluminescence, photoelectrochemical, electronic, and force-based sensing of DNA, proteins, enzymes, small molecules, ions, and others are demonstrated and discussed in detail. More attention is paid to a few key points such as the conjugation of aptamers with graphene materials, the fabrication strategies of sensor architectures, and the importance of aptamers on improving the sensing performances. It is expected that this work will provide preliminary and useful guidance for readers to understand the fabrication of graphene-based biosensors and the corresponding sensing mechanisms in one way, and in another way will be helpful to develop novel high performance aptasensors for biological analysis and detection.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, P. R. China.
| | | | | |
Collapse
|
18
|
Single-molecule detection of proteins and toxins in food using atomic force microscopy. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Limo MJ, Sola-Rabada A, Boix E, Thota V, Westcott ZC, Puddu V, Perry CC. Interactions between Metal Oxides and Biomolecules: from Fundamental Understanding to Applications. Chem Rev 2018; 118:11118-11193. [PMID: 30362737 DOI: 10.1021/acs.chemrev.7b00660] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metallo-oxide (MO)-based bioinorganic nanocomposites promise unique structures, physicochemical properties, and novel biochemical functionalities, and within the past decade, investment in research on materials such as ZnO, TiO2, SiO2, and GeO2 has significantly increased. Besides traditional approaches, the synthesis, shaping, structural patterning, and postprocessing chemical functionalization of the materials surface is inspired by strategies which mimic processes in nature. Would such materials deliver new technologies? Answering this question requires the merging of historical knowledge and current research from different fields of science. Practically, we need an effective defragmentation of the research area. From our perspective, the superficial accounting of material properties, chemistry of the surfaces, and the behavior of biomolecules next to such surfaces is a problem. This is particularly of concern when we wish to bridge between technologies in vitro and biotechnologies in vivo. Further, besides the potential practical technological efficiency and advantages such materials might exhibit, we have to consider the wider long-term implications of material stability and toxicity. In this contribution, we present a critical review of recent advances in the chemistry and engineering of MO-based biocomposites, highlighting the role of interactions at the interface and the techniques by which these can be studied. At the end of the article, we outline the challenges which hamper progress in research and extrapolate to developing and promising directions including additive manufacturing and synthetic biology that could benefit from molecular level understanding of interactions occurring between inanimate (abiotic) and living (biotic) materials.
Collapse
Affiliation(s)
- Marion J Limo
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom.,Interface and Surface Analysis Centre, School of Pharmacy , University of Nottingham , University Park, Nottingham NG7 2RD , United Kingdom
| | - Anna Sola-Rabada
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom
| | - Estefania Boix
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom.,Department of Bioproducts and Biosystems , Aalto University , P.O. Box 16100, FI-00076 Aalto , Finland
| | - Veeranjaneyulu Thota
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom
| | - Zayd C Westcott
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom
| | - Valeria Puddu
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom
| | - Carole C Perry
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom
| |
Collapse
|
20
|
Li Q, Wei G. Label-free determination of adenosine and mercury ions according to force mapping-based force-to-color variety. Analyst 2018; 143:4400-4407. [PMID: 30137104 DOI: 10.1039/c8an01043a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Single molecule force spectroscopy based on atomic force microscopy (AFM) is a simple and sensitive technique to probe molecular recognition forces. Here we demonstrate that visual color-intensity analysis of single molecule force mapping (SMFM) can be employed as a quick and convenient force-to-color detection towards the presence of various dissolved analytes in very low concentrations. To achieve this aim, analyte-specific single-strand DNA aptamers are first bound to an AFM tip. The measured forces between the functionalized tip and a suitable substrate, namely either a clean surface or a surface functionalized with the complementary DNA oligomer, change when a critical concentration of the analyte is reached. The current SMFM-based visual biosensing shows improved developments like higher sensitivity, lower detection limits, quicker detection, and much simple readout. The color of the obtained force maps reveals the force intensity, which gives a highly selective and immediate visual force-to-color response towards the presence of adenosine (above ∼0.1 nM) and Hg2+ (∼10 pM). The strategies shown in this work will be helpful to design and fabricate aptasensors for biomedical analysis as well as to understand the molecular interactions between DNA hybridization.
Collapse
Affiliation(s)
- Qing Li
- Faculty of Production Engineering and Center for Environmental Research and Sustainable Technology (UFT) University of Bremen, D-28359 Bremen, Germany.
| | - Gang Wei
- Faculty of Production Engineering and Center for Environmental Research and Sustainable Technology (UFT) University of Bremen, D-28359 Bremen, Germany.
| |
Collapse
|
21
|
Hernando-Pérez M, Setayeshgar S, Hou Y, Temam R, Brun YV, Dragnea B, Berne C. Layered Structure and Complex Mechanochemistry Underlie Strength and Versatility in a Bacterial Adhesive. mBio 2018; 9:e02359-17. [PMID: 29437925 PMCID: PMC5801468 DOI: 10.1128/mbio.02359-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/08/2018] [Indexed: 12/11/2022] Open
Abstract
While designing synthetic adhesives that perform in aqueous environments has proven challenging, microorganisms commonly produce bioadhesives that efficiently attach to a variety of substrates, including wet surfaces. The aquatic bacterium Caulobacter crescentus uses a discrete polysaccharide complex, the holdfast, to strongly attach to surfaces and resist flow. The holdfast is extremely versatile and has impressive adhesive strength. Here, we used atomic force microscopy in conjunction with superresolution microscopy and enzymatic assays to unravel the complex structure of the holdfast and to characterize its chemical constituents and their role in adhesion. Our data support a model whereby the holdfast is a heterogeneous material organized as two layers: a stiffer nanoscopic core layer wrapped into a sparse, far-reaching, flexible brush layer. Moreover, we found that the elastic response of the holdfast evolves after surface contact from initially heterogeneous to more homogeneous. From a composition point of view, besides N-acetyl-d-glucosamine (NAG), the only component that had been identified to date, our data show that the holdfast contains peptides and DNA. We hypothesize that, while polypeptides are the most important components for adhesive force, the presence of DNA mainly impacts the brush layer and the strength of initial adhesion, with NAG playing a primarily structural role within the core. The unanticipated complexity of both the structure and composition of the holdfast likely underlies its versatility as a wet adhesive and its distinctive strength. Continued improvements in understanding of the mechanochemistry of this bioadhesive could provide new insights into how bacteria attach to surfaces and could inform the development of new adhesives.IMPORTANCE There is an urgent need for strong, biocompatible bioadhesives that perform underwater. To strongly adhere to surfaces and resist flow underwater, the bacterium Caulobacter crescentus produces an adhesive called the holdfast, the mechanochemistry of which remains undefined. We show that the holdfast is a layered structure with a stiff core layer and a polymeric brush layer and consists of polysaccharides, polypeptides, and DNA. The DNA appears to play a role in the structure of the brush layer and initial adhesion, the peptides in adhesive strength, and the polysaccharides in the structure of the core. The complex, multilayer organization and diverse chemistry described here underlie the distinctive adhesive properties of the holdfast and will provide important insights into the mechanisms of bacterial adhesion and bioadhesive applications.
Collapse
Affiliation(s)
| | - Sima Setayeshgar
- Department of Physics, Indiana University, Bloomington, Indiana, USA
| | - Yifeng Hou
- Department of Mathematics, Indiana University, Bloomington, Indiana, USA
| | - Roger Temam
- Department of Mathematics, Indiana University, Bloomington, Indiana, USA
| | - Yves V Brun
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Bogdan Dragnea
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Cécile Berne
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
22
|
Sun L, Riedel R, Stanciu SG, Yang F, Hampp N, Xu L, Wu A. Investigations on the elasticity of functional gold nanoparticles using single-molecule force spectroscopy. J Mater Chem B 2018; 6:2960-2971. [DOI: 10.1039/c7tb03309e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this focused review we turn our attention towards several approaches for detecting the elasticity of NPs, systematically summarizing the divergent elasticity values of distinct gold nanoparticles (AuNPs) with different surfaces.
Collapse
Affiliation(s)
- Li Sun
- College of Science
- Nanjing Forestry University
- Nanjing
- P. R. China
- CAS Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province & Division of Functional Materials and Nanodevices
| | - René Riedel
- Fachbereich Chemie
- Philipps Universität Marburg
- Marburg
- Germany
| | - Stefan G. Stanciu
- Center for Microscopy-Microanalysis and Information Processing
- University Politehnica of Bucharest
- Bucharest
- Romania
| | - Fang Yang
- CAS Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province & Division of Functional Materials and Nanodevices
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
- P. R. China
| | - Norbert Hampp
- Fachbereich Chemie
- Philipps Universität Marburg
- Marburg
- Germany
| | - Li Xu
- College of Science
- Nanjing Forestry University
- Nanjing
- P. R. China
| | - Aiguo Wu
- CAS Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province & Division of Functional Materials and Nanodevices
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
- P. R. China
| |
Collapse
|
23
|
Atomic force spectroscopic and SPR kinetic analysis of long circular and short ssDNA molecules interacting with single-stranded DNA-binding protein. MONATSHEFTE FUR CHEMIE 2017. [DOI: 10.1007/s00706-017-2022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Griffo A, Hähl H, Grandthyll S, Müller F, Paananen A, Ilmén M, Szilvay GR, Landowski CP, Penttilä M, Jacobs K, Laaksonen P. Single-Molecule Force Spectroscopy Study on Modular Resilin Fusion Protein. ACS OMEGA 2017; 2:6906-6915. [PMID: 31457277 PMCID: PMC6644949 DOI: 10.1021/acsomega.7b01133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/26/2017] [Indexed: 05/05/2023]
Abstract
The adhesive and mechanical properties of a modular fusion protein consisting of two different types of binding units linked together via a flexible resilin-like-polypeptide domain are quantified. The adhesive domains have been constructed from fungal cellulose-binding modules (CBMs) and an amphiphilic hydrophobin HFBI. This study is carried out by single-molecule force spectroscopy, which enables stretching of single molecules. The fusion proteins are designed to self-assemble on the cellulose surface, leading into the submonolayer of proteins having the HFBI pointing away from the surface. A hydrophobic atomic force microscopy (AFM) tip can be employed for contacting and lifting the single fusion protein from the HFBI-functionalized terminus by the hydrophobic interaction between the tip surface and the hydrophobic patch of the HFBI. The work of rupture, contour length at rupture and the adhesion forces of the amphiphilic end domains are evaluated under aqueous environment at different pHs.
Collapse
Affiliation(s)
- Alessandra Griffo
- Department
of Bioproducts and Biosystems BIO, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Hendrik Hähl
- Department
of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
| | - Samuel Grandthyll
- Department
of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
| | - Frank Müller
- Department
of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
| | - Arja Paananen
- VTT
Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, FI-02044 Espoo, Finland
| | - Marja Ilmén
- VTT
Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, FI-02044 Espoo, Finland
| | - Géza R. Szilvay
- VTT
Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, FI-02044 Espoo, Finland
| | | | - Merja Penttilä
- Department
of Bioproducts and Biosystems BIO, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
- VTT
Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, FI-02044 Espoo, Finland
| | - Karin Jacobs
- Department
of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
| | - Päivi Laaksonen
- Department
of Bioproducts and Biosystems BIO, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| |
Collapse
|
25
|
Hughes ZE, Wei G, Drew KLM, Colombi Ciacchi L, Walsh TR. Adsorption of DNA Fragments at Aqueous Graphite and Au(111) via Integration of Experiment and Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:10193-10204. [PMID: 28885033 DOI: 10.1021/acs.langmuir.7b02480] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We combine single molecule force spectroscopy measurements with all-atom metadynamics simulations to investigate the cross-materials binding strength trends of DNA fragments adsorbed at the aqueous graphite C(0001) and Au(111) interfaces. Our simulations predict this adsorption at the level of the nucleobase, nucleoside, and nucleotide. We find that despite challenges in making clear, careful connections between the experimental and simulation data, reasonable consistency between the binding trends between the two approaches and two substrates was evident. On C(0001), our simulations predict a binding trend of dG > dA ≈ dT > dC, which broadly aligns with the experimental trend. On Au(111), the simulation-based binding strength trends reveal stronger adsorption for the purines relative to the pyrimadines, with dG ≈ dA > dT ≈ dC. Moreover, our simulations provide structural insights into the origins of the similarities and differences in adsorption of the nucleic acid fragments at the two interfaces. In particular, our simulation data offer an explanation for the differences observed in the relative binding trend between adenosine and guanine on the two substrates.
Collapse
Affiliation(s)
- Zak E Hughes
- Institute for Frontier Materials, Deakin University , Geelong, VIC 3216, Australia
| | - Gang Wei
- Hybrid Materials Interface Group, Faculty of Production Engineering, University of Bremen , D-28359 Bremen, Germany
| | - Kurt L M Drew
- Institute for Frontier Materials, Deakin University , Geelong, VIC 3216, Australia
| | - Lucio Colombi Ciacchi
- Hybrid Materials Interface Group, Faculty of Production Engineering, University of Bremen , D-28359 Bremen, Germany
| | - Tiffany R Walsh
- Institute for Frontier Materials, Deakin University , Geelong, VIC 3216, Australia
| |
Collapse
|
26
|
In Situ Atomic Force Microscopy Studies on Nucleation and Self-Assembly of Biogenic and Bio-Inspired Materials. MINERALS 2017. [DOI: 10.3390/min7090158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Spengler C, Thewes N, Jung P, Bischoff M, Jacobs K. Determination of the nano-scaled contact area of staphylococcal cells. NANOSCALE 2017; 9:10084-10093. [PMID: 28695218 DOI: 10.1039/c7nr02297b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bacterial adhesion is a crucial step during the development of infections as well as the formation of biofilms. Hence, fundamental research of bacterial adhesion mechanisms is of utmost importance. So far, less is known about the size of the contact area between bacterial cells and a surface. This gap will be filled by this study using a single-cell force spectroscopy-based method to investigate the contact area between a single bacterial cell of Staphylococcus aureus and a solid substrate. The technique relies on the strong influence of the hydrophobic interaction on bacterial adhesion: by incrementally crossing a very sharp hydrophobic/hydrophilic interface while performing force-distance curves with a single bacterial probe, the bacterial contact area can be determined. Assuming circular contact areas, their radii - determined in our experiments - are in the range from tens of nanometers to a few hundred nanometers. The contact area can be slightly enlarged by a larger load force, yet does not resemble a Hertzian contact, rather, the enlargement is a property of the individual bacterial cell. Additionally, Staphylococcus carnosus has been probed, which is less adherent than S. aureus, yet both bacteria exhibit a similar contact area size. This corroborates the notion that the adhesive strength of bacteria is not a matter of contact area, but rather a matter of which and how many molecules of the bacterial species' cell wall form the contact. Moreover, our method of determining the contact area can be applied to other microorganisms and the results might also be useful for studies using nanoparticles covered with soft, macromolecular coatings.
Collapse
Affiliation(s)
- Christian Spengler
- Department of Experimental Physics, Saarland University, 66041 Saarbrücken, Germany.
| | | | | | | | | |
Collapse
|
28
|
Leitner M, Poturnayova A, Lamprecht C, Weich S, Snejdarkova M, Karpisova I, Hianik T, Ebner A. Characterization of the specific interaction between the DNA aptamer sgc8c and protein tyrosine kinase-7 receptors at the surface of T-cells by biosensing AFM. Anal Bioanal Chem 2017; 409:2767-2776. [PMID: 28229174 PMCID: PMC5366180 DOI: 10.1007/s00216-017-0238-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/18/2017] [Accepted: 01/31/2017] [Indexed: 01/10/2023]
Abstract
We studied the interaction of the specific DNA aptamer sgc8c immobilized at the AFM tip with its corresponding receptor, the protein tyrosine kinase-7 (PTK7) embedded in the membrane of acute lymphoblastic leukemia (ALL) cells (Jurkat T-cells). Performing single molecule force spectroscopy (SMFS) experiments, we showed that the aptamer sgc8c bound with high probability (38.3 ± 7.48%) and high specificity to PTK7, as demonstrated by receptor blocking experiments and through comparison with the binding behavior of a nonspecific aptamer. The determined kinetic off-rate (koff = 5.16 s−1) indicates low dissociation of the sgc8c–PTK7 complex. In addition to the pulling force experiments, simultaneous topography and recognition imaging (TREC) experiments using AFM tips functionalized with sgc8c aptamers were realized on the outer regions surface of surface-immobilized Jurkat cells for the first time. This allowed determination of the distribution of PTK7 without any labeling and at near physiological conditions. As a result, we could show a homogeneous distribution of PTK7 molecules on the outer regions of ALL cells with a surface density of 325 ± 12 PTK7 receptors (or small receptor clusters) per μm2. The specific interaction of the DNA aptamer sgc8c and protein tyrosine kinase-7 (PTK7) on acute lymphoblastic leukemia (ALL) cells was characterized. AFM based single molecule force spectroscopy (SMFS) yielded a kinetic off-rate of 5.16 s−1 of the complex. Simultaneous topography and recognition imaging (TREC) revealed a PTK7 density of 325 ± 12 molecules or clusters per μm2 in the cell membrane ![]()
Collapse
Affiliation(s)
- Michael Leitner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020, Linz, Austria
| | - Alexandra Poturnayova
- Faculty of Mathematics, Physics, and Informatics, Comenius University, Mlynska dolina F1, 842 48, Bratislava, Slovakia.,Institute of Biochemistry and Animal Genetics, Slovak Academy of Sciences, Moyzesova 61, 900 28, Ivanka pri Dunaji, Slovakia
| | - Constanze Lamprecht
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020, Linz, Austria
| | - Sabine Weich
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020, Linz, Austria
| | - Maja Snejdarkova
- Institute of Biochemistry and Animal Genetics, Slovak Academy of Sciences, Moyzesova 61, 900 28, Ivanka pri Dunaji, Slovakia
| | - Ivana Karpisova
- Faculty of Mathematics, Physics, and Informatics, Comenius University, Mlynska dolina F1, 842 48, Bratislava, Slovakia
| | - Tibor Hianik
- Faculty of Mathematics, Physics, and Informatics, Comenius University, Mlynska dolina F1, 842 48, Bratislava, Slovakia
| | - Andreas Ebner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020, Linz, Austria.
| |
Collapse
|
29
|
Norregaard K, Metzler R, Ritter CM, Berg-Sørensen K, Oddershede LB. Manipulation and Motion of Organelles and Single Molecules in Living Cells. Chem Rev 2017; 117:4342-4375. [PMID: 28156096 DOI: 10.1021/acs.chemrev.6b00638] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biomolecule is among the most important building blocks of biological systems, and a full understanding of its function forms the scaffold for describing the mechanisms of higher order structures as organelles and cells. Force is a fundamental regulatory mechanism of biomolecular interactions driving many cellular processes. The forces on a molecular scale are exactly in the range that can be manipulated and probed with single molecule force spectroscopy. The natural environment of a biomolecule is inside a living cell, hence, this is the most relevant environment for probing their function. In vivo studies are, however, challenged by the complexity of the cell. In this review, we start with presenting relevant theoretical tools for analyzing single molecule data obtained in intracellular environments followed by a description of state-of-the art visualization techniques. The most commonly used force spectroscopy techniques, namely optical tweezers, magnetic tweezers, and atomic force microscopy, are described in detail, and their strength and limitations related to in vivo experiments are discussed. Finally, recent exciting discoveries within the field of in vivo manipulation and dynamics of single molecule and organelles are reviewed.
Collapse
Affiliation(s)
- Kamilla Norregaard
- Cluster for Molecular Imaging, Department of Biomedical Science and Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen , 2200 Copenhagen, Denmark
| | - Ralf Metzler
- Institute for Physics & Astronomy, University of Potsdam , 14476 Potsdam-Golm, Germany
| | - Christine M Ritter
- Niels Bohr Institute, University of Copenhagen , 2100 Copenhagen, Denmark
| | | | - Lene B Oddershede
- Niels Bohr Institute, University of Copenhagen , 2100 Copenhagen, Denmark
| |
Collapse
|
30
|
Zhang B, Shi R, Duan W, Luo Z, Lu ZY, Cui S. Direct comparison between chemisorption and physisorption: a study of poly(ethylene glycol) by means of single-molecule force spectroscopy. RSC Adv 2017. [DOI: 10.1039/c7ra05779b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chemisorption on an AFM-tip is the most promising protocol, if a functionalized polymer sample is available.
Collapse
Affiliation(s)
- Bo Zhang
- Key Lab of Advanced Technologies of Materials
- Ministry of Education of China
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Rui Shi
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130023
- China
| | - Weili Duan
- Key Lab of Advanced Technologies of Materials
- Ministry of Education of China
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Zhonglong Luo
- Key Lab of Advanced Technologies of Materials
- Ministry of Education of China
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Zhong-yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130023
- China
| | - Shuxun Cui
- Key Lab of Advanced Technologies of Materials
- Ministry of Education of China
- Southwest Jiaotong University
- Chengdu 610031
- China
| |
Collapse
|
31
|
Ariga K, Mori T, Nakanishi W, Hill JP. Solid surface vs. liquid surface: nanoarchitectonics, molecular machines, and DNA origami. Phys Chem Chem Phys 2017; 19:23658-23676. [DOI: 10.1039/c7cp02280h] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Comparisons of science and technology between these solid and liquid surfaces would be a good navigation for current-to-future developments.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA)
- National Institute for Materials Science (NIMS)
- Tsukuba 305-0044
- Japan
- Graduate School of Frontier Science
| | - Taizo Mori
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA)
- National Institute for Materials Science (NIMS)
- Tsukuba 305-0044
- Japan
| | - Waka Nakanishi
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA)
- National Institute for Materials Science (NIMS)
- Tsukuba 305-0044
- Japan
| | - Jonathan P. Hill
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA)
- National Institute for Materials Science (NIMS)
- Tsukuba 305-0044
- Japan
| |
Collapse
|
32
|
Zou Y, Biao L, Xu F, Liu R, Liu Z, Fu Y. Structural study on the interactions of oxaliplatin and linear DNA. SCANNING 2016; 38:880-888. [PMID: 27391259 DOI: 10.1002/sca.21337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/27/2016] [Indexed: 06/06/2023]
Abstract
Damage to cellular DNA is believed to determine the cytotoxicity of oxaliplatin. However, high resolution structures formed by oxaliplatin and different linear DNA remain unclear. This study characterized, the key structures of different linear DNA in the platination process by UV absorption spectra and atomic force microscopy (AFM). Bathochromic shift and hyperchromicity in UV spectra after addition of oxaliplatin revealed that it can disrupt base stacking of DNA in the platination process. AFM results of different linear DNA indicated that, the platination process can induce DNA change from an extended conformation to the network structure with many kinks and finally to the compact particles, or toroids with increasing the incubation time. All AFM results confirmed that, platination of different linear DNA by oxaliplatin is a time depended process. The present AFM results provide, structural evidence about the interactions between oxaliplatin and different linear DNA containing multiple targets. SCANNING 38:880-888, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yongpeng Zou
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, People's Republic of China
| | - Linhai Biao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, People's Republic of China
- State Engineering Laboratory of Bio-Resource Eco-Utilization, Northeast Forestry University, Harbin, People's Republic of China
| | - Fengjie Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, People's Republic of China
- State Engineering Laboratory of Bio-Resource Eco-Utilization, Northeast Forestry University, Harbin, People's Republic of China
| | - Ruisi Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, People's Republic of China
- State Engineering Laboratory of Bio-Resource Eco-Utilization, Northeast Forestry University, Harbin, People's Republic of China
| | - Zhiguo Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, People's Republic of China
- State Engineering Laboratory of Bio-Resource Eco-Utilization, Northeast Forestry University, Harbin, People's Republic of China
| | - Yujie Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, People's Republic of China
- State Engineering Laboratory of Bio-Resource Eco-Utilization, Northeast Forestry University, Harbin, People's Republic of China
| |
Collapse
|
33
|
Shlyakhtenko LS, Dutta S, Li M, Harris RS, Lyubchenko YL. Single-Molecule Force Spectroscopy Studies of APOBEC3A-Single-Stranded DNA Complexes. Biochemistry 2016; 55:3102-6. [PMID: 27182892 DOI: 10.1021/acs.biochem.6b00214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
APOBEC3A (A3A) inhibits the replication of a range of viruses and transposons and might also play a role in carcinogenesis. It is a single-domain deaminase enzyme that interacts with single-stranded DNA (ssDNA) and converts cytidines to uridines within specific trinucleotide contexts. Although there is abundant information that describes the potential biological activities of A3A, the interplay between binding ssDNA and sequence-specific deaminase activity remains controversial. Using a single-molecule atomic force microscopy spectroscopy approach developed by Shlyakhtenko et al. [(2015) Sci. Rep. 5, 15648], we determine the stability of A3A in complex with different ssDNA sequences. We found that the strength of the complex is sequence-dependent, with more stable complexes formed with deaminase-specific sequences. A correlation between the deaminase activity of A3A and the complex strength was identified. The ssDNA binding properties of A3A and those for A3G are also compared and discussed.
Collapse
Affiliation(s)
- Luda S Shlyakhtenko
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center , Omaha, Nebraska 68198-6000, United States
| | - Samrat Dutta
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center , Omaha, Nebraska 68198-6000, United States
| | - Ming Li
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Center for Genome Engineering, Masonic Cancer Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Center for Genome Engineering, Masonic Cancer Center, University of Minnesota , Minneapolis, Minnesota 55455, United States.,Howard Hughes Medical Institute, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center , Omaha, Nebraska 68198-6000, United States
| |
Collapse
|
34
|
Pan Y, Wang B, Zhang T, Zhang Y, Wang H, Xu B. Nanoscale insights into full-length prion protein aggregation on model lipid membranes. Chem Commun (Camb) 2016; 52:8533-6. [DOI: 10.1039/c6cc03029g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aggregates of the full-length human recombinant prion protein (PrP) (23–231) on model membranes were investigated by combining the atomic force microscopy (AFM) measurements and theoretical calculations at pH 5.0, showing the great effect of PrP concentration on its supramolecular assemblies on the lipid bilayer.
Collapse
Affiliation(s)
- Yangang Pan
- Single Molecule Study Laboratory
- Faculty of Engineering and Nanoscale Science and Engineering Center
- University of Georgia
- Athens
- USA
| | - Bin Wang
- Single Molecule Study Laboratory
- Faculty of Engineering and Nanoscale Science and Engineering Center
- University of Georgia
- Athens
- USA
| | - Tong Zhang
- Single Molecule Study Laboratory
- Faculty of Engineering and Nanoscale Science and Engineering Center
- University of Georgia
- Athens
- USA
| | - Yanan Zhang
- Single Molecule Study Laboratory
- Faculty of Engineering and Nanoscale Science and Engineering Center
- University of Georgia
- Athens
- USA
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Bingqian Xu
- Single Molecule Study Laboratory
- Faculty of Engineering and Nanoscale Science and Engineering Center
- University of Georgia
- Athens
- USA
| |
Collapse
|